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Identification of a claudin-low
subtype in clear cell renal cell
carcinoma with implications
for the evaluation of
clinical outcomes and
treatment efficacy
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Zhenpeng Zhu1,2,3, Cong Huang1,2,3, Zhisong He1,2,3,
Liqun Zhou1,2,3 and Yanqing Gong1,2,3*

1Department of Urology, Peking University First Hospital, Beijing, China, 2Institute of Urology,
Peking University, Beijing, China, 3National Urological Cancer Center, Peking University First
Hospital, Beijing, China
Background: In bladder and breast cancer, the claudin-low subtype is widely

identified, revealing a distinct tumor microenvironment (TME) and

immunological feature. Although we have previously identified individual

claudin members as prognostic biomarkers in clear cell renal cell carcinoma

(ccRCC), the existence of an intrinsic claudin-low subtype and its interplay with

TME and clinical outcomes remains unclear.

Methods: Transcriptomic and clinical data from The Cancer Genome Atlas

(TCGA)- kidney clear cell carcinoma (KIRC) cohort and E-MTAB-1980 were

derived as the training and validation cohorts, respectively. In addition,

GSE40435, GSE53757, International Cancer Genome Consortium (ICGC)

datasets, and RNA-sequencing data from local ccRCC patients were utilized

as validation cohorts for claudin clustering based on silhouette scores. Using

weighted correlation network analysis (WGCNA) andmultiple machine learning

algorithms, including least absolute shrinkage and selection operator (LASSO),

CoxBoost, and random forest, we constructed a claudin-TME related (CTR) risk

signature. Furthermore, the CTR associated genomic characteristics, immunity,

and treatment sensitivity were evaluated.

Results: A claudin-low phenotype was identified and associated with an inferior

survival and distinct TME and cancer immunity characteristics. Based on its

interaction with TME, a risk signature was developed with robust prognostic

prediction accuracy. Moreover, we found its association with a claudin-low,

stem-like phenotype and advanced clinicopathological features. Intriguingly, it

was also effective in kidney chromophobe and renal papillary cell carcinoma.

The high CTR group exhibited genomic characteristics similar to those of

claudin-low phenotype, including increased chromosomal instability (such as
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deletions at 9p) and risk genomic alterations (especially BAP1 and SETD2). In

addition, a higher abundance of CD8 T cells and overexpression of immune

checkpoints, such as LAG3, CTLA4 and PDCD1, were identified in the high CTR

group. Notably, ccRCC patients with high CTR were potentially more sensitive

to immune checkpoint inhibitors; their counterparts could have more clinical

benefits when treated with antiangiogenic drugs, mTOR, or HIF inhibitors.

Conclusion:We comprehensively evaluated the expression features of claudin

genes and identified a claudin-low phenotype in ccRCC. In addition, its related

signature could robustly predict the prognosis and provide guide for

personalizing management strategies.
KEYWORDS

clear cell renal cell carcinoma (ccRCC), claudin, tumor microenvironment, immunity,
prognosis, immune checkpoint inhibitor (ICI)
1 Introduction

Renal cell carcinoma (RCC) is the third most prevalent

genitourinary cancer worldwide, with an estimated 431,288 new

cases diagnosed in 2020 (1). More than 70% of RCC cases are

histologically classified as clear cell RCC (ccRCC), and

approximately 65% of them are localized and can be treated

with surgical resection in the form of partial or radical

nephrectomy (2). However, nearly 20–40% of ccRCC patients

may experience disease recurrence or develop metastases (3).

Multiple prognostic models have been established and clinically

verified to improve patient management, such as the UCLA

Integrated Staging System (UISS), Leibovich score 2003/2018,

VENUSS score, and GRANT score (4). However, these models

are mainly based on traditional clinical and pathological variables

and present with heterogeneous predictive accuracy according to

the pathological characteristics (5). In the meantime, significant

breakthroughs have been made in the past two decades, such as

introducing vascular endothelial growth factor tyrosine kinase

inhibitors (VEGFR TKIs), mammalian target of rapamycin

(mTOR) inhibitors, and particularly immune checkpoint

inhibitors (ICIs) to better manage patients with ccRCC.

However, even when applying the most effective immune

combination therapy, clinical benefits are limited to a certain

section of patients (6). Thus, there is an urgent need to develop

novel and powerful prognostic prediction biomarkers for both risk

and treatment stratification.

Claudins are the backbone of the tight junction complex,

which includes a group of proteins 20–34 kDa in size and a

structure similar to that of a short cytoplasmic N-terminal

region, two extracellular loops formed by four transmembrane

domains, and a cytoplasmic C-terminal tail (7). To date, 24
02
claudin family members, which are commonly downregulated in

tumor tissues, have been identified; however, their roles in the

regulation of the development of different types of cancer are

heterogeneous (8). In a previous study, we found that claudin 7

is a tumor suppressor in ccRCC, and hypermethylation of its

promoter or its downregulation facilitates epithelial-

mesenchymal transition (EMT) and tumor progression (9).

Other claudin members, including claudin-2 (10), claudin-4

(11), claudin-5 (12), and claudin-8 (13), have been investigated

in ccRCC as an individual prognostic biomarker, respectively. It

is noteworthy that all previous studies were focused on a single

member of claudin; thus, little is known about the

comprehensive expression profile of claudin family members

in ccRCC.

Meanwhile, claudin-low subtype has been widely recognized

as a novel intrinsic subtype in both breast and bladder cancer,

exhibiting aggressive, distinct biological and clinical behaviors

(14). Previous studies have depicted its correlation with EMT

and stemness in the tumor, revealing its origin and evolution

(15). More importantly, increasing evidence supports the

interaction between claudin phenotype and the immune

profile of tumors. For instance, bladder or breast tumors with

subtype classification based on claudin expression showed

distinct immune features, characterized by different levels of

tumor-infiltrating immune cells and expression of immune

checkpoints such as programmed death-ligand 1 (PD-L1) (16,

17). These features may further contribute to a better response to

immune checkpoint inhibitors (ICIs) (18). However, to the best

of our knowledge, there was no study on the claudin-low

phenotype in ccRCC and whether there is a correlation

between claudin, cancer immunity and prognosis in patients

with ccRCC remains elusive.
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In this study, we sought to analyze the comprehensive

landscape of the expression of claudin family members in

ccRCC and mainly focused on the interaction between claudin

expression features and immunity. Subsequently, a prognostic

prediction signature was developed based on candidate claudin-

immune genes, and its correlation with precision medicine

including targeted therapy and ICIs was explored.
2 Materials and methods

2.1 Study design

The schematic workflow is shown in Figure 1.
2.2 Data retrieval and preprocessing

The RNA-sequencing (RNA-seq) and clinical data of 530

ccRCC samples (and 72 adjacent nontumor tissues) were

downloaded from The Cancer Genome Atlas (TCGA)-

kidney clear cell carcinoma (KIRC) cohort via the cbioportal

website (https://www.cbioportal.org). The mRNA expression

profile and clinical data of E-MTAB-1980 with 101 samples

were downloaded from the ArrayExpress database (https://

www.ebi.ac.uk/arrayexpress/) and used as the validation cohort

for survival analysis. GSE40435 (tumor vs. normal tissue: 101

vs. 101), GSE53757 (72 vs. 72), and the International Cancer

Genome Consortium (ICGC) (91 vs. 45) datasets were used as

validation cohorts for claudin clustering and identify the

differences in differentially expressed genes between tumor

and normal kidney tissues.
Frontiers in Immunology 03
2.3 RNA sequencing in the local
ccRCC patients

Tumor and matched normal tissues were collected from 20

ccRCCpatients in our local cohort to performRNA-seq. This study

was approved by the Biomedical Research Ethics Committee of

Peking University First Hospital (approval no. 2015-977) and

written informed consent was obtained from all the patients.

Clinicopathological data of the 20 enrolled patients are presented

in Supplementary Table 1. Before RNA extraction, the tissue was

evaluated for tumor cell content and percentage, and only those

with a tumor purity of at least 20% based on histopathological

analysis were eligible for RNA extraction and sequencing. Total

RNA fromeach samplewas collected using aFastPure®Cell/Tissue

Total RNA Isolation Kit V2 (Vazyme, Jiangsu, China), and the

RNA concentration and RNA integrity number (RIN) were

measured using a Qubit (Thermo Fisher Scientific, MA, United

States) and anAgilent 2100 bioanalyzer (AgilentTechnologies,CA,

United States), respectively. Library construction was performed

using the NEBNext®Ultra™ RNA Library Prep Kit for Illumina®

Kit (NEB, MA, United States) and sequenced on the Illumina

Novaseq-6000 system (Illumina, MA, United States).
2.4 Cluster of claudin expression profile
in ccRCC

We calculated the similarity of claudin family gene

expression in ccRCC samples in the TCGA-KIRC database

using R package “factoextra” and the silhouette scores were

obtained based on the assigned clusters. The optimal number of
FIGURE 1

Overview of the study design. TME: tumor microenvironment.
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clusters in each cohort was determined using the

silhouette width.
2.5 Differentially expressed genes and
weighted gene co-expression
network analysis

DEGswitha thresholdof log2(FoldChange)>0.585andadjusted

p< 0.05 were identified using the R package “limma”. DEGs between

claudin clusters were collected for WGCNA using the R package

“WGCNA”. The appropriate power value was determined when the

scale independence was > 0.85 with a relatively higher connectivity

degree.When the scale independencewas>0.85and theconnectivity

degree was relatively higher, the appropriate power value was

determined. Genes were then sorted into several gene modules

based on topological overlap matrix (TOM)-based dissimilarities.

Finally, the dynamic modules were merged according to a cut-off

value of 0.25 and five modules were obtained. Gene modules with

correlationcoefficient>0.5with immuneand/or stromal scores,were

recognized as tumor microenvironment (TME)-related

gene modules.
2.6 Stromal and immune score analysis

Estimation of stromal and immune cells in malignant tumor

tissues using expression data (ESTIMATE) algorithm depicts the

level of tumor-infiltrating immune cells, stromal cells, and tumor

purity in the formof immune score, stromal score, andESTIMATE

score, respectively (19). The stromal and immune scores of each

sample were calculated using the R package “ESTIMATE”.
2.7 Construction of a novel claudin-TME
related prognostic prediction signature

Hub genes screened out in the TME gene module

determined by WGCNA were then inputted into three

machine learning algorithms, including least absolute

shrinkage and selection operator (LASSO) regression analysis

(R package “glmnet,” version 4.1-4), CoxBoost (R package

“CoxBoost,” version 1.5) and random forest (R package

“randomForestSRC,” version 3.1.0). We chose to use three

algorithms as opposed to only one to reduce the risk of bias,

and the overlapping hub genes shared by all of them were

selected to construct a risk signature. The CTR prognostic

prediction was developed using the following formula:

CTR   score =o
i
Coefficient of  Gene ið Þ 

�  Expression of  Gene ið Þ 
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The patients in each cohort were dichotomized into high-

and low-risk groups based on the median CTR score. A time-

dependent receiver operating characteristic (ROC) curve was

applied to analyze the predictive accuracy of CTR signature in

the training and validation cohorts.
2.8 TME and immune profile analysis

Tumor-infiltrating immune cell profiles were comprehensively

analyzedusing seven different algorithms, includingCIBERSOFTX

(20), Microenvironment Cell Populations (MCP)-counter (21),

tumor immune estimation resource (TIMER2.0) (22), and xCell

(23). The seven steps involved in the cancer-immune cycle in each

sample, starting fromthe release of cancer cell antigens to the killing

of cancer cells, was evaluated using single-sample gene set

enrichment analysis (ssGSEA) (24).
2.9 Stemness feature analysis

Tumor stem cell-like features (stemness) were indicated as

the mRNA expression-based stemness index (mRNAsi), which

was calculated using the method described by Malta et al. (25)
2.10 Genomic profile analysis

Genetic alterationswere analyzed using the “maftools”package

in the TCGA-KIRC database. Comparison of the prevalence of

genomic alterations in certain genes was conducted between high

and low CTR groups using Fisher’s exact test, and only those genes

with a prevalence of over 3% in at least one group were included.
2.11 Comparison with other risk models
of ccRCC

Thirteen previously defined risk models for ccRCC were

identified through the PubMed database (26–38), and the risk

score for each model was determined based on the algorithm

provided in the corresponding published study. The details are

listed in Supplementary Table 2. Differences in area under the

ROC curve (AUC) for survival at 1–5 years and the concordance

index (C-index) were compared between the CTR score and

these 13 risk models in the TCGA-KIRC dataset based on a

bootstrap resampling method.
2.12 Nomogram construction

Univariate and multivariate Cox regression analyses were

performed on clinicopathological variables, including age, sex,

neoplasm histologic grade, neoplasm disease stage, tumor,
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1020729
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2022.1020729
nodes, and metastases (TNM) stage, and risk score in the TCGA-

KIRC database. Variables were integrated to establish a

nomogram using the “rms” R package.
2.13 Treatment sensitivity analysis

2.13.1 Evaluation of the expression of
therapeutic targets in ccRCC

A comprehensive evaluation of the difference in the expression

level of the target of Food and Drug Administration (FDA)-

approved drugs, including ICIs (anti-CTLA4 and anti-PD-1/PD-

L1), antiangiogenic therapy (bevacizumab, and targeted therapies

including sunitinib, pazopanib, axitinib, cabozantinib, lenvatinib,

tivozanib, and sorafenib), mTOR inhibitors (everolimus and

temsirolimus), and hypoxia-inducible factor 2a (HIF2A)

inhibitor (belzutifan) between the high- and low-risk groups was

performed. Matched drug-target information was retrieved from

the DrugBank website (https://go.drugbank.com/). The Cancer

Dependency Map (DepMap) portal (https://depmap.org/portal/)

was used to evaluate the drug sensitivity of therapeutic targets from

three databases (CTRPv2.0, PRISM, and GDSC1). Lower AUC

values for the agents indicated a higher drug sensitivity.

2.13.2 ICI
The clinical and gene expression profiles of ccRCC patients

treated with nivolumab in the CheckMate 025, 010, and 009

trials were derived from the dataset published by David et al.

(39) The clinical response and genomic data from the

IMvigor210 cohort (28) and GSE173839 dataset (40) were

analyzed for differences in clinical benefits from ICI based on

stratification using the CTR score. The criteria for treatment

responses were defined as follows: CR: complete response, PR:

partial response, SD: stable disease, and PD: progressive disease.
2.14 Statistical analysis

All statistical analyses were performed using the R software

(version 4.1.2). Kaplan-Meier curves and log-rank tests were

used to analyze the survival differences between categorical

variables in each cohort. Spearman correlation coefficients

were analyzed to explore the correlations between different

variables. Chi-squared test or Fisher’s exact test were used to

compare the differences in categorical variables. Statistical

significance was defined as a two-sided p value< 0.05.
3 Results

3.1 Claudin expression pattern in ccRCC

An overview of the expression features of all the claudin

family genes in three kinds of kidney cancer revealed that nearly
Frontiers in Immunology 05
all the genes were downregulated in ccRCC tumors

(Supplementary Figure 1A), with the exception of claudin 18

in ccRCC. However, the predictive function of each claudin

member was inconsistent (Supplementary Figure 1B),

highlighting the need for integrative research. As more claudin

genes influenced patient survival in ccRCC, we focused our

investigational study on this histological type. Based on the

comprehensive expression profiles of claudin family genes, we

identified two distinct claudin expression clusters in the TCGA-

KIRC dataset (Figure 2A). To validate whether the clustering

numbers were comprehensively optimal, we utilized the

GSE40435, GSE53757, and ICGC datasets, and local ccRCC

samples to evaluate the similarity of the expression of claudin

family members and confirmed that clustering by two had the

highest average silhouette width in all three datasets

(Supplementary Figure 2A). Interestingly, a comparison of the

difference in each claudin gene between these two clusters

showed that cluster 1 also exhibited a notable claudin-low

feature, characterized by an overall lower expression level of

claudin genes (Figure 2B). Twenty-two percent (121/530) of

ccRCC patients belonged to cluster 1, which had significantly

inferior overall survival (Figure 2C), and more patients with

advanced neoplasm histologic grades and/or stages were present

in this cluster (Supplementary Table 3). This claudin-low feature

in cluster 1 was also validated in other datasets and samples from

local ccRCC patients (Supplementary Figure 2B). Altogether,

2806 DEGs were identified between these two clusters

(Supplementary Table 4), which were mainly enriched in

multiple cell signaling, transduction, metabolism, and

particularly the immune regulation pathways, including

leukocyte transendothelial migration and T cell receptor

signaling pathways (Figures 2D, E). Two clusters revealed

distinct genomic features (Figures 2F, G): VHL and PBRM1

were significantly more prevalent in cluster 2; whereas genes

includingMUC17, TP53,MEGF10 were more mutated in cluster

1. In addition, cluster 1 showed significantly increased

chromosomal instability, as evidenced by growing deletions at

9p23, 9p21, 8p23, and 8p21, as well as amplifications at 3q26.33

and 3q36.2 (Figure 2H).
3.2 Claudin expression cluster and tumor
microenvironment in ccRCC

As previous studies have suggested a correlation between the

claudin-low phenotype and increasing levels of immune and

stromal cell infiltration in breast cancer (41), we then evaluated

the interaction between claudin expression features and TME

profiles in ccRCC. The claudin-low related cluster (cluster 1) was

associated with changes in multiple immunomodulators

(Figures 3A, B), with significant downregulation of major

histocompatibility complex (MHC) molecules, which revealed

the association between claudin-low feature and blockade of the
frontiersin.org
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F
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A

FIGURE 2

The expression clusters of claudin genes in ccRCC. (A) Silhouette clustering analysis in The Cancer Genome Atlas-kidney clear cell
carcinoma (TCGA-KIRC) cohort. (B) The difference in the expression level of each claudin gene between clusters 1 and 2. (C) Kaplan–Meier
estimates of the difference in the overall survival between cluster 1 and cluster 2. Hallmark (D) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) (E) pathways analysis revealed the pathways significantly enriched in the differentially expressed genes (DEGs) between the
two clusters. (F) Oncoprints of the top 20 prevalent genes in cluster 1 (left) and cluster 2 (right). (G) Genes with significantly differed
prevalence in cluster 1 or cluster 2. Only genes with a prevalence of over 3% in at least one cluster were analyzed. (H) Difference in the
prevalence of copy number variants (CNV) between clusters 1 and 2. OR value below 1 is indicated as more prevalent in cluster 1. Del,
deletion; Amp, amplification; OR, odds ratio; TPM, transcript per million. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. ns, not significant.
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antigen presentation process (Figures 3A, B). Chemokines and

their receptors, as well as immune stimulators, were also

heterogeneous between these two clusters, and most of them

were downregulated in cluster 1. As shown in Figure 3C, there

was no significant difference in the release of cancer cell antigens

(step 1), but after the cancer antigen presentation process (step

2), the two clusters began to differ in the activity of cancer

immunity. Cancer antigen presentation was downregulated in

cluster 1, as well as in CD4 T cells, Th22 cells, monocytes, and

Treg cells (step 3). However, cluster 1 showed significantly

upregulated levels of T cells, dendritic cells, eosinophils, and

basophils. Finally, all these differences contributed to a reduced

killing of the cancer cells (step 7) in cluster 1. Furthermore, by

applying multiple algorithms, we found a distinct feature in
Frontiers in Immunology 07
tumor-infiltrating immune cells (TIICs) between these two

clusters (Figure 3D), including an increase in Treg cells but a

decrease in B cells. Even though different algorithms gave

discordant results, there was a concordant difference in the

levels of B cells, macrophages, and CD4 T cells between the

two clusters.
3.3 Construction of a claudin-TME
related risk signature

Next, we applied WGCNA to distinguish co-expressed gene

modules within cluster-related genes. After 10 was determined

as the optimal soft threshold (Figure 4A), five co-expressed gene
B

C

D

A

FIGURE 3

Claudin expression cluster and tumor microenvironment in ccRCC. (A) Difference in the expression of regulators of tumor immunology,
including chemokines and their receptors, major histocompatibility complex (MHC), and immunostimulators between the two clusters in The
Cancer Genome Atlas (TCGA)- kidney clear cell carcinoma (TCGA-KIRC) cohort. (B) Bar plot shows the difference of the expression of
regulators of tumor immunology between two clusters. (C) Differences in the activity of seven steps of the cancer-immunity cycle between
clusters. (D) Analysis of the difference in the tumor-infiltrated immune cells (TIICs) between the two clusters using multiple computational
algorithms, including CIBERSOFT, MPCOUNTER, TIMER, and XCELL. TIICs with yellow color were significantly more enriched in cluster 1,
whereas those with blue color were more enriched in cluster 2 (p< 0.05). *p< 0.05, **p< 0.01, ***p< 0.001, ****p< 0.0001, ns, not significant;
TPM, transcript per million; ssGSEA, single-sample gene set enrichment analysis.
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modules were identified (Figure 4B). As depicted in Figure 4C,

module yellow (containing 72 genes), module blue (193 genes),

and module brown (190 genes) were strongly correlated with

stromal and/or immune scores. Genes within these three

modules were then selected to be used in constructing the

model (Supplementary Table 5). Then, three algorithms,
Frontiers in Immunology 08
including CoxBoost, LASSO, and random forest (RF) were

applied and the c-index was 0.77, 0.72 and 0.82, respectively.

Even though they all had satisfied prediction capacity, we

integrated them to eliminate the any potential bias in a single

machine learning algorithm. Finally, 11 key genes were screened

out by all three algorithms (Figure 4D;, Supplementary Table 6),
B

C D

E

A

FIGURE 4

Construction of a claudin-TME related (CTR) risk signature. (A) Analysis of the scale-free fit index (left) and mean connectivity (right) for different
soft-thresholding (power) values (numbers colored with red). (B) Gene clustered dendrogram based on dissimilarity measure (1-topological
overlap matrix (TOM)) with defined module colors. (C) Heatmap of the correlations between module genes and cluster, stromal, or immune
scores. (D) Venn plot showing the overlapping genes selected by three machine learning algorithms: CoxBoost, least absolute shrinkage and
selection operator (LASSO), and random forest (RF). (E) Forest plot of hazard ratios for selected key genes in the Cancer Genome Atlas -kidney
clear cell carcinoma (TCGA-KIRC) dataset. ***p< 0.001. HR: hazard ratio. 95% CI: 95% confidence interval.
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of which only four were suggested as tumor suppressor genes

while the rest were associated with worse outcomes in ccRCC

(Figure 4E). The final claudin-TME risk signature was as follows:

CTR score = 0.3518×EXPCSF2 − 0.3948×EXPFCGRT −

0.3519×EXPTEK − 0.0502×EXPSEMA3G + 0.0775×EXPPLA2G2A −

0.0513×EXPFABP3 + 0.2117×EXPUCN2 + 0.2910×EXPCCL7 +

0.0608×EXPIL20RB + 0.0977×EXPBIRC5 + 0.3381×EXPIFITM1.
3.4 Evaluation and validation of the
prognostic predictive accuracy of
CTR signature

Based on themedianCTR score, ccRCCpatients in the training

cohort were dichotomized into high- or low-risk groups, and

patients with high-risk scores had significantly inferior clinical

outcomes (Figure 5A). The AUC of the CTR score for predicting

survival at 1-, 2-, 3-, 4-, and 5- year was 0.81, 0.78, 0.78, 0.77, and

0.77, respectively (Figure5B).Theprognosticpredictive accuracyof

the CTR signature was also verified in the validation cohort

(Figure 5C), which showed a robust predictive capacity (AUC

values were all above 0.80) for survival at 1–5 year (Figure 5D).

Moreover, when compared to previously published ccRCC

prognostic models, we discovered that the CTR signature

outperformed them in prognostic prediction of the TCGA-KIRC

cohortwith a significantly greater C-index (Figure 5E).Meanwhile,

combined univariate and multivariate Cox regression analyses

showed that the CTR score was the only significant independent

risk factor for prediction survival in the TCGA-KIRC dataset

(Figure 5F). Interestingly, male patients, those with advanced

disease stages, and those > 60 years of age had significantly higher

CTR scores (Figure 5G). In stratification by a variety of

clinicopathological variables, the CTR score consistently

distinguished ccRCC patients with a poor prognosis (Figure 5H).

Notably, even among patients with early stage disease, the CTR

score was still able to identify those with worse outcomes.
3.5 Exploration of CTR score in pan-cancer

We then investigated the prognostic value of the CTR score in

pan-cancer datasets fromTCGA.HigherCTR scores also indicated

inferior outcomes in seven cancer types other than ccRCC,

including kidney chromophobe (KICH), kidney renal papillary

cell carcinoma (KIRP), uveal melanoma (UVM), thymoma

(THYM), pancreatic adenocarcinoma (PAAD), brain low-grade

glioma (LGG), and glioblastoma (GBM) (Figure 6A). In addition,

kidney cancers, regardless of the histological type, had the lowest

CTRscoreswhen compared toother cancer types in the pan-cancer

dataset (Figure 6B). We also evaluated the prediction accuracy of

the CTR score for KIRP and KIRC to provide a deeper

understanding of the prognostic prediction capacity of these two

histological types (Figure 6C). The results revealed that the CTR
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score had a robust prediction accuracy in patients with kidney

cancer, regardless of the histologic subtype. The claudin-low

phenotype has been primarily explored in breast cancer; hence,

we compared the distribution of CTR scores between claudin-low

and other phenotypes in breast cancer (The Molecular Taxonomy

of Breast Cancer International Consortium (METABRIC) dataset,

Figure 6D). The lowest CTR score was found in the claudin-low

subtype, especially when compared to the basal-like, human

epidermal growth factor receptor 2 (HER2)-positive, and luminal

B subtypes. Furthermore, the high CTR group had significantly

higher mRNA expression-based stemness index (mRNAsi) scores,

which indicated a stem cell-like feature in this group (Figure 6E).
3.6 Enrichment analysis of CTR score

Four CTR score-related genes that associated with improved

survival were downregulated in kidney tumor tissues relative to

normal tissues in both public datasets (Figure 7A) and local ccRCC

samples (Figure 7B), with Fc gamma receptor and transporter

(FCGRT) being the sole exception. In contrast, risk genes, except

urocortin-2 (UCN2), were significantly upregulated in tumor

tissues (Figures 7A, B). Moreover, 338 upregulated and 1716

downregulated DEGs were identified between the high and low

CTR groups, and these DEGs were significantly enriched in cell

metabolism (such as fatty acid metabolism), immune-related

pathways (cytokine and transforming growth factor-b (TGF-b)),
and cell-cell adhesion and tight junction pathways (tight junction,

Figures 7C, D). The “claudin-low” characteristic of the high-risk

groups was identical to the aforementioned cluster 1, with a

generally lower expression level of claudin family genes

(Figure 7E). Intriguingly, the expression of the four tumor

suppressor genes (FCGRT, TEK, semaphorin 3G (SEMA3G), and

fatty acid binding protein 3 (FABP3)) was significantly positively

correlated with that of claudin genes, whereas the risk genes were

shown to be negatively correlated with claudin genes, particularly

claudins 2, 3, 4, 5, and 10 (Figure 7F). The majority of genes

involved in increasing oxygen delivery and reducing oxygen

consumption were downregulated in the high CTR group.

Contrarily, the high CTR group had significantly higher

enrichment scores in nearly all the immunotherapy-positive

pathways (Figure 7H).
3.7 Genomic characteristics related to
the CTR score

ccRCC tumors are characterized by distinct genomic

features, especially the high prevalence of genomic alterations

(GAs) in chromosome 3p (42). Hence, we investigated the

differences in genomic profiling between the high- and low-

risk groups. As depicted in the oncoprint plots in Figure 8A, the

high and low CTR groups shared genomic features in highly
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FIGURE 5

Evaluation and validation of prognostic predictive accuracy of CTR signature. (A) Kaplan–Meier survival analysis of the difference in the overall survival (OS)
between ccRCC patients with high and low claudin-TME related (CTR) score in The Cancer Genome Atlas-kidney clear cell carcinoma (TCGA-KIRC) training
cohort. Patients were dichotomized into high or lowCTR groups based on themedian CTR score. (B) Time-dependent receiver operating characteristic (ROC)
curves at 1–5 years in the training cohort. (C) Kaplan–Meier estimates of the difference in theOS between ccRCC patients with high and lowCTR scores in the
validation cohort (E-MATAB-1980). Patients were also dichotomized into high or lowCTR groups based on themedian CTR score. (D) Time-dependent area
under the ROC curve (AUC) value in the validation cohort. (E)Difference in the concordance index (C-index) between the Clinical Risk Groups (CTR) score and
other previously reported prognosticmodels in TCGA-KIRC. (F) Forest plot of hazard ratios for CTR score and clinicopathologic variables in the TCGA-KIRC
dataset. (G)Difference in the distribution of CTR scores between patients with different clinicopathologic variables. (H) Kaplan–Meier survival analysis of the CTR
score stratified by different clinicopathologic feature. *p< 0.05, **p< 0.01, ***p< 0.001, ****p< 0.0001. CTR score, claudin-TME related risk score; AUC, area
under curve; T, Tumor stage; N node stage; M,metastasis stage; Grade, NeoplasmHistologic Grade; Stage, NeoplasmDisease Stage.
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FIGURE 6

Exploration of CTR score in pan-cancer. (A) Forest plot of hazard ratios (HR) for the claudin-TME related (CTR) score in pan-cancers datasets from
The Cancer Genome Atlas (TCGA) cohort. (B) Distribution of CTR scores among pan-cancers. (C) Kaplan–Meier curves and time-dependent area
under the curve (AUC) value in the TCGA-kidney chromophobe (KICH) (upper) and TCGA-kidney renal papillary cell carcinoma (KIRP) (bottom)
cohorts. (D) Difference in CTR scores between claudin-low and other subtypes of breast cancer in the METABRIC cohort. (E) Difference in the
mRNA expression-based stemness index (mRNAsi) score between high and low CTR groups or between two clusters in the TCGA-kidney renal
clear cell carcinoma (KIRC) cohorts. *p<0.05, ***p<0.001. KIRC, kidney renal clear cell carcinoma; KIRP, Kidney renal papillary cell carcinoma; KICH,
kidney chromophobe.
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FIGURE 7

Enrichment analysis of CTR score. (A) Comparison of the expression difference of eleven claudin-TME related (CTR) score-related genes between
tumor and normal tissues in TCGA, GSE40435, GSE53757 and International Cancer Genome Consortium (ICGC) datasets. (B) Difference in the
expression level of 11 CTR score-related genes between tumor and normal tissues in local ccRCC patients. Kyoto Encyclopedia of Genes and Genomes
(KEGG) (C) and Hallmark (D) pathways analysis revealed that the pathways were significantly enriched in the differentially expressed genes (DEGs)
between high and low CTR groups in the TCGA-KIRC cohort. Only the significantly enriched pathways are shown in the figure. (E) Heatmap of the
expression of claudin genes in high and low CTR groups in the Cancer Genome Atlas-kidney clear cell carcinoma (TCGA-KIRC) cohort. (F) Correlation
between CTR score related genes and claudin family genes. (G) Expression changes (high vs. low CTR groups) of target genes involved in the hypoxia-
inducible factor-1 (HIF-1) KEGG pathway. (H) Difference in the enrichment scores of immunotherapy-predicted pathways between high and low CTR
groups. *p< 0.05, **p< 0.01, ***p< 0.001, ****p< 0.0001, ns, not significant; TPM, transcript per million; ssGSEA, single-sample gene set enrichment
analysis; NES, normalized enrichment score.
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prevalent genes, specifically VHL, PBRM1, and TTN (Figures 8A,

B). However, distinct differences in the prevalence of altered

genes were identified between these two groups, and genes with a

significantly higher prevalence were discovered in the high CTR

group, including SETD2, BAP1, PTEN and SPEN (Figure 8C).

We did not observe a significant difference in tumor mutational

burden (TMB) levels between the two groups (Figure 8D). More

interestingly, significantly more copy number variations (CNV)

were identified in the high CTR group, including a

distinguishing prevalence of deletions at 9p23, 9p21.3, 8p23.3,

8p21.2, 6q26, 10q23.31, and amplifications at 3q26.33, 3q26.2

and 1q31.1 (Figure 8E).
3.8 Immune phenotypes and tumor
microenvironment related to the
CTR score

The CTR score was positively and negatively correlated with the

expression of 21 and 11 immune checkpoints, respectively;

significant associations were found with tumor necrosis factor

receptor superfamily member 18 (TNFRSF18), lymphocyte

activation gene 3 (LAG3), cytotoxic T-lymphocyte associated

protein 4 (CTLA4), TNF superfamily member 14 (TNFSF14),

programmed cell death protein 1 (PDCD1, PD-1), and T cell

immunoreceptor with Ig and ITIM domains (TIGIT) (Figures 9A,

C). Similar to the difference between cluster 1 and cluster 2 inMHC,

the high-risk group had significantly lower expression levels of

human leukocyte antigens (HLA) family genes (especially HLA-E),

which may hinder the antigen presentation process (Figures 9B, C).

Meanwhile, notable heterogeneity in the TIICs level was observed

between the high and low CTR groups (Figure 9D). Using various

algorithms, a concordant difference was identified in CD8 T cells,

which was enriched in the high CTR group. A significantly higher

immune score in thehighCTRgroupwas revealed byXCELL,which

was also validated by the ESTIMATEalgorithm (R= 0.29, p< 0.0001,

Figure 9E). An immunohistochemistry (IHC) test of the ccRCC

samples from the CheckMate studies showed a significantly higher

level of CD8 + tumor cell (TC) ratio andCD8+ tumormargin (TM)

density, which were found in the high CTR group, supporting the

positive correlation betweenCTR score andCD8T cells found using

the algorithms (Figure 9F). Furthermore, the CTR score was

associated with increased activity in all the steps of the cancer-

immunity cycle, with the exception of step 2 (cancer antigen

presentation, Figure 9G).
3.9 Construction of a nomogram by
integrating the CTR score and
clinicopathologic variables

By incorporating the clinicopathologic variables (includingT,N,

M, neoplasm histologic grade, neoplasm disease stage, sex, and age)
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with theCTRscore, anovel nomogramwas established (Figure10A).

TheROCcurveshowed that theAUCvalues forpredicting survival at

1, 2, 3, 4 and 5 years of this nomogramwere 0.88, 0.84, 0.85, 0.85, and

0.84, respectively (Figure 10B). In addition, the 1–5 year calibration

curves showed outstanding agreement between the actual

observations and nomogram prediction (Figure 10C).
3.10 Estimation of treatment response
correlated with CTR score

We then explored whether the established CTR score could

stratify ccRCC patients into different systemic treatments with

differed efficacies. First, we evaluated the difference in the

expression of ccRCC-related therapeutic target genes between the

highand lowCTRgroups. Intriguingly, themajorityof targetedgenes

of these selecteddrugs,mostofwhichwere antiangiogenic andkinase

inhibitors, were overexpressed in the low CTR group (Figure 11A).

The low-risk group showed significant overexpression of both the

markers of pan-antiangiogenic drug, such as vascular endothelial

growth factor receptor 1 (VEGFR1) (Fms related receptor tyrosine

kinase 1 (FLT1)), VEGFR2 (kinase insert domain receptor (KDR)),

and VEGFR3 (FLT4), and specific markers, including VEGFA,

colony stimulating factor 1 (CSF1), SH2B adaptor protein

(SH2B3), fibroblast growth factor receptor (FGFR1/2/3/4), B-Raf

proto-oncogene (BRAF), Raf-1 proto-oncogene (RAF1), and

tyrosine kinase with immunoglobulin-like and EGF-like domains 1

(TIE1). The expression of endothelial PAS domain protein 1

(EPAS1), the main target of belzutifan, which was a novel

breakthrough HIF inhibitor, was also significantly upregulated in

the low-risk group. However, the targets of ICIs, including CD274,

PDCD1, and CTLA4, were upregulated in the high CTR group.

Hence, we investigated whether the CTR score could distinguish

patientswhohad improved clinical benefitswith ICIs. Innivolumab-

treated ccRCC patients, there was no significant difference in the

objective response rate (complete response (CR) + partial response

(PR)) or clinical benefit rate between the high and low CTR groups

(Figure 11B). Even though the group with a low CTR had a longer

overall survival (OS), this may be attributed more to the model’s

prognostic prediction function than to the increased sensitivity to

nivolumab. In the IMVigor210 cohort, we found that CTRmay not

functionasaneffective ICIbiomarkercompared toTMB;however, in

theTMB-lowsubgroups, therewas ahigher ratio of responders in the

high CTR group (Figure 11C). In the GSE173839 cohort, patients

who responded to ICI combination therapy had significantly higher

CTR scores, and more responders were present in the high CTR

group (Figure 11D). Furthermore, we utilized three drug response

databases, GDSC1, PRISM, and CTRP-v2, to further identify CTR

score-related therapeutic agents in ccRCC (Figure 11E). Among

these agents, more immunity-related drugs (such as TGF b-related
and janus kinase (JAK) inhibitors) were identified in the high CTR

group, while more tyrosine kinase inhibitors (EGFR-related) were

identified in the low CTR group.
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4 Discussion

Interestingly, in our study, both the cluster 1 and high CTR

groups, which were associated with worse outcomes, were
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characterized by claudin-low features. The specific genomic,

TME, and clinicopathological characteristics of claudin-low

ccRCC phenotype remain unclear. It is a novel molecular

subtype of breast and bladder cancer, with a prominent role in
B
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A

FIGURE 8

Genomic characteristics related to CTR score. Oncoplots of the top 20 altered genes in the high (A) and low CTR groups (B). (C) Genes with
significantly differed prevalence between the high and low CTR groups. (D) Difference in the tumor mutational burden (TMB) level between the
high and low CTR groups. (E) Difference in the prevalence of copy number variations (CNV) between the high and low CTR groups. Odds ratio
(OR) > 1.0 indicated a higher prevalence in the high CTR group; conversely, OR< 1.0 indicated that the event was more prevalent in the low CTR
group. TMB, tumor mutation burden; CNV, copy number variant; Del, deletion; Amp, amplification; ns, not significant.
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FIGURE 9

Immune phenotypes and tumor microenvironment related to CTR score. (A) Comparison of the expression level of immune checkpoints between
high and low claudin-TME related (CTR) groups. (B) Analysis of the difference in the expression level of human leukocyte antigen (HLA) family genes
between high and low CTR groups. (C) Correlation between CTR score and the expression level of immune checkpoints or HLA family genes. The
asterisks indicate a significant statistical p value, and those colored with red and blue indicate positive and negative correlation with CTR score,
respectively. (D) Comprehensive analysis of the difference in the tumor-infiltrated immune cells (TIICs) between high and low CTR groups using
multiple algorithms (CIBERSOFT, MCPCOUNTER, TIMER, and XCELL). TIICs with blue color were significantly more enriched in the low CTR group;
whereas, those with red color weremore enriched in the high CTR group (p< 0.05). (E) Correlation between CTR score and immune score. (F)
Difference in the CD8 + T cells between high and low CTR groups in an integration cohort with CheckMate-009, 010 and 025 cohorts. (G)Differences
in the activity of seven steps of cancer-immunity cycle between two CTR groups. *p< 0.05, **p< 0.01, ***p< 0.001, ****p< 0.0001, ns, not significant;
HLA, human leukocyte antigen; TC, tumor center; TM, tumor margin; TPM, transcript per million; ssGSEA, single-sample gene set enrichment analysis.
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the downregulation of cell-cell adhesion genes and

overexpression of epithelial–mesenchymal transition (EMT)

genes and stem cell-related genes (14). In our study, we also

found that cluster 1 and high CTR groups displayed notable

stem cell-like features (increased mRNAsi score), but no

substantial upregulation of EMT-related genes. Furthermore,

in concordance with our results, other studies have shown that

claudin-low tumors were enriched in immune and stromal cell

infiltration (16, 41), especially a high abundance of regulatory T

cells, revealing an active immunosuppression patten (43). These

findings confirm our hypothesis regarding the existence of the

claudin-low subtype in ccRCC, which shares similar TME and

stemness characteristics with breast and bladder cancer.

However, while comprehensively discovering the separation

of two claudin clusters in five public datasets and local ccRCC

patients, we cannot directly apply its prognostic stratification

function without first developing a predictor or risk model.

Subsequently, by employing a series of algorithms and

integrating the 12 identified CTR-related genes, we created a

prognostic prediction signature with both stable and robust

accuracy that surpassed a number of previously defined

ccRCC risk models. Moreover, it can be applied to various

other types of cancers, especially pan-kidney cancers (KIRC,

KICH, and KIRP). The CTR score also outperformed the

traditional clinicopathological factors, including clinical and
Frontiers in Immunology 16
histological stages, and both the clinicopathological and

genomic features supported the prognostic prediction value of

the signature. More known poor prognosis-related GAs,

especially BAP1 (44) and SETD2 (45), were identified in the

high CTR group. Although we found more GAs with different

prevalence in the high CTR group, there was no significant

correlation between CTR score and TMB, which may be

attributed to the fact that ccRCC has a comprehensively

modest TMB level among solid tumors (46). Meanwhile,

higher chromosomal instability (CIN), characterized by the

enrichment of CNV alterations, was identified in the high

CTR group. Due to the increasing frequency of CNV during

cancer cell proliferation, CIN-positive tumors exhibit greater

intratumor heterogeneity and are more prone to develop

therapeutic resistance due to their enhanced capacity to adapt

to selection pressures (47). We previously found that increasing

CIN drives invasion and metastasis in ccRCC (48), and in this

study, some of these differed CNVs were found to be related to

the progression of ccRCC. The TRACERx Renal project

identified that deletion of 9p21, including the loss of tumor

suppressor cyclin-dependent kinase inhibitor 2A (CDKN2A) is a

pivotal event driving the metastasis of ccRCC and related death

(49). Contrarily, CIN may also function as an enhancer of cancer

immunology; induction of CIN promotes the upregulation of

pro-inflammation genes, natural killer (NK) cell-activating
B
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A

FIGURE 10

Construction of a Nomogram using integration CTR score and clinicopathologic variables. (A) claudin-TME related (CTR) score integrated with T
(tumor stage), N (node stage), M (metastasis stage), neoplasm histologic grade, neoplasm disease stage, sex, and age to develop a Nomogram in
ccRCC. (B) Time-dependent receiver operating characteristic (ROC) curves of the Nomogram. (C) Calibration curve for the prediction of overall
survival (OS) at 1–5 year.
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FIGURE 11

Estimation of treatment response correlated with CTR score. (A) Heatmap of the expression of ccRCC-related drug-target genes screened from
the Drugbank database in high and low claudin-TME related (CTR) groups. (B) Kaplan–Meier curves and the difference in response rate between
high and low CTR scores in nivolumab-treated ccRCC patients from CheckMate-009, 010 and 025 cohorts. (C) Response analysis with tumor
mutational burden (TMB) and CTR score stratification in IMvigor210 cohort. (D) Comparison of the CTR score between responders and
nonresponders and the response rate between high and low CTR score groups from the GSE173839 cohort. (E) Three drug sensitivity databases
(CTRP-V2, PRISM, and GDSC1) were used to identify the sensitivity of high and low CTR group cell line subsets to specific agents. Agents with
lower area under the curve (AUC) values on the x-axis of boxplots had a greater drug sensitivity, and those colored with blue had a higher
sensitivity in the high CTR group.
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ligands, and cytokine secretion (50); moreover, a combination of

agents that promote CIN and ICI could inhibit tumor growth

(51). David et al. also revealed that CD8+ T cell-infiltrated

ccRCC tumors are more enriched with deletions at 9p21 than

those with noninfiltrated ones. This was consistent with our

findings that the high CTR group with notable CIN may have

higher tumor immunity and an associated elevated sensitivity

to ICIs.

Although therewas a strong correlationbetween the number of

CD8Tcells and theCTRscore, this did not translate to a phenotype

with greater therapeutic benefits to nivolumab monotherapy. This

was consistentwithapreviousfinding,which showed that therewas

no significant correlation between baseline CD8 T cells and

response to ICI in ccRCC (39). However, in TMB-low patients

from the IMVigor210 cohort or the combination therapy cohort

(GSE173839), thehighCTRgrouppresentedwithmore responders

to ICIs. This may be ascribed to the differences in tumor

immunology and genomic characteristics between ccRCC and

other malignancies such as bladder or lung cancer for which

conventional immunotherapy knowledge is available (52).

Furthermore, significant overexpression of VEGFR1, VEGFR2,

PDGFRB, and VEGFR3 was found in the low-risk group. Benoit

et al. found that the expression level of thesemarkerswas associated

with survival benefit in ccRCC patients treated with sunitinib,

which is the standard first-line treatment (53). In addition to

antiangiogenic and multiple kinase inhibitors, the low CTR group

was also more sensitive to mTOR or HIF-2a inhibitors. Belzutifan

is a selective inhibitor targeting HIF-2a, which has been approved
by theUS FDA to treat RCCwithVHLdisease and has a promising

objective response rate (ORR) of 49% (54). In phase I trial with

heavily pretreated ccRCC patients (NCT02974738), it also showed

an effective antitumor efficacy with ORR of 25% and progression-

free survival (PFS) of 14.5 months (55). The differential expression

of TEK, which is a hub gene in this signature, may account for this

disparity in hypoxia and sensitivity to associated therapeutic agents

between the CTR groups.

In conclusion, the current study provided comprehensive

insights into understanding the claudin-low phenotype in

ccRCC and highlighted its association with the TME feature.

To enhance its clinical utility, we further developed a prognostic

prediction signature based on the interaction between claudin-

low phenotype and TME, which could accurately predict the

outcomes of patients with ccRCC and other histological forms of

kidney cancer. Moreover, it was also an effective biomarker in

treatment stratification, including targeted therapy and ICIs.

These features may contribute to better personalizing

management of patients with ccRCC.
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SUPPLEMENTARY FIGURE 1

The expression feature and prognostic function of claudin family genes in
kidney cancer. (A) The difference in the expression level of each claudin

gene between tumor and normal tissues in kidney renal clear cell
carcinoma (KIRC) (sample size, cancer vs normal: 530 vs 72), kidney

renal papillary cell carcinoma (KIRP) (288 vs 32) and kidney
chromophobe (KICH) (66 vs 25). (B) Forest plots illustrating univariate

analyses for overall survival stratification with each claudin gene. CLDN13
and CLDN21 are not included because no valid expression data is
Frontiers in Immunology 19
available; *p< 0.05, **p< 0.01, ***p< 0.001, ****p< 0.0001, ns: not
significant. KIRC: kidney renal clear cell carcinoma; KIRP: Kidney renal

papillary cell carcinoma; KICH: kidney chromophobe.

SUPPLEMENTARY FIGURE 2

Validation of the expression feature of claudin genes in other dataset and
local ccRCC samples. (A) Silhouette clustering analysis in GSE40435,

GSE53757, International Cancer Genome Consortium (ICGC) datasets,

and local ccRCC samples; (B).
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