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Introduction: Graft-versus-host disease (GVHD) damages vascular endothelium.

Endothelial progenitor cell (EPC) can differentiate to endothelial cell and promote

angiogenesis, but its role in endothelial damage in GVHD is unclear.

Methods: In this study, we intend to assess whether EPC infusion promotes the

repair of endothelial injury in GVHD mouse model. Male BALB/c mice were

randomly divided into 5 groups: control group, total body irradiation group (TBI

group), allogeneic bonemarrow transplantation group (Allo-BMT group), acute

graft versus host disease group (GVHD group), EPC infusion group (GVHD+EPC

group) followed by analysis of mice survival, acute GVHD (aGVHD) score, T cell

infiltration by immunofluorescence, as well as continuity of vascular

endothelium in liver.

Results: Compared with Allo-BMT group, the clinical and pathological score of

aGVHD mice were higher. On day 21 after transplantation, a large number of

mononuclear cell infiltrations were seen in the target tissues of aGVHD mice

and mice died within 30 days. In addition, aGVHD group also presented

increased subendothelial infiltration of CD3+ T cells in the liver, decreased

VE-cadherin expression and elevated major histocompatibility complex (MHC)

II molecule expression in the endothelium. Moreover, expression of MHC-II

molecule increased in endothelial cell after irradiation injury and LPS

stimulation, indicating abnormally activated endothelial cell with antigen-

presenting function. Interestingly, infusion of EPC reduced the clinical and

pathological score of aGVHD, decreased infiltration of mononuclear cells,
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improved survival as well as upregulated VE-cadherin and downregulated

MHC-II molecule.

Discussion: EPC infusion canmobilize to affected endothelium to decrease the

infiltration of T cells and pathological endothelial activation contributing to

ameliorating the damage of endothelium. EPC infusion combined with bone

marrow transplantation might be a perspective strategy for the prevention and

treatment of aGVHD.
KEYWORDS

endothelial progenitor cell, acute graft-versus-host disease, endothelium, endothelial
injury, endothelial cell activation
Introduction

Allogeneic bone marrow transplantation (allo-BMT) is a

clinically effective method for treating refractory blood diseases

(1). Graft-versus-host disease (GVHD) is one of the main

complications after allo-BMT and restricts the transplantation

efficacy (2). According to statistics, the incidence of acute GVHD

(aGVHD) after transplantation ranges from 54% to 62% (3), and

the rate of overall survival for 5 years is 46% (4). Therefore,

GVHD prevention and treatment are urgently required to be

further explored.

aGVHD is an inflammatory disease that mainly affects the

liver, skin, and intestines. Since these target organs are affected

generally by endothelial dysfunction and the proposal of

endothelium-related aGVHD provides new ideas and

therapeutic targets for the treatment, and is a research hotspot

in recent years (5, 6). Endothelial cells are the first barrier for

bacteria and viruses in the blood to enter the tissues. They

participate in maintaining the blood homeostasis of the body,

including regulation of vascular integrity and host defense.

Endothelial injury and dysfunction have an important impact

on the health of the body. At the same time, endothelial cell can

act as antigen presenting cell. Under the stimulation of

inflammatory factor, endothelial cell highly expresses the key

molecules of antigen presentation and co-stimulation such as

MHC-II molecule, CD40 and ICOSL, participates in antigen

presentation and promotes T cell activation (7, 8). Studies have

showed that in allo-BMT, the fragility and dysfunction of

endothelial cell (9) is not only a cause of refractory GVHD

(10), but also an important factor in delaying the recovery of

organ function (11, 12). Therefore, vascular endothelium is a

potential target for the prevention and treatment of GVHD.

Endothelial progenitor cell (EPC) is the precursor cell of

endothelial cell, derived from bone marrow, fat, spleen and other

tissues, and plays an important role in maintaining endothelial

integrity of blood vessels and repairing endothelial damage (13,
02
14). EPC can mobilize to the damaged blood vessel and

differentiate into mature endothelial cell. EPC therapy has

been considered as a promising treatment strategy in the fields

of nephropathy and cerebral ischemic diseases (15, 16). Huang X

et al. have reported that infusion of EPC can reverse the cerebral

vascular damage caused by irradiation possibly through

increasing the expression of tight junction proteins in the

brain and reducing the permeability of the blood-brain barrier,

which may restore the effect of whole brain irradiation on the

blood brain damage (15). Our previous research found that

infusion of EPCs can alleviate aGVHD and enhance immune

reconstitution after bone marrow transplantation (17), but the

mechanism is unclear. Therefore, in-depth study of endothelial

damage in aGVHD and the mechanism of EPC in repairing the

endothelium is the key to explore strategies to alleviate aGVHD.

Our study intends to assess the effects of EPCs infusion on

damaged endothelium in aGVHD mouse model to explore new

strategies for the prevention and treatment of aGVHD.
Materials and methods

Reagents

Rabbit anti-mouse GFP antibody, Rabbit anti-mouse CD3

antibody and goat anti-rabbit AF488 were purchased from abcam;

rat anti-mouse CD31, CD144 and MHC-II molecule monoclonal

antibody were purchased from eBioscience; goat anti-rat or anti-

rabbit Cy3, anti-fluorescence quenching agent and rabbit anti-

mouse CD31 polyclonal antibody were purchased from

Servicebio; goat anti-rat AF488 was purchased from CST; EGM-

2 medium was purchased from Lonza; Fibronectin was purchased

from EMD Millipore; Anti-Mouse-CD31-V450, anti-Mouse-

VEGFR2-PE and anti-Mouse-CD45-PerCP Cy7 were bought

from BD; 7-AAD was purchased from Nanjing KGI Biotech

Co., Ltd.; mouse endothelial cell growth factor (VEGF) was
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bought from Proteintech; Accutase-Enzyme Cell Detachment

Medium was purchased from Thermo Fisher Company.
Experimental animals

SPF-grade BALB/c (H-2kd) and C57BL/6 (H-2Kb) mice

weighted 18-20 g and aged 6-8 weeks were purchased from

Beijing Vitality China Laboratory Animal Co., Ltd. B6.Cg-Tg

(CAG-GFP) mice were purchased from Shanghai Model

Organisms Center (China). The mice were fed in the

experimental animal center with free access to food and water.

This study was approved by the Animal Ethics Committee of

Xuzhou Medical University.
Preparation of bone marrow cell

Wild-type C57BL/6 female mice were sacrificed by cervical

dislocation and soaked in 75% alcohol for 5 minutes; sterile

scissors and tweezers were used to remove the tibia, femur and

ilium which were then immersed in a dish filled with PBS. Sterile

gauze was used to remove the muscle tissue and fascia from the

bone and then placed in a mortar followed by gentle crushing.

Next, an appropriate amount of PBS was added to disperse cells

as much as possible. The bone marrow suspension was filtered,

centrifuged at 1200rpm for 5min, washed once with PBS,

counted, and then diluted to 2.5x107/mL for later use.
Preparation of splenic mononuclear cell

After mice were sacrificed by cervical dislocation, they were

immersed in 75% ethanol for 5 minutes for disinfection. The

mouse spleens were taken out on a clean bench and placed in a

pre-prepared dish containing PBS for later use. 1 mL of

lymphocyte separation solution (dakeve) was added and the

spleen was grinded followed by addition of 4 mL of lymphocyte

separation solution to obtain a single cell suspension, which was

filtered with a 200 mesh filter and centrifuged at 800 g for 30 min

to obtain spleen lymphocyte suspension. Then, the cell suspension

was counted and adjusted to 2.5x107/mL for later use.
Preparation of EPC

Bone marrow mononuclear cells in EGM-2 complete

medium (5×106/ml) were placed into culture dish coated with

fibronectin (FN). The medium was changed every 3 days. When

being cultured to the 7th day, the cells were identified by flow

cytometry (FACS). The identification index was: CD45-CD31+

VEGFR2+. Cell viability was assessed using 0.4% trypan blue dye

solution and the viability above 95% was used for experiments.
Frontiers in Immunology 03
aGVHD model

BABL/c male mice of 6-8 weeks old were randomly divided

into 5 groups. Untreated group: normal BALB/c mice without any

treatment; total body irradiation group (TBI group): The mice

were fed with sterilized water contained a moderate dose of

antibiotics one week before irradiation. The mice received total

body irradiation using Cs137caesium gamma irradiator with a

total dose of 7.5Gy. After 6 hours, 0.25 mL of PBS was infused

through the tail vein. Allo-BMT group: On the basis of TBI group,

0.25 mL of cell suspension containing C57BL/6 mouse-derived

bone marrowmononuclear cells (5×106 cells) were infused via the

tail vein; GVHD group: on the basis of TBI group, infusion of 0.25

mL of cell suspension containing C57BL/6 mouse-derived bone

marrow mononuclear cells (5×106 cells) and splenic mononuclear

cells (5×106 cells); GVHD+EPC group: On the basis of TBI,

infusion of 0.25 mL of cell suspension containing bone marrow

mononuclear cells (5×106 cells), splenic mononuclear cells (5×106

cells) and Bone marrow-derived EPCs (5×105 cells).
Clinical aGVHD score

One day before irradiation and every three days after

transplantation, weight, appearance and comprehensive

movement of mice were observed. GVHD was evaluated

according to the Cooke scoring system (18). The clinical scoring

criteria for aGVHD include weight loss, posture, mobility, fur

changes and skin integrity. According to the criteria, a score of 0-2

is given daily to each mouse for each criteria and all the individual

scores were summed as the total score of each mouse. The data of

each group were obtained from 6 mice.
GVHD pathology score

After transplantation, the liver, ileum and colon of each group

were obtained and fixed in 4% paraformaldehyde for 48h followed

by dehydration with gradient alcohol, embedding, sectioning, and

H&E staining. Acute GVHD score was analyzed under a

microscope according to GVHD pathological scoring standard

(19, 20). Simply, Ileum: villous blunting, loss of enterocyte brush

border, crypt regeneration, crypt cell apoptosis and crypt

destruction, lamina propria lymphocytic infiltrate; colon:

colonocyte vacuolization and surface colonocyte attenuation,

crypt regeneration, crypt cell apoptosis and crypt destruction,

lamina propria lymphocytic infiltrate. Liver: subendothelial

infiltrate of mononuclear cells in each section. The scoring

system denoted 0: normal; 1.0: focal and rare; 2.0: diffuse and

mild; 3.0: diffuse and moderate; 4.0: diffuse and severe. All of each

score were added to obtain a total score for each specimen. The

data of each group were obtained from 4-6 mice.
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Cell tracking assay

BABL/c male mice of 6-8 weeks old were infused with 5 ×

105 EPCs derived from B6.Cg-Tg (CAG-GFP) mice and 5×106

bone marrow mononuclear cells after lethal dose irradiation. At

week 4 post infusion, the liver and intestine of infused mice

(n=3) were obtained and tested by frozen section and

immunofluorescent staining.
Immunofluorescence staining

At the proposed time point after transplantation, the liver,

ileum, and colon of each group of mice (n=3-5) were obtained,

dehydrated, embedded and sliced into 7-9mm thickness by

RM2126 microtome. The sections were fixed in pure methanol

pre-cooled at -20°C, blocked in 5% BSA-PBS solution, and

incubated with primary antibodies against CD31, CD3,

CD144, MHC-II, or CD31, GFP. Then, it was incubated with

secondary antibodies (rabbit anti-rat Cy3, goat anti-rabbit Cy3,

goat anti-rabbit AF488, goat anti-rat AF488). After that, nucleus

was stained with DAPI. The slide was mounted and observed

under a confocal microscope (Zeiss 880).
Endothelial cell activation

bEnd.3 cells (brain-derived Endothelial cells.3, purchased

from ATCC) (1 × 105 per well in 6-well plate) were injured by

irradiation of gamma irradiator at a dose of 15 Gy followed by

adding LPS (Sigma, 100 ng/ml) into cell culture supernatant.

The control cells were cultured with no irradiation or LPS. After
Frontiers in Immunology 04
24 hours of culture, the cells of two groups were harvested for

immunofluorescence staining.
Statistical processing

Mice or cells were allocated to experiments randomly and

samples were processed in an arbitrary order. GraphPad Prism

8.0 software was used for analyzing all data which were

expressed as mean ± SEM and evaluated by t-test or a one-

way ANOVA. p<0.05 indicates a difference.
Results

EPC infusion in combination with
allogeneic bone marrow transplantation
reduces GVHD severity

We assessed whether EPCs could home to liver and

intestinal tissues by infusion of GFP-expressing EPCs (derived

from B6.Cg-Tg (CAG-GFP) mice). After 4 weeks post-infusion,

GFP+ cells were still found in liver and intestinal sections of mice

and co-localized with the endothelial-specific marker CD144

(Figure 1), suggesting that EPCs could home to liver and

intestine and differentiate to endothelial cells.

The mice in untreated group had smooth and dense hair,

agile and free movement, intact skin, ruddy mucous membranes

without abnormalities in diet, urine or feces. Three days after

irradiation, mice in TBI group showed signs of back curling,

bristles, and unsatisfactory hair after irradiation. After 7 days,

they showed obvious listlessness, reduced food intake, decreased

mobility and died on the 7th day. The mice in Allo-BMT group
FIGURE 1

EPC homing to mouse liver and intestinal vascular endothelium after infusion. BALB/c mice were irradiated for lethal dose and infused with
C57BL/6 mouse-derived bone marrow mononuclear cells (5×106 cells) and EPCs (5×105 cells) derived from B6.Cg-Tg (CAG-GFP) mice, and liver
and intestine of the mice were obtained after 4 weeks post-transplantation for dehydration, embedding, and frozen section followed by
immunofluorescence staining by antibodies against mice CD144 and GFP. Red: CD144, green: GFP, blue: nucleus. n=3. Upper: liver; lower:
intestine.
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showed irradiated changes such as dull skin and hair, but no

obvious symptoms such as arched back, diarrhea, and decreased

mobility. Compared with Allo-BMT group, mice of GVHD

group showed severe clinical symptoms and high mortality.

One week after transplantation, mice in GVHD group

presented scattered fur, lack of energy, reduced food intake,

and gradually developed hair loss, diarrhea, hunched back, and

significantly decreased mobility. 21 days after transplantation,

the clinical score of GVHD group was significantly higher than

that of Allo-BMT group (P<0.01). However, the survival rate of

GVHD+EPC group was increased to 65.5% at 30 days and 32.2%

at 40 days after transplantation (Figures 2A). Compared with

GVHD group, the GVHD+EPC group had a lower clinical score

(P<0.01) (Figures 2B, C). This data showed that EPC infusion

could alleviate GVHD and prolong the survival time of mice.

In addition, liver and intestine were collected on day 21 after

transplantation for pathological analysis. The results indicated that

compared with Allo-BMT, GVHD mice showed significantly more

inflammatory cell infiltration in the central vein and venules of the

liver and the intestinal mucosa, dilation and congestion of central

vein and hepatic sinuses, edema in mucosa and submucosa.

Meanwhile, the pathological scores of liver and intestinal tissues

in GVHD group were significantly higher than those in Allo-BMT

group (p<0.05). After EPC infusion, the infiltration of mononuclear
Frontiers in Immunology 05
cells in the liver and intestinal mucosa of mice was reduced with

more consecutive vascular morphology in the liver and increased

goblet cells in the intestinal tissue, the pathological scores of liver

and intestinal tissues were lower significantly compared with

GVHD group (P<0.05) (Figures 2D, E). Taken together, co-

infusion of EPC could reduce the pathological damages of

GVHD targeted tissues. To explore the underlying mechanism

of EPC on T cell subsets which play key role in the pathogenesis of

GVHD, we analyzed levels of effector T cell subsets in mice on day

21 after transplantation. Compared with GVHD group, proportions

of Th1 and Th17 cells, which are implicated inflammatory T cell

subtypes inducing GVHD, did not change significantly in GVHD

+EPC group. However, proportions of Th2 and Treg cells, which

have been found to play protective role in GVHD, increased

significantly in GVHD+EPC group (Supplemental Figure 1). It

suggested that EPC infusion modulates effector T cell subsets

contributing to reducing aGVHD severity.
Infusion of EPC reduces T cell infiltration
in the tested organs of GVHD

T lymphocyte infiltration was correlated with the

pathological grade of GVHD. Therefore, we test T cell
A

B

D

EC

FIGURE 2

Comparison of survival time, clinical scores and histopathological scores of mice in each group after transplantation. All mice were observed for
The survival curve (A), Weight change (B) and Clinical score of GVHD (C) every three days after transplantation (n=6, **P<0.01). On day 21 after
transplantation, liver, ileum, and colon of mice were obtained for dehydration, embedding, sectioning and H&E staining [×200, (D)]. (E) The
pathological scores of sections were evaluated by a light microscope according GVHD pathological scoring standard 19,20 and analyzed by
GraphPad Prism 8.0 software. (n=4-6, *P<0.05, **P<0.01, ***P<0.001).
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infiltration of liver, ileum and colon in aGVHD mice and the

effect of infusion of EPC combined with bone marrow. On day

21 after transplantation, liver, ileum and colon were tested for

immunofluorescence staining of T cells. As shown in Figure 3,

GVHD group mice showed a large number of CD3+ T cells

infiltrated around the central vein and venules of the liver, in the

submucosa of the ileum and colon with a significant difference

compared with BMT group (P<0.01). However, the number of

CD3+ T cells infiltration in livers, ileum and colon was

significantly reduced in GVHD+EPC group (P <0.05) (Figure 3).
Infusion of EPC ameliorates the damage
of endothelium in the liver

CD31 and VE-cadherin play key roles in intercellular

connection and vascular permeability. Disturbed expression of

them could lead to disrupted junction and increased

permeability of endothelium (14, 21) which contributes to
Frontiers in Immunology 06
adhe s i on and mig r a t i on o f i nfl amma to r y c e l l s .

Immunofluorescence staining showed that CD31 and VE-

cadherin expression were discontinuous and the continuity of

liver blood vessels of the mice were interrupted in GVHD group

compared with BMT group (Figures 4, 5). CD31/VE-cadherin

expression were also reduced at colon mucosa and lamina

propria in GVHD group compared with BMT group

(Supplemental Figure 2, Figure 5). A large number of CD3+ T

cells were seen around the expansive blood vessels in the liver of

GVHD mice on day 21 post transplantation. It suggested that

enhanced immune response in the liver blood vessels of GVHD

mice. Interestingly, infusion of EPC significantly reduced the

number of CD3+ T cells around the liver vessels and the vascular

continuity of the liver blood vessels was significantly improved

after EPC infusion (Figure 4). Additionally, infusion of EPC

reversed partly CD31/VE-cadherin expression on day 21 post

transplantation (Figure 5). It was indicated that EPC can repair

damaged blood vessels in liver and colon and enhance the

stability and integrity of blood vessels.
A B

FIGURE 3

CD3+ T cell infiltration in the liver, ileum or colon tissue. On day 21 after transplantation, livers, ileums, and colons of each group of mice were
collected for dehydration, embedding, and frozen section followed by immunofluorescence staining using antibodies against mice CD3 (A) and
quantitative analysis the means of CD3+ T cells under a view by randomly 5 views of livers, ileums, and colons (B) (n=4-5, *P<0.05, **P<0.01,
***P<0.001). ns, no significance.
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Infusion of EPC attenuates abnormal
activation of damaged endothelium

In order to verify the abnormal activation of endothelial cells

in aGVHD mice, endothelial cells were subjected to irradiation

injury and LPS stimulation and analyzed. The results showed

that the mean fluorescence intensity of endothelial cells

expressing MHC-II molecule in the injuried group was

significantly elevated (P < 0.001) compared with the control

group (Figure 6), indicating that endothelial cells highly

expressed MHC-II molecule with antigen presenting ability

when being injured.

In vivo, there were MHC-II+ cells in the normal liver blood

vessels, which are considered to be Kupffer cells located close to

the liver sinusoids. In addition to the Kupffer cells, there were

also a small number of MHC-II+ cells random distributing in the

liver section of allo-BMT group. However, a larger number of
Frontiers in Immunology 07
MHC-II+ cells were observed in the liver tissues of GVHD

group. Furthermore, the double positive linear signals of CD31

and MHC-II molecule was also elevated (Figure 7). This

indicates that vascular endothelial cells of GVHD group

expressed MHC-II molecule and acquired the ability to

present antigens. Interestingly, MHC-II molecule expression

decreased in the liver of GVHD+EPC group, which were

consistent with the result in vitro. This data shows that

Infusion of EPC could downregulate the MHC-II molecule

expression on endothelium and reduce pathological activation

of endothelial cell.
Discussion

Acute GVHD is one of the main complications after

allogeneic hematopoietic stem cell transplantation, and the

occurrence of aGVHD is the result of a complex and
FIGURE 4

CD3+ T cell infiltration related to endothelium in the liver. On day 21 after transplantation, livers of each group of mice were obtained for
dehydration, embedding, and frozen section followed by immunofluorescence staining using antibodies against mice CD3 and CD31. Red
shows CD31-labeled vascular endothelium, green shows CD3+ T cells, and blue shows nuclei.
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comprehensive effect (22). First, radiotherapy and chemotherapy

pretreatment lead to tissue damage and antigen exposure. After

transplantation, donor T cells recognize the heterotypic antigen

presented by APC cells and become activated and migrate to

target organs followed by damage and dysfunction of multi

organs. The processing of antigens by antigen presenting cells

(APCs) plays an important role in aGVHD. The activation and

proliferation of donor T cells are the leading cause in the

development of aGVHD which results to serious tissue

damage (23). Once aGVHD occurs, first-line treatment, that is

high-dose steroid hormones, is applied to relief symptoms.

However, nearly half of the patients would turn into steroid-

refractory graft-versus-host disease (srGVHD) (24). For this

reason, exploring new prevention and treatment strategies for

GVHD and finding new therapeutic targets have important

clinical and practical significance.

Studies have shown that endothelial injury is a potential

cause of refractory GVHD. In srGVHD, sTM (serum

coagulation factor) levels and the angiopoietin-2 (ANG2)/

vascular endothelial growth factor (VEGF) ratio are increased

significantly, which will cause endothelial cell damage (25, 26).

Our current study found that in aGVHD, T cell infiltration was

increased significantly around the vascular endothelium,

indicating the endothelial damage which is caused by the

infiltration of a large number of T cells. In this process,

vascular endothelial damage is inevitable. Endothelial injury

destroys vascular leakage and permeability and permits
Frontiers in Immunology 08
leukocyte adhesion and migration, which could aggravate

inflammation and lead to edema, vascular occlusion,

thrombosis, and tissue and organ dysfunction (27). EPC is

considered to play an important role in repairing endothelial

damage (28). In our present studies, we had found that infusion

of bone marrow derived EPC could ameliorate endothelial cells

injury in the liver on d5, d10, d15 and d20 post hematopoietic

stem cell transplantation (14). We found furtherly that GFP+

cells survived even till 4 weeks post infusion which suggested

bone marrow derived EPC promised regenerative properties.

After infusion of EPC, T cell infiltration in aGVHD was

significantly reduced. EPC may enhance the stability of blood

vessels by repairing damaged vascular endothelium, reduce

blood vessel permeability and T cell diapedesis (17). EPCs

have also been successfully isolated from tissue resident

vascular progenitors, such as fat tissue, but whether EPC from

different sources or cell culture technologies have similar effect

on aGVHD need extensive studies.

VE-Cadherin is a vascular endothelial cadherin, an

endothelial-specific adhesion protein, which also plays an

important role in the endothelial barrier (29, 30). Our

experiment found that the VE-cadherin of the endothelium in

aGVHD was significantly decreased compared with untreated

group and allo-BMT group. The decrease of VE-cadherin would

cause the destruction of endothelial permeability, which might

be a critical contributing factor to subendothelial migration of a

large number of T cells. However, infusion of EPC can alleviate
FIGURE 5

VE-cadherin/CD31 expression in liver tissue. On day 21 after transplantation, livers of each group of mice were obtained for dehydration,
embedding, and frozen section followed by immunofluorescence staining using antibodies against mice VE-cadherin/CD31. Red: VE-cadherin/
CD31; Blue: Nucleus; Yellow arrow: Absence of VE-cadherin in the vascular endothelium of the liver section.
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the loss of VE-cadherin in the injured endothelium, which is

beneficial to endothelial integrity. Therefore, EPC is a

prospective cytotherapy to repair endothelium in aGVHD.

Studies have found that in cerebral malaria, brain endothelial

cells can present antigens and stimulate T cells to promote the

activation of the effector CD4+ T cell response. Endothelial cells

can act as “semi-professional APC”, can be recognized by TCR,

and promote the activation and proliferation of T cells (31, 32).

Antigen-presenting cells are the key to T cell activation and

proliferation. Our study found that endothelial cells in the tissue

can be activated to express MHC-II molecule in aGVHD, thus

obtain the function of presenting antigen, which may play a role

in the pathogenesis of aGVHD. Studies have shown that there

are several molecules that promote the activation of endothelial

cell in the serum of GVHD patients (33). For example,

interferon-gamma can induce the expression of MHC-II

molecule on ECs, leading to activation and proliferation of T

cells (34), which is consistent with our results. Infusion of EPCs

repairs the damage of endothelium and downregulates the

expression of MHC-II molecule in ECs. MHC-II molecule

presentation in aGVHD are regulated by myeloid cell and

cytokines, it need further exploration about the mechanism of

MHC-II molecule in ECs regulated by EPC in aGVHD. In

addition, we found that infusion of EPC modulates effector T

cell subsets which might contribute to alleviate aGVHD, but the

mechanism remains unclear.
Frontiers in Immunology 09
Our previous studies have shown that the number of peripheral

circulating EPCs in aGVHD increased, indicating that after

endothelial injury, the mobilization of EPCs in the body has

initiated the endothelial repair process (35). After EPC infusion, it

can engraft to the bone marrow and other damaged organs (17).

Bone marrow-derived EPC can stimulate angiogenesis and reduce

tissue ischemia caused by coronary heart disease (CAD) and

peripheral artery disease (PAD) (36, 37). It has been reported that

in ischemic retinopathy, EPCs can interact closely with endothelial

cells through adhesion and tight junctions to integrate the retinal

vascular network (38). Infusion of EPCs can promote

neovascularization through the secretion of pro-angiogenic

cytokines and growth factors such as IL-8 in critical limb

ischemia. And intravascular perfusion of EPCs can improve the

prognosis of patients with acute myocardial infarction (AMI) (39).

EPCs do not only play a vital role in maintaining endothelial

integrity but also can mobilize from bone marrow or exogenously

transplantation to ischemic tissues to promote endothelial repair

and neovasculogenesis (36). It is need to further explore the

mechanism of EPC repairing damaged endothelium in aGVHD.

In conclusion, infusion of bone marrow-derived EPC to

aGVHD mice can mobilize to affected endothelium to reduce T

cell diapedesis and endothelial activation, alleviate the loss of

VE-cadherin in endothelial cell and repair damaged

endothelium which contributes to promote endothelial

stability. Importantly, EPC infusion can reduce aGVHD
A

B

FIGURE 6

Changes in the expression of MHC-II molecule after endothelial cell injury. Endothelial cells were irradiated (15Gy) and stimulated with LPS (100 ng/ml)
for 24 hours followed by immunofluorescence staining with anti- mouse MHC-II molecule and anti- mouse CD31 antibodies. Red: MHC-II molecule,
green: CD31, blue: nucleus. (A) Image J software analyzed the mean fluorescence intensity of MHC-II molecule in cells (n=4, ***P<0.001) (B).
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severity, the clinical and pathological scores, and prolong

survival time of mice. Our study indicates that EPC infusion

combined with bone marrow transplantation might be a

preventive and therapeutic strategy for aGVHD.
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