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Single-cell sequencing reveals
the landscape of the tumor
microenvironment in a skeletal
undifferentiated pleomorphic
sarcoma patient
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Skeletal undifferentiated pleomorphic sarcoma (SUPS) is an invasive

pleomorphic soft tissue sarcoma with a high degree of malignancy and poor

prognosis. It is prone to recur and metastasize. The tumor microenvironment

(TME) and the pathophysiology of SUPS are barely described. Single-cell RNA

sequencing (scRNA-seq) provides an opportunity to dissect the landscape of

human diseases at an unprecedented resolution, particularly in diseases lacking

animal models, such as SUPS. We performed scRNA-seq to analyze tumor

tissues and paracancer tissues from a SUPS patient. We identified the cell types

and the corresponding marker genes in this SUPS case. We further showed that

CD8+ exhausted T cells and Tregs highly expressed PDCD1, CTLA4 and TIGIT.

Thus, PDCD1, CTLA4 and TIGIT were identified as potential targets in this case.

We applied copy number karyotyping of aneuploid tumors (CopyKAT) to

distinguish malignant cells from normal cells in fibroblasts. Our study

identified eight malignant fibroblast subsets in SUPS with distinct gene

expression profiles. C1-malignant Fibroblast and C6-malignant Fibroblast in

the TME play crucial roles in tumor growth, angiogenesis, metastasis and

immune response. Hence, targeting malignant fibroblasts could represent a

potential strategy for this SUPS therapy. Intervention via tirelizumab enabled

disease control, and immune checkpoint inhibitors (ICIs) of PD-1 may be

considered as the first-line option in patients with SUPS. Taken together,

scRNA-seq analyses provided a powerful basis for this SUPS treatment,

improved our understanding of complex human diseases, and may afforded

an alternative approach for personalized medicine in the future.

KEYWORDS

single-cell RNA sequencing, skeletal undifferentiated pleomorphic sarcoma,
tirelizumab, PD-1, T cells
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Introduction

The most common term for a generic high-grade sarcoma has

evolved over the years from fibrosarcoma to malignant fibrous

histiocytoma (MFH) and now to high-grade undifferentiated

pleomorphic sarcoma (UPS), as of the writing of 2013 WHO

sarcoma classification system. The term UPS of bone is

increasingly used instead of MFH of bone (1–3). Skeletal

undifferentiated pleomorphic sarcoma (SUPS) is a matrix-

producing malignant tumor with a pleomorphic spindle-cell

structure, which is devoid of any specific pattern of histologic

differentiation (4). SUPS often exhibit aggressive behavior

associated with high metastatic potential and a high rate of local

recurrence (5). Bone neoplasms are rare solid tumors, accounting

for less than 2% of all primary malignancies. SUPS is an extremely

rare and aggressive malignancy representing <1% of all primary

malignant bone tumors (6). SUPS often occurs in the bone

diaphysis or metaphysis and results in invasive bone damage

and a soft tissue mass. The pathophysiology remains elusive, and

its therapeutic options are limited (7, 8). Here, we report a rare

case of SUPS at the lower femoral end of the left thigh in a 44-

year-old man. However, current knowledge of SUPS is limited to

case reports and small case series. The clinicopathological features

and prognosis, tumor microenvironment (TME) and tumor

heterogeneity of these cancers have not been well defined.

Over the past ten years, the rapid development of single-cell

RNA sequencing (scRNA-seq) has enabled us to quickly obtain a

large amount of physiological and pathological information on

various tumors (9). We hypothesized that the scRNA-seq

approach to determine single-cell transcriptomic changes

might provide a powerful personalized medicine tool that not

only deepens our insight into disease mechanisms but also

enables the identification of overexpressed genes or altered

pathways that might be targeted via currently available

monoclonal antibodies or small-molecule inhibitors (10–12).

Notably, scRNA-seq has been widely used to reveal the

characteristics of immunity in various fields because it can

detect changes in individual cell types. The emergence of

single-cell sequencing represents a powerful tool to resolve

tumor he t e rogene i t y and de l inea t e the comp l ex

communication among tumor cells with neighboring stromal

and immune cells in the TME (13). Paracancer tissues are

commonly used as a control in cancer studies (14). However,

an increasing number of studies have shown that paracancer

tissues are at the transition between cancer and normal tissues,

and the expression of key molecules and the microenvironment

have been changed (15). However, the critical roles of paracancer

tissues in cancer research have not received enough attention.

Here, we performed scRNA-seq on the paracancer tissues and

tumor tissues from this SUPS patient. These unprecedented data

uncovered the transcriptional landscape and phenotypic

heterogeneity of tumor and immune cells in SUPS, and
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identified their gene expression signature, suggesting

specialized functions.

Targeting specific immunological pathways represents a

promising approach to fighting tumors (16). T-cell exhaustion

was indicated by multiple inhibitory receptors, and we found

that CD8-C1-PDCD1 (CD8+ exhausted T cells) and CD4-C2-

FOXP3 (CD4+ Tregs) in both tissues positively expressed T-cell

inhibitory receptors, including PDCD1 and CTLA4. At present,

inhibitors corresponding to programmed death protein-1 (PD-

1) and CTLA4 are widely used in clinical practice. Our study

provided evidence to the attending physician that this patient

would benefit from administrating inhibitors targeting one or

both of these factors. There are no guidelines for the

employment of immune checkpoint inhibitors (ICIs) in SUPS

therapy, and treatment outcomes have rarely been reported. We

report the first case of SUPS with PD-1 ICI administration,

describing the clinical features, imaging, pathological findings,

and TME. In this case, the successful intervention yielded

outcomes superior to those of previous patients with SUPS.

ICIs of PD-1 may be considered the first-line therapy for patients

with SUPS.
Results

Imaging examinations and further
diagnostic work-up of SUPS

Here, we report a rare case of SUPS in the lower femoral

segment of the left thigh in a 44-year-old male patient. In

February 2021, the patient complained of pain and discomfort

in the distal left thigh and went to a local hospital for

symptomatic conservative treatment. The result of treatment

in the local hospital was not good. The patient suffered from

severe pain and found a hard mass at the distal end of his left

thigh for one month. Therefore, he came to our hospital for

further diagnosis and treatment. X-ray showed irregular

osteolytic bone destruction at the lower end of the left femur,

which invaded the bone marrow cavity. Multiple strip-like high-

density dead bone shadows were seen inside (Figure 1A). CT and

MRI showed a mass of soft tissue at the lower end of the left

femur and its surrounding region (Supplementary Figure S1A).

Hematoxylin-eosin (H&E) staining showed spindle cells

clustered in the damaged area of bone (Figure 1A).

Immunohistochemical staining showed SMA (+), CD68 (+),

Ki67 (+), CD34 (+), Desmin (-), EMA (-), S-100 (-) and Bcl-2 (-)

(Supplementary Figure S1B). The pathological result of this

patient was SUPS (8). To reduce the burden on the tumor and

relieve the symptoms of leg pain, a tumor resection was

performed to remove the tumor on June 24th, 2021.

Two months later, the results of the patient’s MRI showed a

patchy abnormal signal on the left side of the L5 spinous process
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FIGURE 1

Single-cell transcriptomic analysis of SUPS. (A) Bone destruction of the left lower femur with a soft tissue mass (Lateral X-ray film;
Anteroposterior X-ray). H&E staining of the tumor tissues and paracancer tissues (Scale bar 250mm). (B) MR medical impact (upper: pelvic plain
scan; lower: femoral plain scan). (C) Schematic diagram of the experimental design. (D) The t-distributed stochastic neighbor embedding (t-
SNE) plot of the 10 identified main cell types in SUPS lesions, with each cell color-coded according to its associated cell type. (E) Dot plot
showing the 30 signature gene expressions across the 10 cellular clusters. The size of dots represents the proportion of cells expressing the
particular marker, and the spectrum of color indicates the mean expression levels of the markers (log1p transformed). (F) GO and KEGG
enrichment analyses were performed for DEGs in SUPS between tumor tissues and paracancer tissues. Representative significantly enriched
function processes are shown. (G) GO and KEGG enrichment analyses were performed for DEGs in non-immune cells between tumor tissues
and paracancer tissues. (H) Expression of EMT-related genes were shown for each cluster of paracancer tissues and tumor tissues. Dot size
corresponded to the percentage of cells in the cluster expressing a gene, and dot color corresponded to the average expression level for the
gene in the cluster.
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and the posterior edge of the vertebral body, which was slightly

more advanced than before, and the enhancement was slightly

increased. The abnormal signal at the left posterior border of the

sacrum was similar to the anterior range and slightly reduced in

the signal. The patient’s pelvic pain scan on August 20th, 2021

showed an abnormal imaging signal around the left iliac vessels

and left inguinal region, considering lymph node enlargement.

The possibility of metastasis was considered based on these

results and medical history (Figure 1B). We performed scRNA-

seq on tumor tissues and paracancer tissues from this patient

after the surgery. We discovered that CD8+ exhausted T cells

and Tregs highly expressed PDCD1, CTLA4 and TIGIT.

Subsequently, we identified PDCD1, CTLA4 and TIGIT as

potential targets in this case. Based on these results and the

scRNA-seq analyses, we recommend that physicians use anti-

CTLA4 drugs and anti-PD-1 drugs in combination. On August

25th, 2021, due to the outbreak in Nanjing and personal

economic reasons, the patient underwent a second round of

chemotherapy in Nanjing Gaochun People’s Hospital. The

patient was treated with the anti-PD-1 drug tirelizumab in his

second to fifth rounds of chemotherapy. The first chemotherapy

regimen was epirubicin hydrochloride injection (100 mg, day 1)

and ifosfamide injection (2 g, days 1-5). The second to fifth

chemotherapy regimens were as follows: epirubicin

hydrochloride injection (100 mg, day 1), ifosfamide injection

(2 g, days 1-5), tislelizumab injection (200 mg, day 1), and

anlotinib (10 mg, days 1-5). On November 11th, 2021, the

patient was reexamined with routine blood tests. The

examination of tumor markers showed that levels of alpha-

fetoprotein, carcinoembryonic antigen, carbohydrate antigen

19-9 and carbohydrate antigen 12-5 returned to normal, the

metastases disappeared, and no new metastases were found.

Currently, the condition of the patient is stable. Thus, scRNA-

seq analyses provided a successful therapeutic basis for the

SUPS patient.
scRNA-seq identified SUPS-associated
cellular components in tumor tissues
and paracancer tissues

To assess altered gene expression in SUPS, we performed

scRNA-seq of this patient referred to the Sir Run Run Hospital

Nanjing Medical University. For this, we dissociated tumor

tissues into a single-cell suspension and performed scRNA-seq

analysis. Paracancer tissues served as controls. The harvested

cells from different groups were sequenced on a 10 × Genomics

platform (Figure 1C), and we obtained a total of 18433 single-

cell transcriptomes (10532 paracancer tissues; 7901 tumor

tissues) from the two samples. We conducted preliminary

quality control and evaluation of the sequencing results,

removed reads with low sequencing quality, mapped reads

with the reference genome using CellRanger, annotated reads
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and counted them (Supplementary Figure S2). Unbiased

clustering of the cells identified 19 clusters in parallel, based

on t-distributed stochastic neighbor embedding (t-SNE) and

uniform manifold approximation and projection (UMAP)

analyses according to their gene profiles and canonical

markers (17–20) (Figure 1D; Supplementary Figure S3A). Our

initial goal was to visualize and ultimately define the various cell

subsets (12, 21, 22) in the dataset; these subsets included CD8+ T

cells (4 cell clusters), CD4+ T cells (2 cell clusters), NKT cells (1

cell cluster), Proliferative T cells (1 cell cluster), Macrophages

(3 cell clusters), Osteoclasts (1 cell cluster), Fibroblasts (2 cell

clusters), Proliferative Fibroblasts (3 cell clusters), B cells (1 cell

cluster) and Mast cells (1 cell cluster). In particular, we identified

the marker genes for each cluster as follows: (1) CD4+ T cells

highly express CD4 but express CD8 at a low level; (2) CD8+ T

cells highly express CD8 but express CD4 at a low level; (3) NKT

cells highly express NK-cell markers and T-cell markers GNLY

and GZMB; (4) Proliferative T cells highly express T-cell

markers and the proliferation markers TUBA1B and MKI67;

(5) Macrophages have high expression of the markers C1QC and

C1QA; (6) Osteoclasts specifically express the markers CTSK and

MMP9; (7) Fibroblasts express COL1A1 and FN1; (8)

Proliferative Fibroblasts have high expression of proliferative

markers and fibroblast markers; (9) B cells specifically express

IGHM and CD79A; and (10) Mast cells highly express TPSAB1

and TPSB2 (Figure 1E; Supplementary Figure S3B). We

calculated the correlation between cell subsets and generated a

heatmap. The two cell subsets with high correlation in the figure

have relatively similar gene expression patterns, indicating that

they may be the same cell type (Supplementary Figure S3C).

Subsequently, Gene Ontology (GO) enrichment analysis and

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway

analysis of the upregulated genes identified specific processes

relevant to each cell type (Supplementary Figure S4).

Next, we attempted to discern the cellular differences between

tumor tissues and paracancer tissues. We noticed that almost all

types of cell populations were present in both tumor tissues and

paracancer tissues; however, some fibroblasts were almost

exclusively observed in paracancer tissues, and other were

predominantly observed in the tumor tissues (Figure 1D). Each

cell subset contained a variable number of cells and variable

transcriptional activity determined by UMIs. We detected the

relative abundance of infiltrating immune cells in tumor tissues

and paracancer tissues, which first revealed the landscape of

infiltrating immune cells in SUPS (Supplementary Figure S3D-F),

contributing to the improvement of SUPS immunotherapy (23, 24).

GO and KEGG analyses of the differentially expressed genes

(DEGs) in tumor tissues and paracancer tissues revealed that

DEGs were enriched in different biological processes and

indicated that SUPS is related to the regulation of immune

system processes, cell activation, blood vessel development, cell

migration and cell motility (Figure 1F). We found numerous
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distinctions in the gene expression within the clusters,

suggesting that the biological features of tumor tissues differed

from those of paracancer tissues, especially in terms of

nonimmune cells (Supplementary Figure S3G). GO and KEGG

analyses of the DEGs of nonimmune cells in tumor tissues and

paracancer tissues revealed that the DEGs were enriched in

pathways in cancer (Figure 1G). The scRNA-seq data were used

to quantify the expression of genes associated with disease

developmental pathways, including TGF-b, MAPK, NF-kB
and JAK-STAT, as well as signaling pathways associated with

epithelial-to-mesenchymal transition (EMT), in various SUPS

cell populations (Supplementary Figure S5; Figure 1H). Some

genes related to the MAPK, NF-kB and JAK-STAT pathways

were upregulated in Osteoclasts and Fibroblasts within SUPS

lesions, but few changes were found in immune cells. The EMT

process has been indicated to play an important role in cancer

invasion, metastasis and drug resistance. The analysis of gene

signatures associated with EMT programming showed that EMT

markers were significantly highly expressed in Osteoclasts and

Fibroblasts (25), suggesting that most Osteoclasts and

Fibroblasts in this sample were undergoing an active EMT

process. Interestingly, most immune cells were enriched for

fewer EMT-related genes, but Macrophages showed high

enrichment of EMT-related genes (Supplementary Figure

S5; Figure 1H).

Consistent with the high degree of EMT, the SUPS sample

also showed significantly high levels of invasion, metastasis and

angiogenesis according to gene signature scores (Supplementary

Figure S3H), indicating that the SUPS in this patient might have

an increased capability for high-grade metastasis, which highly

correlates with a poor prognosis (11). Indeed, this patient

presented with metastasis based on clinical examination

approximately two months after the surgery. SUPS exhibits a

high number of tumor-infiltrating immune cells (TIICs),

suggesting that SUPS could benefit from immune checkpoint

blockade (ICB). However, not all SUPS patients respond to

neoadjuvant ICB. Thus, we need to identify which underlying

mechanisms and associated markers determine therapeutic

response. TIICs represent a heterogeneous population of cells

concerning cell type composition, gene expression and functional

properties. To date, TIIC scores and tumor PD-1 expression have

been proposed to predict clinical outcomes, but their ability to act

as predictors for SUPS remains unclear (26, 27).
Gene expression heterogeneity
of T-cell subsets was identified
in the SUPS patient

T cells are the key elements of cancer immunotherapy.

However, their high heterogeneity regarding their cell-type

compositions, gene expression patterns and functional

properties significantly influence the outcomes of T-cell-based
Frontiers in Immunology 05
immunotherapy. Interestingly, we found that T-cell clusters

were present at high levels in immune cells (Figure 1D), and

the presence of infiltrating T cells in tumor tissues was

confirmed using immunohistochemistry (IHC) with CD3E,

CD4 and CD8 antibodies. IHC analyses were consistent with

the results of the scRNA-seq data (Supplementary Figure S6A),

thus demonstrating that T-cell-based immunotherapy might be

efficient in this SUPS patient. Notably, we observed that the

overall number of T cells in tumor tissues was much lower than

that in the corresponding paracancer tissues (Figure 1D;

Supplementary Figure S6B), indicating that T-cell infiltration

was inefficient (21). There are many differences in gene

expression within T-cell clusters, suggesting that T-cell biology

in tumor tissues differs from that in paracancer tissues, especially

in CD4+ T cells (Supplementary Figure S6C). To reveal the

intrinsic structure and potential functional subsets of the overall

T-cell populations, we performed unsupervised clustering of all

T cells via t-SNE and UMAP algorithm and subsequently

identified 12 distinct subsets of T cells, including 8 clusters of

CD8+ cells and 4 clusters of CD4+ cells (Figures 2A, 3A and

Supplementary Figures S7A, S8A). The expression of signature

genes and known functional markers indicated clusters of CD8+

cells (naïve, effector, proliferative, activated or exhausted) cells,

conventional CD4+ (naïve, effector or activated) cells, CD4+

Tregs and a few clusters that were not well defined (Figures 2B,

3B and Supplementary Figures S7B, C, S8B, C).

We observed that the overall number of CD8+ T cells in tumor

tissues was lower than that in paracancer tissues (21), indicating

that the infiltration efficiency of CD8+ T cells was low and might

be associated with a poor prognosis (Figure 2C). We determined

the cell number and proportion of each cellular subset

(Figure 2D). The percentage of CD8-C1-PDCD1 (CD8+

exhausted T cells) within CD8+ T cells isolated from tumor

tissues and paracancer tissues was much higher than other cell

types, revealing the potential enrichment of CD8+ exhausted T

cells in the TME. GO enrichment analysis showed that CD8-C1-

PDCD1 (CD8+ exhausted T cells) showed a state of loss of

function, persisted in the tumor tissues but responded poorly to

the tumor cells (26, 27). These CD8+ exhausted T cells in the TME

expressed high levels of PDCD1 and could be rescued from the

unresponsive and depleted state by ICB treatment (Figure 2E).

We applied the partition-based graph abstraction (PAGA)

algorithm to order CD8+ T cells in pseudotime to indicate their

developmental trajectories in SUPS (Figure 2F). We removed

CD8-C6-APOE, TUBA1B, CD8-C7-CCL5 and CD8-C8-APOE

(clusters not well defined) due to their low cell numbers. Most

cells from each cluster were gathered based on similar gene

expression, and variant subsets formed a relative process in

pseudotime. We observed CD8+ T-cell trajectories that began

with CD8-C2-LEF1 (CD8+ naïve T cells), followed by CD8-C3-

MKI67 (CD8+ proliferative T cells), CD8-C4-GZMB (CD8+

effector T cells) and CD8-C5-IL7R (CD8+ activated T cells),

and ended with CD8-C1-PDCD1 (CD8+ exhausted T cells).
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FIGURE 2

Gene expression heterogeneity of CD8+ T cell subsets was identified in the SUPS. (A) t-SNE plot showing the eight main subsets of CD8+ T
cells. (B) Relative expression map of known marker genes associated with each cell subset. Mean expression values are scaled by mean-
centering, and transformed to a scale from -1 to 2. (C). The percentages of CD8+ T cells in paracancer tissues and tumor tissues. (D) The cell
number and proportion of each CD8+ T cell cluster. (E) Functional enrichment analysis of upregulated genes in each CD8+ T cells cluster was
performed with GO analysis. Representative significantly enriched function processes are shown. (F) Pseudotime trajectories for CD8+ T cells
(CD8-C1-PDCD1, CD8-C2-LEF1, CD8-C3-MKI67, CD8-C4-GZMB, CD8-C5-IL7R) based on PAGA. (G) The Monocle 3 trajectory plot showed
the dynamics of CD8-C1-PDCD1, CD8-C2-LEF1 and CD8-C3-MKI67. (H) RNA velocities are visualized on the UMAP projection of CD8-C3-
MKI67 and CD8-C1-PDCD1 populations, colored by clusters. (I) The DEGs (in rows, q-value < 10−10) in CD8+ T cells along the pseudotime were
hierarchically clustered into different subsets. The top annotated GO terms in each cluster were provided. (J) Gene expression dynamics along
the CD8-C1-PDCD1 trajectory. Genes cluster into different gene sets, each characterized by specific expression profiles (upper). For each gene
cluster (indicated by different colors), the expression of some novel genes along the trajectory is shown (lower).
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FIGURE 3

Gene expression heterogeneity of CD4+ T cell subsets was identified in the SUPS. (A) t-SNE plot showing the four main subsets of CD4+ T cells.
(B) Heatmap showing specific marker genes in each CD4+ T cells cluster (each column represents an individual cluster; purple represents the
minimum, black represents the median, and yellow represents the maximum expression values). (C) Functional enrichment analysis of
upregulated genes in each CD4+ T cells cluster was performed with GO analysis. (D) Heatmap comparing the expression of exhaustion-related
genes in CD4+ T cells cluster. (E) Violin plot comparing the expression of LAYN in CD4+ T cells cluster. (F) The disease-free survival curve based
on TCGA data showed patients with higher expression of LAYN had poor prognoses. (G) RNA velocities are visualized on the UMAP projection
of CD4+ T cell populations, colored by clusters. (H) Pseudotime trajectories for CD4+ T cells (CD4-C1-CD69, CD4-C3-NKG7, CD4-C4-TCF7)
based on PAGA. (I) The Monocle 3 trajectory plot shows the dynamics of CD4-C1-CD69, CD4-C3-NKG7 and CD4-C4-TCF7.
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Those exhausted CD8+ T cells were highly enriched at the late

period of pseudotime, demonstrating that the CD8+ T-cell state

transformed from activation to exhaustion. The Monocle 2 and

Monoc le 3 a lgor i thms confi rmed the t ra j ec tor i es

(Supplementary Figure S7D, Figure 2G). Using RNA velocity,

a method inferring precursor progeny cell dynamics, we

observed a clear directional flow from CD8+ proliferative T

cells to CD8+ exhausted T cells. The proliferation in CD8+ T cells

was most profound during the early stages of dysfunction

(Figure 2H), which is consistent with a study of melanoma

(28). We analyzed gene expression patterns involved in CD8+ T-

cell-state transitions. The expression of genes related to “positive

regulation of immune system process” decreased significantly

along the pseudotime axis, while the expression of genes related

to “cellular response to cytokine stimulus” increased

significantly. The levels of genes related to the “positive

regulation of cell adhesion” initially increased and then

decreased along the pseudotime axis (Figure 2I). We identified

8 groups of DEGs along the trajectory of CD8-C1-PDCD1

(CD8+ exhausted T cells). First, the naïve T-cell markers

CCR7, LEF1 and TCF7 were reduced following the trajectory

(29). The subsequent cell groups increased in abundance at the

end of the trajectory and were characterized by effector TNFSF9,

cytotoxicity GZMK, GZMA, NKG7, and early markers of general

exhaustion PDCD1, CTLA4 and TIGIT. In the last two groups,

the early-activating genes TGFB1, GZMM and TNF increased

midway through the trajectory but decreased thereafter. In each

gene set, we authenticated several genes that were previously

unidentified as T-cell markers (for example, COTL1 and PARK7

as differentiated exhausted CD8+ T-cell markers) (Figure 2J).

Coactosin-like 1 (Cotl1) is another ADF-H protein that binds

actin and was also shown to enhance biosynthesis of pro-

inflammatory leukotrienes (LT) in granulocytes (30).

Parkinson protein 7 (PARK7) has been found to play an

inflammatory role in non-gestational tissues (31). The majority

of the genes are related to regulator of inflammatory.

The percentage of CD4-C1-CD69 (CD4+ activated T cells)

among CD4+ T cells isolated from tumor tissues and paracancer

tissues was much higher than other cell types, indicating the

potential enrichment of CD4+ activated T cells in the TME

(Supplementary Figure S8D). GO enrichment analysis showed

that cluster CD4-C2-FOXP3 (CD4+ Tregs) was enriched in

genes related to functions involving “lymphocyte activation”

and “response to cytokine” (Figure 3C) (32). Importantly, we

also found that CD4-C2-FOXP3 (CD4+ Tregs) and CD4-C3-

NKG7 (CD4+ effector T cells) positively expressed inhibitory

receptors and ligands (IRs), including TIGIT, CTLA4, PDCD1

and LAG3. IRs were associated with the exhaustion process of

dysfunctional TIICs, suggesting that these cells became

exhausted after initial activation. Tregs possessed relatively

high levels of the immune inhibitory molecules TIGIT, CTLA4,

PDCD1 and TNFRSF18, which may contribute to Treg-mediated

suppression of antitumor immune responses in the SUPS.
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Recently, anti-TIGIT therapeutics have drawn great attention

in treating colorectal cancer, breast cancer and melanoma by

modulating the activities of CD8+ T cells, Tregs and NK cells.

We also noticed that TIGIT was widely expressed in CD8+ T

cells, corresponding to a gradual loss of responsiveness

(Supp lementary F igure S6D) . In the new era of

immunotherapies, ICIs, including antibodies against PD-1

(nivolumab) and CTLA4 (ipilimumab), are widely used for

cancer treatment. ICIs act by blocking the inhibitory receptors

of the immune system on T cells (PD-1 and CTLA4) and thereby

activate tumor-specific T cells to destroy tumor cells. Recently,

nivolumab in combination with ipilimumab was reported to

have survival benefits in patients suffering from hepatic

melanoma of unknown primary origin. These messages

illustrate that TIGIT, CTLA4 and PDCD1 blockade could be

effective therapy for SUPS (26, 27).

Next, we analyzed CD4-C2-FOXP3 (CD4+ Tregs) and

obtained a list of 54 exhaustion-specific genes by comparing

exhausted and non-exhausted CD4+ T cells. Multiple known

exhaustion markers, such as HAVCR2, PDCD1, ENTPD-1,

CTLA4, TIGIT, TNFRSF9 and CD27, were selected. The 54-

gene list also contained several little-described genes (21), such

as MYO7A, TOX and CXCL13, as well as novel exhaustion

markers, such as LAYN, PHLDA1 and SNAP47 (Figure 3D).

Higher expression of the membrane fusion protein SNAP47

(synaptosome associated protein 47) was associated with poor

prognosis in hepatocarcinoma (21). Pleckstrin homology-like

domain, family A, member 1 (PHLDA1) has been reported to be

a negative regulator of proinflammatory cytokine production

(33). PHLDA1 plays an anti-inflammatory role through

inhibiting the TLR4/MyD88 signaling pathway with the help

of Tollip. Based on The Cancer Genome Atlas (TCGA) data,

high levels of LAYN were associated with a poor prognosis

(Figures 3E, F). LAYN, encoding layilin, was recently reported to

be highly expressed in Tregs isolated from hepatocellular

carcinoma. In addition, LAYN is linked to the suppressive

function of tumor Tregs and exhausted CD8+ T cells. Thus,

our data not only confirmed previously identified genes

associated with exhausted CD4+ T cells and Tregs but also

revealed additional markers for these cell types (34).

Similarly, using RNA velocity (29, 35), we observed a clear

directional flow from CD4-C4-TCF7 (CD4+ naïve T cells) to

CD4-C2-FOXP3 (CD4+ Tregs) (Figure 3G). The induced Tregs

(iTregs) develop from peripheral naïve T cells under the

induction of low-dose antigens or immunosuppressive

cytokines. Tregs develop separately as iTregs and natural Tregs

(nTregs) due to their different origins (36–38). Therefore, Tregs

were not placed together with other CD4+ T cells for trajectory

analysis. We applied the PAGA algorithm to order CD4+ T cells

in pseudotime to indicate their developmental trajectories.

Trajectories began with CD4-C4-TCF7 (CD4+ naïve T cells),

followed by CD4-C1-CD69 (CD4+ activated T cells) and CD4-

C3-NKG7 (CD4+ effector T cells) (Figure 3H). The Monocle 3
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algorithm confirmed the trajectories (Figure 3I), and the

profiling of marker genes confirmed their functional

annotation (Supplementary Figure S8E). We analyzed gene

expression patterns involved in CD4+ T-cell-state transitions

(39). The genes associated with “myeloid cell differentiation” and

“immune system process” decreased significantly along the

pseudotime axis, while the genes related to “T cell

differentiation” and “T cell activation” increased markedly

(Supplementary Figure S8F).
Two distinct states of
tumor-enriched macrophages

We detected a total of 3972 macrophages that formed 2

clusters (Figure 4A). Although genes upregulated in the C2-

MDSC cluster were enriched for signatures of myeloid-derived

suppressor cells (MDSCs), those in the C1-TAM cluster

simultaneously resembled the signatures of tumor-associated

macrophages (TAMs) and M1 and M2 macrophages

(Figure 4B). The coexistence of M1 and M2 signatures

indicated that TAMs are more complex than the classical M1/

M2 model, which was consistent with a previous study.

Specifically, MDSC-like macrophages highly expressed the

S100A family genes FCN1 and VCAN, whereas they expressed

low levels of HLA-related genes (40). In contrast, TAM-like

macrophages expressed a set of genes (APOE, C1QA, C1QB and

TREM2), which was found previously to be expressed in the

TAMs of lung cancer. Furthermore, two additional genes,

SLC40A1, which encodes ferroproteins, and GPNMB, which

encodes type I transmembrane glycoprotein, showed high

levels in TAM-like macrophages. The transcription factors of

these two clusters were diverse; that is, TAM-like macrophages

preferentially expressed MITF, RUNX2 and MAF, and MDSC-

like macrophages expressed high levels of NR4A1, RXRA and

TCF25 (Figure 4B). Enrichment analysis of upregulated gene

subsets showed that the function of TAMs was mainly

“regulation of cell migration” and “regulation of cell motility”.

MDSCs primarily function in “inflammatory response” and

“regulation of immune system process” (Figure 4C).

A diffusion map of their global transcriptomes showed that

the C2-MDSC cluster (MDSC-like macrophages) and the C1-

TAM cluster (TAM-like macrophages) formed a continuum but

with distinct expression features (Figure 4D). The t-SNE analysis

is instrumental in revealing the heterogeneity of distinct

macrophage clusters. However, the clusters may share

common differentiation trajectories. Most macrophages were

arranged into a major trajectory with two minor bifurcations by

pseudotime ordering. Macrophages from different samples are

widely distributed in the pseudotime space. Macrophages in

paracancer tissues occupied the lower part, while macrophages

in the tumor tissues were located in the higher position,

indicating that the cells in the lower part may be the origin of
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differentiated macrophages. MDSCs were mainly distributed in

the left lower branch, while TAMs occupied the right upper part,

which also suggests that the cells in the lower part may be the

starting point of the differentiation of macrophages (Figure 4E).

We speculate that macrophages tend to transform the MDSC

phenotype to the TAM phenotype (41).

The numbers of TAMs and MDSCs isolated from tumor

tissues were higher than those isolated from paracancer tissues,

demonstrating that TAMs and MDSCs are preferentially

recruited to the TME (Figure 4F) (42). Indeed, the number of

macrophages was increased in tumor tissues compared with the

corresponding paracancer tissues (Figure 4G). The slight

increase in macrophages in tumor tissue indicates that

macrophage immunotherapy may be effective in patients with

SUPS (41). After defining the macrophages in our dataset, we

identified the DEGs in tumor tissues and paracancer tissues of

SUPS. We authenticated the differential gene set for these

macrophages, allowing for a more in-depth analysis of

regulatory pathways (Figure 4H). We focused on the genes

with twofold upregulation or downregulation in macrophages

in tumor tissues compared with paracancer tissues. A heatmap

profiles showed that CTSK, MMP9, CKB, CCL18 and COL6A2

were upregulated in macrophages in tumor tissues (Figure 4I).

GO enrichment analysis demonstrated that the majority of the

downregulated genes in the macrophage subsets were related to

“inflammatory response” and “regulation of response to external

stimulus” (Figure 4J).
Two distinct states of
tumor-enriched osteoclasts

Osteoclasts play a vital role in osteolysis and tumor growth

in tumor tissues. Based on the t-SNE algorithm, two individual

subsets of osteoclasts were identified with distinct levels of

myeloid markers, such as CD74, and/or mature osteoclastic

markers (such as CTSK and ACP5) (39) (Figure 5A). The

subset described as C1-progenitor OC had high levels of the

myeloid markers CD74 and CD27 and low levels of the OC

markers CTSK and ACP5. The C2-mature OC subset expressed

high levels of CTSK and ACP5 and low levels of CD74

(Figure 5B). Both progenitor osteoclasts and mature

osteoclasts were more abundant in tumor tissues than in

paracancer tissues, suggesting that progenitor osteoclasts and

mature osteoclasts may be enriched in the TME (Figure 5C).

Enrichment analysis showed that the main functions of the C1-

progenitor OC subset were “type I interferon signaling pathway”

and “response to cytokine”. The main functions of the C2-

mature OC subset were “bone resorption” and “regulation of

bone resorption” (Figure 5D).

Osteoclasts are specialized cells derived from the monocyte/

macrophage hematopoietic lineage. They develop and adhere to

the bone matrix and then secrete acid and lytic enzymes to
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FIGURE 4

Two Distinct States of Tumor-Enriched Macrophages. (A) t-SNE plot showing the two main subsets of Macrophages. (B) Heatmap showing specific
marker genes in each Macrophages cluster. (C) Functional enrichment analysis of upregulated genes in each Macrophages cluster was performed
with GO analysis. (D) Diffusion map showing the continuous connection of the two macrophage states (upper) and signature gene expression based
on 10x (lower). (E) The Monocle 2 trajectory plot showed the dynamics of TAMs and MDSCs. (F) The percentages of Macrophages in paracancer
tissues and tumor tissues (left). The cell number (middle) and proportion (right) of each cluster. (G) Immunohistochemistry of SUPS showed the
expression of MRC1 in paracancer tissues and tumor tissues. Quantification of IHC staining from tumor tissues and paracancer tissues (n = 3)
displayed as the average number of positive cells per high-powered field (×200). Data are shown as the mean ± SEM. ***P <0.001. (H) Number of
DEGs between paracancer tissues and tumor tissues within Macrophages projected onto the t-SNE map. Number of DEGs between paracancer
tissues and tumor tissues. DEG: |log fold change| > 0.5, adjusted P< 0.05 determined by Wilcoxon rank-sum test. (I) DEGs of TAMs and MDSCs in
tumor tissues vs paracancer tissues in SUPS were analyzed. (J) GO term analysis of DEGs in Macrophages of tumor tissues versus paracancer tissues
was performed. The first lap indicates the top 20 GO terms and the number of the genes corresponds to the outer lap. The second lap indicates
the number of genes in the genome background and Q values for enrichment of the upregulated genes for the specified biological process. The
third lap indicates the ratio of the upregulated genes (deep purple) and downregulated genes (light purple). The fourth lap indicates the enrichment
factor of each GO term. GO, gene ontology.
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FIGURE 5

Two Distinct States of Tumor-Enriched Osteoclasts. (A) t-SNE plot showing the two main subsets of Osteoclasts. (B) Heatmap showing specific
marker genes in each Osteoclasts cluster. (C) The cell number and proportion of each Osteoclasts cluster. (D) Functional enrichment analysis of
upregulated genes in each Osteoclasts cluster was performed with KEGG analysis. (E) The Monocle 2 trajectory plot showing the dynamics of
C1-progenitor OC and C2-mature OC. (F) DEGs of Osteoclasts in tumor tissues vs paracancer tissues in SUPS was analyzed. (G) GSEA analysis
was performed on Osteoclasts of tumor tissue vs paracancer tissue. (H) KEGG analysis of DEGs in Osteoclasts of tumor tissues versus
paracancer tissues was performed. The first lap indicates the top 20 KEGG terms and the number of the genes corresponds to the outer lap.
The second lap indicates the number of genes in the pathway and Q values for enrichment of the upregulated genes for the specified pathway.
The third lap indicates the ratio of the upregulated genes (deep purple) and downregulated genes (light purple). The fourth lap indicates the
enrichment factor of each KEGG pathway. KEGG, Kyoto Encyclopedia of Genes and Genomes.
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degrade the bone matrix in a specialized extracellular

compartment. Increased bone resorption is the result of

osteoclast formation induced by tumor cells, and osteoclast

formation facilitates bone resorption. Bone is a heterogeneous

environment that is beneficial for the growth of tumor cells.

Among the different cell types presented in bone, osteoclasts are

crucial players in the so-called “vicious cycle”. This phenomenon

is triggered by tumor cells. Eventually tumor proliferation and

bone deregulation occur, which promote the development of

bone metastasis (43). Subsequently, we performed trajectory

analysis of osteoclasts to infer the osteoclast maturation

process in SUPS. The mature osteoclasts were highly enriched

at the late period of pseudotime, demonstrating that the

osteoclast state transformed from progenitor to maturation

(Figure 5E). Then, we analyzed the trajectory of macrophages

and osteoclasts. MDSCs mainly occupied the left upper branch,

while TAMs were primarily located in the right lower part. Both

clusters of osteoclasts were concentrated at the end of the lower

branch, suggesting that macrophages tended to differentiate into

osteoclasts (Figure 6A) (44, 45). RNA velocity analysis and the

Monocle 3 and PAGA algorithms confirmed these trajectories

(Figures 6B-D). We analyzed the gene expression patterns

involved in osteoclast and macrophage differentiation. Genes

related to “regulation of programmed cell death” decreased

observably along the quasi-time axis. Genes associated with

“mitotic cell cycle process” increased dramatically along the

pseudotime axis. Genes regarding “myeloid leukocyte

mediated immunity” initially increased and subsequently

decreased along the quasi-time axis (Figure 6E).

After defining the osteoclasts in our dataset, we identified the

DEGs in tumor tissues and paracancer tissues. We identified the

differential gene set for these osteoclasts that allowed a more in-

depth analysis of regulatory pathways (Figure 5F). Gene set

enrichment analysis (GSEA) demonstrated that osteoclasts in

SUPS negatively regulated the humoral immune response

(Figure 5G). KEGG enrichment analysis showed that most of

the upregulated genes of osteoclasts in SUPS were related to

“PD-L1 expression and PD-1 checkpoint pathway in cancer”

and “T cell receptor signaling pathway” (Figure 5H).
Gene expression heterogeneity in
Fibroblast subsets was identified in the
SUPS patient

As an important cell component in the disease lesion,

Fibroblasts within paracancer tissues and tumor tissues were

compared, and various DEGs were identified (Figure 7A). We

found abundant DEGs in tumor and paracancer tissues, so we

inferred that cancerous fibroblasts exist in fibroblasts (25). Copy

number karyotyping of aneuploid tumors (CopyKAT) (46) can

infer cell chromosome multiples by analyzing single-cell

transcriptome data and then infer whether normal cells
Frontiers in Immunology 12
(diploid) or malignant cells (aneuploid). CopyKAT can further

cluster tumor cells and identify different subsets. CopyKAT does

not need normal cells as a reference and can automatically find

diploid cells as normal cells, making up for the shortcomings of

inferCNV and HoneyBadger. Therefore, fibroblasts were

identified by CopyKAT and divided into malignant fibroblast

and normal fibroblast groups (Figure 7B). To determine the

intrinsic structure and potential functional subtypes of the entire

fibroblast population, we performed unsupervised clustering of

these two types of cells to examine their heterogeneity

(Figure 7C). According to the DEGs, normal fibroblasts were

divided into 7 clusters (Supplementary Figure S9A): C1-normal

Fibroblast, C2-normal Fibroblast, C3-normal Fibroblast, C4-

normal Fibroblast, C5-normal Fibroblast, C6-normal

Fibroblast and C7-normal Fibroblast. Tumor-associated

fibroblasts were divided into 8 clusters (Figures 7D, E): C1-

malignant Fibroblast, C2-malignant Fibroblast, C3-malignant

Fibroblast, C4-malignant Fibroblast, C5-malignant Fibroblast,

C6-malignant Fibroblast, C7-malignant Fibroblast and C8-

malignant Fibroblast (22, 25, 47, 48). Besides, we found that

normal fibroblasts are mainly distributed in paracancer tissues,

while malignant fibroblasts are primarily distributed in tumor

tissues (Figure 7F and Supplementary Figures S9B, C).

Enrichment analysis of upregulated gene subsets showed

that the primary functions of C1-malignant Fibroblasts were

“blood vessel development” and “cell migration”. The main

functions of C6-malignant Fibroblasts were “immune system

process”, “leukocyte activation” and “T-cell activation”

(Figure 7G). In addition, GO enrichment analyses revealed

that within the malignant cells of SUPS, fibroblasts were

enriched for genes associated with “cell activation” and

“inflammatory response” (Figure 7H). Malignant fibroblasts

(for example, C1-malignant Fibroblasts and C6-malignant

Fibroblasts) in the TME play crucial roles in tumor growth,

angiogenesis, metastasis and immune response. Thus, targeting

malignant fibroblasts could represent a potential strategy for

treating this patient (48).
Cell communication networks in SUPS

We used CellphoneDB to predict receptor-ligand

interactions. First, we calculated the interactions in the cell

types from tumor tissues and paracancer tissues separately.

We observed that cells from tumor tissues had more potential

for interaction than those from paracancer tissues, especially in

malignant fibroblasts, osteoclasts, macrophages and several

kinds of T cells (29). Interestingly, we found a cellular

communication network between tumor cells and immune

cells mediated by immune checkpoint ligand-receptor

interactions (Figures 8A-C).

The pro-apoptotic interaction between CD8-C2-LEF1 (CD8+

naïve T cells) andmature osteoclasts, progenitor osteoclasts or C8-
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malignant Fibroblasts (TNFSF12_TNFRSF12A, TNFRSF1A_GRN

and TNFRSF1B_GRN) was increased. Mature osteoclasts,

progenitor osteoclasts or C8-malignant Fibroblasts express

NECTIN2 and NECTIN3, thereby transmitting inhibitory signals
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to TIGIT on CD8-C2-LEF1 (CD8+ naïve T cells). Some new

communication links have been observed between mature

osteoclasts, progenitor osteoclasts, C8-malignant Fibroblasts and

CD8+ T cells in tumor tissues, indicating that T cells are recruited
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FIGURE 6

The trajectory analysis of osteoclasts and macrophages. (A) Monocle 2 analysis, (B) RNA velocity analysis, (C) PAGA analysis, and (D) Monocle 3
analysis on Osteoclasts and Macrophages phenotypes independently confirming the maturation trajectories. (E) The DEGs in Osteoclasts and
Macrophages along the pseudotime were hierarchically clustered into different subsets. The top annotated GO terms in each cluster were provided.
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FIGURE 7

Gene expression heterogeneity of fibroblast subsets was identified in the SUPS. (A) DEGs of fibroblasts in tumor tissues vs paracancer tissues in
SUPS were analyzed. (B) Clustered heat map of 2395 scRNA-seq copy number profiles estimated by CopyKAT. Fibroblasts were identified by
CopyKAT and divided into malignant fibroblasts and normal fibroblasts. (C) t-SNE plot showing the seven main subsets of normal fibroblasts and
the eight main subsets of malignant fibroblasts. (D, E) Violin plot and Heatmap showing specific marker genes in each malignant fibroblasts
cluster. (F) The percentages of malignant/normal fibroblasts in paracancer tissues and tumor tissues. (G) Functional enrichment analysis of
upregulated genes in each malignant fibroblasts cluster was performed with GO analysis. (H) GO term analysis of DEGs in malignant fibroblasts
of tumor tissues versus paracancer tissues was performed.
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FIGURE 8

Cell Communication Networks in SUPS. (A, B) Heatmap of the number of ligand-receptor pairs each cell has (each row/column represents a
cell, and the number of ligand-receptor pairs each cell has is colored, the bluer the cell has fewer ligand-receptor pairs, and the redder the cell
has more ligand-receptor pairs). (C) Results of the ratio of the number of ligand-receptor pairs in tumor tissue compared with paracancer
tissue. (D-H) Overview of selected ligand-receptor interactions of Macrophages, Osteoclast, Malignant fibroblast cells, and T cells. P values are
indicated by circle size, Mean values are indicated by circle color.
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to tumor tissues (CCL4L2_VSIR and CCL5_CCR1). CD8-C2-

LEF1 (CD8+ naïve T cells) showed inhibitory interactions with

mature osteoclasts or progenitor osteoclasts (HLA-DPA1_GAL

and HLA-FAM3c), or with C8-malignant Fibroblasts (HLA-

DPB1_NRG1). The proapoptotic interactions of CD8-C1-

PDCD1 (CD8+ exhausted T cells) with mature osteoclasts,

progenitor osteoclasts or C8-malignant Fibroblasts were

increased (TNFSF12_TNFRSF12A, TNFRSF1B_GRN and

TNFRSF1A_GRN), but T-cell-homing communications were

weakened (CCL4_CCR5, CCL5_CCR5 and CXCR3_CCL20).

Mature osteoclasts, progenitor osteoclasts and C6-malignant

Fibroblasts express NECTIN2 and FAM3C, which transmit

inhibitory signals to TIGIT and PDCD1 on CD8-C1-PDCD1

(CD8+ exhausted T cells), respectively. The costimulatory

interaction between CD4-C2-FOXP3 (CD4+ Tregs) and mature

osteoclasts or progenitor osteoclasts (TNFRSF1B_GRN,

TNFSF12_TNFRSF12A and MIF_TNFRSF14) increased.

NECTIN2, CD80 and CD86 expressed on mature osteoclasts,

progenitor osteoclasts, C5-malignant Fibroblasts or C6-

malignant Fibroblasts, transferred the suppressive signals to

TIGIT and CTLA4 on CD4-C2-FOXP3 (CD4+ Tregs),

respectively. It is noteworthy that CD4-C2-FOXP3 (CD4+

Tregs) possessed relatively high levels of adhesion molecules,

including CD2 and ICAM3. The corresponding receptors,

including CD58 and the aLb2 complex, are widely expressed by

mature osteoclasts, progenitor osteoclasts, C5-malignant

Fibroblasts and C6-malignant Fibroblasts, which can enhance

the adhesion and growth of SUPS. Some new interactions have

been observed between MDSCs and mature osteoclasts or

progenitor osteoclasts in tumor tissues, suggesting that MDSCs

are recruited to tumor tissues (CCL3L1_CCR1, CXCL2_DPP4 and

CCL3L1_DPP4). Furthermore, angiogenic signals increased

between MDSCs and mature osteoclasts, progenitor osteoclasts

or C8-malignant Fibroblasts (NRP2_VEGFA, NRP1_VEGFA and

NRP1_VEGFB). In addition, angiogenic signals (NRP1_VEGFB,

IGF1_IGF1R , NRP1_VEGFA and NRP2_VEGFA) and

costimulatory effects (TNFRSF1A_GRN and TNFRSF1B_GRN)

increased between TAMs and mature osteoclasts, progenitor

osteoclasts or C8-malignant fibroblasts (Figures 8D–H) (11, 25,

49). Overall, these data depict an interactive immune environment

in SUPS.
Discussion

Here, we provide a comprehensive analysis of scRNA-seq

data generated from SUPS. The deep transcriptome for 18433

individual cells provided an extensive resource for

understanding the multidimensional characterization of SUPS,

especially in the tumor immune microenvironment. The higher

resolution provided by our dataset was exemplified by the

identification of 19 large subsets as well as unique

subpopulations, such as CD8+ exhausted T cells and CD4+
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Tregs (50). The high quantity and quality of single-cell data

allowed us to map their developmental trajectory. In addition,

pseudotime analysis and RNA velocity analysis permits us not

only to confirm their differentiated relationships in various

clusters but also to deduce their activation status in the

cancer microenvironment.

The infiltration of T cells and their characteristics are usually

associated with prognostic outcomes. In our study, we determined

that PDCD1, CTLA4 and TIGIT are involved in the exhaustion of

CD8+ and CD4+ T cells in SUPS. Their receptors, such as FAM3C,

CD80/CD86 and NECTIN2, are widely expressed in malignant

fibroblasts, which may be the cause of poor prognosis (27).

Antibody blockade of the PD-1 pathway has been shown to

reinvigorate exhausted CD8+ T cells with PDCD1 expression.

We discovered that LAYN was highly expressed in CD4+ Tregs,

which was speculated to be associated with CD4+ Treg depletion

and a poor prognosis. A previous study revealed a regulatory role

of LAYN in Treg function. Similarly, some studies have proven the

induction of LAYN after the activation of exhausted CD8+ T cells

and CD4+ Tregs (34). Furthermore, the overexpression of LAYN

on CD8+ T cells in human blood leads to a significant reduction in

the production of IFN-g, which is a key cytokine involved in the

tumor-killing activity, and supports LAYN as a negative regulator.

TCGA data showed that high LAYN levels were associated with

short survival time of various cancers. More studies are needed to

further investigate the function of LAYN and other genes related

to depleted CD4+ Tregs in SUPS. We identified CD4+ effector T

cells and CD4+ activated T cells, which shared similar gene

expression characteristics to CD8+ effector T cells and CD8+

activated T cells, implicating their cytotoxic functions. CD4+

effector T cells also highly expressed CCL5 and GZMA, which

appear to be in a mixed state among known subtypes of T helper

cells but are more similar to effector cells due to the expression of

cytotoxic molecules (GZMK, NKG7 and GNLY). Therefore,

increasing the similarity between these cells and cytolytic CD4+

T cells might be a new strategy for SUPS immunotherapy (51).

SUPS is an aggressive form of soft tissue sarcoma. SUPS is

extremely rare, with limited information on its pathogenesis,

clinical and radiological features, pathological findings and

therapeutic outcomes. The pathophysiology remains elusive, and

treatment options are limited (5). Advances in scRNA-seq

technology have enabled a comprehensive analysis of the

immune system in an unbiased way at the single-cell level. To

our knowledge, this study is the first to analyze SUPS using

scRNA-seq technology (16). Analysis of our single-cell database

revealed the detailed characteristics of SUPS-infiltrating cells in

the microenvironment, including their aggregation, dynamics and

developmental trajectory, as well as unique characteristics in

tumor tissues and the corresponding paracancer tissues. Single

cell transcriptomics has revealed intratumoral heterogeneity

within many cancer types, identifying cell populations that drive

drug resistance, predict metastatic risk and mediate plasticity (52,

53). However, studies often suffer from a lack of normal tissue
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1019870
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yuan et al. 10.3389/fimmu.2022.1019870
comparisons that can be used to identify tumor-specific biology,

and loss of spatial information after tissue dissociation. Recent

advances, however, enable simultaneous capture of the locations

of dozens of cell types within the TME, which is critical for

understanding SUPS (54). Orthogonal integration of single-cell

and high-dimensional spatial data from both normal and diseased

tissues should therefore facilitate the dissection of TME

cellular communication.

In conclusion, we reported the first case of SUPS identified

by scRNA-seq, described the characteristics of the TME,

identified markers and particular clusters related to cancer

immunotherapy, and provided a therapeutic basis. We found

that malignant fibroblasts and osteoclasts are significantly

enriched in tumor tissues, and most of them are actively

undergoing EMT, which leads to cancer invasion and

metastasis. The transition from TAMs to osteoclasts also

promotes tumor invasion and metastasis. We detected that

high levels of CD8+ exhausted T cells accumulate in SUPS

with abundant aggregation during the late period of

pseudotime. In our study, the upregulation of PDCD1, CTLA4,

TIGIT and LAYN suggests that inhibitors of these biomarkers

may be effective against SUPS. At present, there are no guidelines

for the use of ICIs in SUPS. We confirmed that PD-1 ICIs can be

used as first-line treatment for patients with SUPS.
Experimental section

Human studies statement

The present study has been reviewed and approved by Sir

Run Run Hospital Nanjing Medical University.
Sample preparation and scRNA-seq

Fresh lesions were stored in tissue preservation solution and

processed on ice after the surgery within 30 mins. Single-cell

suspensions of the collected tissues were prepared through

mechanical dissociation and enzymatic digestion within 16 h

after surgery. Briefly, tissues were cut into pieces that were 2-

4 mm in size and transferred to a tube containing the enzyme

mix. The tissues were incubated in an enzyme solution

(collagenase, DNase I, and Dispase II; prepared in DMEM) at

37°C for 1 h. The tissue pieces were remixed by gentle pipetting

at 20 min intervals during incubation. Each cell suspension was

transferred to a new 50 ml (15 ml tube for biopsy samples) tube

after being passed through a 70 µm strainer. The volume in the

tube was readjusted to 50 ml (or 15 ml) with DMEM medium,

and the contents were centrifuged to remove the enzymes. The

supernatant was aspirated, the cell pellet was resuspended in

4 ml of DMEM medium, and the dead cells were removed using

Ficoll-Paque Plus (GE Healthcare, Chicago, IL, USA) separation.
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Single cells were encapsulated in droplets using 10 × Genomics

GemCode Technology and processed according to the

manufacturer’s instructions. We prepared single-cell RNA-seq

libraries with Chromium Single Cell 3' Gel Beads-in-emulsion

(GEM) Library & Gel Bead Kit v3 according to the user manual

supplied by the kit.
Quality control metrics and
data processing

Using CellRanger (version 3.0.0), reads were mapped to the

reference genome and annotated as specific genes. After the UMI

was corrected and counted, the unfiltered feature-barcode

matrix was obtained. According to the unfiltered feature-

barcode matrix, CellRanger identifies and distinguishes cells

and noncells in the data and draws a rank-plot to intuitively

reflect the effective cell identification results. CellRanger filters

cells automatically according to gene expression levels, and some

abnormal cells will remain, so it is necessary to further filter

abnormal cells before subgroup classification. Gel beads-in-

emulsion (GEMs) containing multiple cells in each sample was

first detected. DoubletFinder (https://github.com/ddiez/

DoubletFinder) was used to calculate the probability of GEM

multicellular (pANN value), and then the multicellular rate of

each sample was calculated based on the relationship between

the effective cell number given by 10 × (after CellRanger

filtering) and the multicellular rate. The multicellular filtering

threshold of each sample was determined, and multicellular

filtering was carried out in turn. The number of expressed

genes in a single cell or the same type of cell is generally

maintained within a certain range (340.0-6800.0). If the value

is too high, it may be that multiple cell types are wrapped in a

GEM, so the barcode is eliminated. The total number of mRNAs

that can exist in a single cell is limited (UMI <44000.0). If the

total number of UMIs is too high, two or more cells may be

contained in the same GEM, thus eliminating such cells.

Mitochondrial gene expression is usually high among cells

with an apoptosis rate >25.0%. High expression of

mitochondrial genes indicates that the cells are in poor health

induced by damage during the experiment, so these cells are

excluded from subsequent analysis. After applying quality

control metrics, single cells were included in downstream

analyses. Library size normalization was performed with

NormalizeData function in Seurat (version 3.1.1) to obtain the

normalized count. Specifically, the global-scaling normalization

method “LogNormalize” normalized the gene expression

measurements for each cell by the total expression, multiplied

by a scaling factor (10,000 by default), and the results were

logtransformed. The most variable genes were selected using

FindVariableGenes function (mean.function = FastExpMean,

dispersion.function = FastLogVMR) in Seurat. Principal

component analysis (PCA) was executed to reduce the
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dimensionality with RunPCA function in Seurat. Graph-based

clustering was performed to cluster cells according to their gene

expression profile using the FindClusters function in Seurat.

Cells were visualized using a 2-dimensional t-SNE and UMAP

algorithm in Seurat. We used the FindAllMarkers function

(test.use = presto) in Seurat to identify marker genes of each

cluster. For a given cluster, FindAllMarkers identified the

positive markers compared with all other cells.
Histological analysis

Human tissue specimens were provided by SIR RUN RUN

HOSPITAL NANJING MEDICAL UNIWERSITY under an

approved Institutional Review Board protocol. The specimens were

collectedwithin 30min after the tumor resection andfixed in formalin

for 48 hr. Dehydration and embedding in paraffin were performed

following routine methods. For histopathological analysis, H&E

staining was performed on formaldehyde-fixed, paraffin-embedded

tissue samples. Microscopic analysis of the staining was evaluated by

examining 3 sections from each tissue. The sections were observed

using a laser scanning confocal microscope.
Immunohistochemistry

Tissue sectioning and immunohistochemistry staining of

formalin-fixed, paraffin-embedded SUPS specimens were

performed. All sections were deparaffinized, rehydrated, and

washed. Endogenous peroxidase was blocked using 3% hydrogen

peroxide for 10min. After water-bath heating for antigen retrieval,

slides were incubated with primary antibodies followed by

horseradish peroxidase (HRP)-linked secondary antibodies and

diaminobenzidine staining (G1213-100UL, G1214-100UL).

Hospital Pathology Department blinded to clinical data

independently assessed staining results for SMA (unnecessary

dilution, ZM-0003,ZSGB-BIO), CD68 (unnecessary dilution,

ZM-0464, ZSGB-BIO), Ki67 (1:100, ZM-0166, ZSGB-BIO),

CD34 (unnecessary dilution, ZM-0046, ZSGB-BIO), Desmin

(unnecessary dilution, ZA-0686, ZSGB-BIO), EMA (unnecessary

dilution, ZM-0095, ZSGB-BIO), S-100 (unnecessary dilution, ZM-

0224, ZSGB-BIO), BCL-2 (unnecessary dilution, ZA-0536, ZSGB-

BIO). Servicebio blinded to clinical data independently assessed

staining results for CD3 (1:250, GB11014, Servicebio), CD4 (1:400,

GB11064-1, Servicebio), CD8 (1:200, GB11068-1, Servicebio).

Quantification was performed by counting positive cells in 6 to

10 high-powered fields (magnification, ×40) in a blinded fashion.
Analysis of differentially expressed genes

DEGs were identified using the FindMarkers function

(test.use = presto) in Seurat. We identified the DEGs based on
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the following criteria: |logFC| ≥ 0.25 and p_value_adj ≤ 0.05, and

the percentage of cells where the gene is detected in the specific

cluster is more than 25%. The identification of differentially

upregulated genes was performed using the FindAllMarkers

function (test.use = presto) in Seurat. The identified genes

were differentially upregulated in each cell classification

compared with other cell populations. We used the gene

ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway enrichment analysis to discover

certain biological functions and pathways. GO and KEGG

pathway enrichment analysis of DEGs were respectively

performed using R based on the hypergeometric distribution.
Pseudotime analysis

Trajectory analysis of CD8+ T cells, CD4+ T cells,

macrophages and Osteoclasts were performed, respectively

using Monocle and PAGA. The PAGA (35) (Partition based

graph abstraction) (https://github.com/theislab/paga) graph was

made using the preprocessed Seurat object. PAGA achieves

consistent and topology-preserving embeddings by initializing

an embedding of a fine-grained graph using the coordinates of a

coarse-grained graph. After assigning the starting cell, the

software automatically calculated the pseudo-time value of

each cell by referring to the DPT algorithm. Single cell

trajectory was analyzed using the matrix of cells and gene

expressions by Monocle (http://cole-trapnell-lab.github.io/

monocle-release/; https://cole-trapnell-lab.github.io/monocle3/

docs/installation/). Monocle reduced the space down to one

with two dimensions and ordered the cells (sigma = 0.001,

lambda = NULL, param.gamma = 10, tol = 0.001). Once the

cells were ordered, we could visualize the trajectory in the

reduced dimensional space. The trajectory has a tree-like

structure, including tips and branches.
RNA velocity-based cell fate tracing

To perform the RNA velocity analysis, the spliced reads and

unspliced reads were recounted by the velocyto python package

based on previous aligned bam files of scRNA-seq data. The

calculation of RNA velocity values for each gene in each cell and

embedding RNA velocity vector to low-dimension space was

done by following the scvelo python pipeline. We calculated the

velocity-based cell transition matrix by transition_matrix ()

function from scvelo (https://scvelo.readthedocs.io/), of which

the element was the Pearson correlation coefficient between the

velocity vector and cell state difference vectors of the column cell

as previously described. We estimated the destination of a cell by

identifying the highest correlation value. Then Fisher’s exact test

was performed on 2×2 cluster-by-cluster or cluster-by-tissue

contingency tables to test the fate destinations of interested cell
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clusters. To infer the migration directions of T cell, osteoclast

and macrophage, we first constructed partition-based graph

abstraction for T cell population, osteoclast population, and

macrophage population respectively, and then oriented edges

among cell populations using RNA velocity information as

previously described.
Copy number karyotyping of
aneuploid tumors

To distinguish malignant cells from normal cells in

fibroblasts, we chose CopyKAT (copynumber karyotyping of

tumors) software to calculate the CNV level of each cell (46).

CopyKAT is a software that combines the integrative Bayesian

method and hierarchical clustering to classify cells according to

copy number. We use scRNAseq technology to get the gene

expression data of fibroblasts in paracancer tissues and tumor

tissues. The gene expression matrix of the unique molecular

identifier (UMI) of two fibroblasts from different sources is the

input of CopyKAT. The software cluster the UMI data after

processing, and select the diploid cells with high confidence first.

Then, using hierarchical clustering, tumor cells with significant

differences from normal cells are obtained. For non-significant

genomes, the Gaussian mixture model (GMM) is used to

identify them one by one. Finally, get the gene expression

profiles of malignant cells and normal cells.
Cell-to-cell communication
of scRNA-seq data

The ligand-receptor interactions among immune cells from

the SUPS were mapped using the CellPhoneDB (55) algorithm

(https://github.com/Teichlab/cellphonedb). Briefly, the algorithm

allows the detection of ligand-receptor interactions between cell

types in scRNA-seq data using the statistical framework described

in refs. We took the union of the significant interactions found in

tumor tissues and paracancer tissues to explore specific

interactions. Next, we assessed the number of interactions that

are shared and specific for tumor tissues and paracancer tissues

and explored specific interactions indicated as curated (that is,

annotated by the CellPhoneDB developers).
Statistical analysis

Statistical analyses were performed using GraphPad Prism.

The data are expressed as the mean ± SEM unless indicated
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otherwise. Unpaired Student’s t-test was used to determine

statistically significant differences. A value of P < 0.05 was

considered significant at the 95% confidence level. Data

analysis was performed using the OmicShare tools, a free

online platform for data analysis.
Code availability

The codes generated during this study are available at the

OmicShare tools, a free online platform (https://www.omicshare.

com/). The software we used is open source software.
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