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The development of coagulation factor VIII (FVIII) inhibitory antibodies is a

serious complication in hemophilia A (HA) patients after FVIII replacement

therapy. Inhibitors render regular prophylaxis ineffective and increase the risk of

morbidity and mortality. Immune tolerance induction (ITI) regimens have

become the only clinically proven therapy for eradicating these inhibitors.

However, this is a lengthy and costly strategy. For HA patients with high titer

inhibitors, bypassing or new hemostatic agents must be used in clinical

prophylaxis due to the ineffective ITI regimens. Since multiple genetic and

environmental factors are involved in the pathogenesis of inhibitor generation,

understanding the mechanisms by which inhibitors develop could help identify

critical targets that can be exploited to prevent or eradicate inhibitors. In this

review, we provide a comprehensive overview of the recent advances related

to mechanistic insights into anti-FVIII antibody development and discuss novel

therapeutic approaches for HA patients with inhibitors.
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Introduction

Hemophilia A (HA) is an X-linked recessive genetic bleeding disorder caused by a

deficiency of coagulation protein factor VIII (FVIII). If patients with severe HA do not

undergo appropriate prophylaxis, they can suffer from spontaneous bleeding episodes

and chronic damage to soft tissues, joints, and muscles. The latest global report from the

World Federation of Hemophilia (WFH; compiled in 2019) indicates that the current
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2022.1019275/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.1019275/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.1019275/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.1019275/full
http://orcid.org/0000-0003-1548-0708
http://orcid.org/0000-0003-1243-3607
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2022.1019275&domain=pdf&date_stamp=2022-12-08
mailto:chenyingyu@yahoo.com
mailto:qshi@versiti.org
https://doi.org/10.3389/fimmu.2022.1019275
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2022.1019275
https://www.frontiersin.org/journals/immunology


Luo et al. 10.3389/fimmu.2022.1019275
prevalence of HA is 23.2 in 100000 live male births (1). The

clinical phenotype and severity of bleeding in HA patients are

generally correlated with residual FVIII levels: mild (5-40%

FVIII), moderate (1-5%), or severe (< 1%) (2).

Current treatment approaches for HA involve intravenous

infusion of clotting FVIII, which is the mainstay for hemophilia

therapy. However, up to 30% of patients with severe HA develop

inhibitors, rendering treatment with regular replacement factor

concentrates ineffective and increasing morbidity and mortality

rates (3). Several genetic and non-genetic factors could be

involved in forming inhibitors, and there is currently no clear

biomarker to predict whether a patient will produce FVIII

inhibitors (4). In 1977, immune tolerance induction (ITI)

regimens were first proposed for the treatment of HA patients

with inhibitors. However, this regimen requires the frequent

administration of relatively large doses of FVIII to downregulate

the established immune response and induce immune tolerance

to FVIII (5). Since then, this strategy has been modified,

including variations in the FVIII dosage and product type, and

combinations of additional immunosuppressive agents have

been developed. The three most famous protocols are the

Bonn (high-dose), Van Creveld (low-dose), and Malmo

(refractory patients) (6). Of note, the ITI protocol is the only

widely accepted method for establishing FVIII immunologic

tolerance. Current consensus guidelines recommend that ITI

should be first attempted in patients with FVIII inhibitors (7–9).

However, ITI administration is generally provided via frequent

central venous catheter infusion, which could increase the risks

of thrombosis and infection (10). Moreover, approximately 30%

of HA patients cannot achieve sustained immune tolerance to

FVIII (11, 12). It remains unclear why some patients never

trigger an anti-FVIII immune response, while others do. As

such, the prevention and/or eradication of inhibitors to FVIII is

important for managing HA.

The purpose of this review is to highlight the current

concepts regarding the underlying pathogenesis of FVIII

inhibitor development and the therapeutic advances in HA

patients with FVIII immunity.
Pathophysiology of FVIII
inhibitor development

Characteristics of FVIII inhibitors

FVIII inhibitors are polyclonal IgG antibodies with high

affinity, among which IgG4 is typically a major component (13).

Most inhibitors neutralize the procoagulant activity of FVIII

through steric hindrance, and the most common target epitopes

are the A2, A3 and C2 domains of FVIII, which prevent

interaction with factor IIa, factor IXa, factor X, von

Willebrand factor (VWF), and phospholipids (14). Lacroix-

Desmazes et al. (15) found that an additional mechanism of
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anti-FVIII antibodies is hydrolysis. In 50% of inhibitor-positive

patients, anti-FVIII antibodies have enzymatic activity and affect

the procoagulant function of FVIII through catalytic hydrolysis

of multiple FVIII cleavage sites. This type of anti-FVIII antibody

can be clinically detected by the Bethesda or modified Nijmegen

method. The titer is reported in the Bethesda units/ml (BU/ml).

A high titer inhibitor is defined as an inhibitor level ≥ 5 BU/ml,

and a low titer inhibitor is defined as a level < 5 BU/ml (3). Low-

titer inhibitors comprise 25% to 50% of observed inhibitors (16),

and standard alternative therapies are available for these patients

(3). However, by-passing agents are required to treat bleeding

episodes in patients with high-titer inhibitors (3, 16).

On the other hand, a few FVIII isoantibodies do not directly

inhibit the coagulation activity of FVIII but bind to FVIII

antigen epitopes to form circulating immune complexes that

are cleared by the reticuloendothelial system, accelerating the

metabolic processing of FVIII, shortening the half-life of the

internal and external sources of FVIII, and affecting the efficacy

of clinical treatment. In this regard, a competition-based

enzyme-linked immunosorbent assay (ELISA) could help to

differentiate neutralizing FVIII inhibitors from non-

neutralizing FVIII-specific antibodies (NNAs) (17). However,

as the class of NNAs has been detected in both healthy

individuals and PUPs, the true clinical significance of NNAs

remains unknown (18, 19). Cannavo et al. reported that the

presence of NNAs substantially increased the risk of inhibitor

development and that detection of NNAs could be an early

predictor of inhibitor development (20). These reports provide

further rationale for monitoring NNAs in HA patients. Of note,

IgG4 has been identified as the most abundant IgG subclass in

HA patients with FVIII inhibitors, though FVIII-specific IgG4 is

absent in patients without FVIII inhibitors and in healthy

subjects (13). The results from the Hemophilia Inhibitor

Previously Untreated Patients (PUPs) Study (HIPS)

demonstrated that the development of FVIII inhibitors within

the first 50 exposure days (EDs) is associated with distinct

antibody signatures (21). Patients with persistent FVIII

inhibitors develop unique signatures of FVIII-binding IgG1,

followed by IgG3 and IgG4. Low-affinity IgG1 maturing into

high-affinity IgG1, IgG3, and IgG4 is correlated with the

development of neutralizing FVIII-specific antibodies. High-

affinity IgG4 can only be detected after or at the same time as

the first FVIII inhibitor detection (21). The distinct antibody

signatures could serve as candidates for early biomarkers of

FVIII inhibitor development.
Risk factors for inhibitor development in
severe HA

Inhibitor development is a complex and multifaceted

process involving interactions between genetic (unchangeable)

and nongenetic (changeable) factors. The former category
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includes F8 gene mutations, single nucleotide polymorphisms at

the HLA locus, mutations in the immunomodulatory gene, race

and family history; the latter category includes the age of first

exposure, treatment intensity, type of FVIII preparation,

presence of infection and history of surgery (22). Genetic

factors are the basis and a prerequisite for the production of

inhibitors, while nongenetic factors are typically the triggering

factors. Both genetic and nongenetic factors mediate the

development of inhibitors and determine their severity

and duration.

Severe HA patients with large deletions, nonsense

mutations, or intron 22 inversions in the F8 gene have 7-10

times as many inhibitors as those with a small deletion/insertion,

missense mutation, or splicing-induced mutation of this gene

(23, 24). In a cohort of 203 children with severe HA with

inhibitors, 196 cases (96.6%) were identified to have F8

mutations. Of those patients, major mutation types include

intron 22 inversions, nonsense mutations, and large deletions

or insertions focusing on high- and medium-risk F8 gene

mutation types. The authors found that large deletions or

insertions encompassing multiple exons and nonsense

mutations residing in the light chain contributed to the

progression to a high-titer inhibitor and higher peak inhibitor

titer in people with severe HA (25). As such, it is highly

recommended that gene mutation detection should be

conducted for all newly diagnosed HA patients, particularly

since it is important for guiding subsequent clinical treatments.

A recent study further demonstrated a significant association

of variants in the human leukocyte antigen (HLA) region (26).

In particular, low-frequency variants in GRID2IP are closely

related to high-titer inhibitors. Another report highlighted that

HLA class II molecules play an essential role in inhibitor

formation. This report demonstrated that the high-TNF-a/
high-IL-10 genotype is associated with an increased risk of

immune response to FVIII in severe HA (27). Although

certain cytokine genetic polymorphisms have been implicated

in inhibitor development, these results are inconsistent between

populations with various genetic backgrounds. To further

understand the roles of innate immune cells and mechanisms

of inhibitor development versus immune tolerance, achieved

with or without ITI therapy, researchers performed temporal

transcriptomics profiling for HA subjects with and without a

current or historic inhibitor using RNA-Seq. HA subjects with a

current inhibitor showed differential expression of 56 genes and

a clustering analysis identified three major temporal profiles.

Interestingly, Gene Ontology (GO) enrichments featured innate

immune modulators, including NLRP3, TLR8, IL32, CLEC10A,

and COLEC12. NLRP3 and TLR8 are associated with enhanced

secretion of the pro-inflammatory cytokines IL-1b and TNFa,
while IL32 is associated with both inflammatory and regulatory

immune processes. The inflammatory status of HA patients

suffering from an ongoing inhibitor includes up-regulated
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innate immune modulators, which could negatively affect the

responses and outcomes of ITI therapy (28).

Nongenetic risk factors for the occurrence of inhibitory

antibodies are largely related to FVIII treatment. Lorenzo and

colleagues reported that receiving initial treatments at a young

age increase the incidence of FVIII inhibitor development in

patients with severe HA (29). The other report confirmed that

the risk of high inhibitor formation significantly increases in HA

children by early exposure to recombinant FVIII (rFVIII)

concentrates (30). In this report, the immunogenicity of

plasma-derived FVIII (pdFVIII) is speculated to be weaker

than that of rFVIII due to VWF protection (30). Multiple

studies support that VWF protects FVIII from protease

degradation and attenuates FVIII memory immune responses

(31, 32). Indeed, the latest evidence from a global multicenter

randomized controlled clinical trial (33, 34) showed that for

PUPs, the incidence of inhibitors among those treated with

rFVIII preparations was markedly higher than in those treated

with pdFVIII preparations. This study also stressed that rFVIII

should be avoided in the early stages of treatment. To reduce the

incidence of inhibitors, the differences in the immunogenicity of

the two FVIII preparations require further investigation.

The retrospective CANAL study investigated 366 PUPs with

severe HA from 14 European and Canadian hemophilia

treatment centers (35). The results demonstrated that the risk

of inhibitor development could be explained by early, intensive

treatment with FVIII. Intensive FVIII treatment caused by major

bleeds or surgeries could become an independent risk factor for

inhibitor development. Additionally, early, regular prophylaxis

could protect patients with hemophilia against the development

of inhibitors (35). Moreover, a large, international cohort study

(RODIN study) further demonstrated that high-dose intensive

FVIII treatments increase the risk of inhibitor development in

PUPs with severe HA (36). The risk of inhibitor development is

highest during the first 10 to 20 EDs and decreases to less than

1% after 50 EDs. Prophylactic FVIII treatment reduces inhibitor

risk, especially in patients with low-risk F8 mutations (36).

However, identifying those patients who could benefit from

prophylaxis is challenging and should be addressed in

additional studies.
Risk factors associated with inhibitor
development in nonsevere HA

In contrast to severe HA, patients with moderate/mild HA

have a life-long risk of inhibitor development. Both genetic and

environmental factors influence the risk of inhibitor

development in patients with nonsevere HA (37–39). The type

of F8 mutations is a key risk factor for the occurrence of

inhibitors, in patients with severe HA or nonsevere HA (40).

In the INSIGHT study, the authors observed that nonsevere HA
frontiersin.org
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patients with splice-site mutations had a similar risk as patients

with intron 22 inversions. This could be due to the effect of

conserved nucleotide positions, which had a higher risk of

inhibitor development than those in nonconserved nucleotide

positions. The mutations associated with inhibitors in the

INSIGHT cohort were all located within regions encoded for

the light chain and the A2 domain of FVIII (41). This study

further showed that the risk of inhibitor development was 6.7%

at 50 ED and increased to 13.3% at 100 ED (41), which differs

from the cases of severe HA mentioned above (36). As such,

inhibitors should be routinely screened during the time of

greatest risk for inhibitor development in patients after FVIII

replacement therapy. In pediatric patients, inhibitor screening

should be performed every 5 EDs for the first 20 EDs after the

first treatment with clotting factor products (36, 40, 42, 43).

Inhibitors usually occur at an earlier age in nonsevere HA.

Recently, a total of 6624 persons with nonsevere HA were

investigated for an average of 8.5 years in the United States

(38). The results demonstrated that the prevalence of inhibitors

was 2.6% (n = 171), occurring at a median age of 13 years.

However, the occurrence of inhibitors at an early age was not

associated with increased mortality. Previous studies revealed

that older age is another risk factor for inhibitor development

(40, 44). Age-related immune dysregulation and late loss of

tolerance could be particularly relevant for the nonsevere

hemophilia cohort, as exposure to therapeutic FVIII

concentrates is distributed throughout a lifetime and often

skewed toward later decades for elective operative

interventions. Moreover, both high-dose FVIII treatment and

surgical interventions could increase the risk of inhibitor

development in nonsevere HA patients (39, 45). In the

INSIGHT study, the all-cause mortality rate in nonsevere HA

patients with inhibitors was more than five times higher

compared to those without inhibitors (46). Inhibitor-related

mortality primarily increased in older patients with high

inhibitor titers. These findings indicate that nonsevere

hemophilia is not mild and highlight the importance of closely

following-up with these patients.

Inhibitor occurrence connected with the surrounding

microenvironment has recently raised concern. Researchers

have found that inhibitors are often produced along with the

surrounding danger signals. The “danger theory”, proposed by

Polly Matzinger in 1994 (47–49), postulated that the human

immune response is triggered by “danger signals” or “alarm

signals”. Patients are often exposed to various endogenous or

exogenous danger signals, such as those resulting from surgery,

trauma, and infection, during treatment with FVIII. These

danger signals, termed danger-associated molecular patterns

(DAMPs), could become the major drivers to elicit an anti-

FVIII immune response (48, 50–54). A clinical trial reported by

Kurnik et al. (55) demonstrated that the production of FVIII

inhibitors decreases during the administration of the first dose of

FVIII by avoiding proinflammatory stimuli (bleeding, infection,
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surgery, vaccination, etc.). However, it remains difficult to

predict the potential risks associated with individual patients’

inhibitor development. The available evidence is scant and

inconclusive, and distinguishing the contribution of peak

treatment from danger signals remains challenging. However,

by clearly identifying danger signals, we could further explore

the precise mechanisms underlying the risk effect, identify

different biomarkers, and provide new targets to effectively

prevent inhibitor development. As such, in the future clinical

management of HA patients, the impacts of danger signals

should be monitored in various risk scenarios, and therapeutic

strategies can be improved by avoiding unnecessary risks.
Immunological pathophysiology of
inhibitor development

Previous studies confirmed that FVIII inhibitor development

is CD4+ T cell-dependent in both murine models and patients

(56–60). T follicular helper cells (TFHs), a novel subset of CD4+

T cells, work with cognate follicular B cells to trigger a germinal

center (GC) reaction that is ultimately responsible for the

production of anti-FVIII antibodies in HA mice (58). In a

multicenter study, significant reductions in levels or even

complete elimination of FVIII inhibitors were observed in HA

patients with high titers of inhibitors and concomitant HIV

infection (61). Mechanistically, it is the antigen-presenting cells

(APCs) that present FVIII peptides on major histocompatibility

complex class II (MHC-II) to T cells, triggering FVIII immune

responses. Indeed, several cell types, such as dendritic cells (DCs),

macrophages, B lymphocytes and endothelial cells, could act as

APCs that mediate FVIII-specific immune response (59, 62).

Low-density lipoprotein receptor-related protein (LRP, CD91),

the mannose receptor (MR), and membrane-bound heparan

sulfate proteoglycans (HSPGs) play important roles in FVIII

endocytosis by binding to the A2, A3 and C1 domains of FVIII

(63–65), anti-FVIII C1 domain antibodies can prevent the

endocytosis of FVIII by APCs (66). These in vitro and in vivo

mouse model studies facilitate the discovery of the key factors

involved in inhibitor development.

An in vitro study demonstrated that VWF reduced the

endocytosis of FVIII by human DCs through steric hindrance

effects (67). In murine HA models, researchers found that

phosphatidylserine (PS) induced immune tolerance and

reduced the production of inhibitors by affecting the

maturation of DCs, inducing the generation of Tregs, and

inhibiting the generation of memory B cells (68–70). More

recently, studies have demonstrated that the binding of FVIII

to lysophosphatidylserine (Lyso-PS) to form the Lyso-PS-rFVIII

Fc complex significantly reduced inhibitor development in HA

mice after either intravenous or oral administration of Lyso-PS

(71, 72). In addition, researchers found that site N2118,

containing high-mannose glycans, have a significant impact on
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FVIII immunogenicity in the murine HA model (73). Results

from these studies can help identify valuable targets to reduce

FVIII immunogenicity.

The spleen is the predominant organ involved in initiating

the immune response. In a murine model study, researchers

confirmed that APCs in the marginal zone (MZ) of the spleen

play critical roles in the immune response to FVIII (74). Zerra

and coworkers found that transfused FVIII was located in the

marginal sinus of the spleen and colocalized with the B cells in

the MZ of the HA mouse spleen, and the development of FVIII

inhibitors could be completely blocked by specific removal of the

MZ B cells (75). Moreover, the activation of APC costimulatory

signals (CD40, CD40L, CD80/CD86, and CD28) is necessary for

the complete activation of T cells. Indeed, blocking the CD40/

CD40L interaction has been found to induce long-term immune

tolerance in HA mice. Unfortunately, treatment with anti-CD40

can also activate platelets and increase the risk of thrombosis (76).

Activated T cells can differentiate into effector T cells (Teffs)

and regulatory T cells (Tregs). Teffs are responsible for initiating

and maintaining an effective anti-FVIII immune response by

activating B cells to differentiate into mature plasma cells

through a GC process. In contrast, Tregs could act as potent

suppressors of the Teffs to inhibit antibody development. There

is growing evidence that the generation of Tregs via either

human samples or animal models could lead to FVIII

tolerance, suggesting that the balance between Teffs and Tregs

is another key determinant involved in the pathophysiology of

FVIII inhibitor development (57, 77–80). A recent study showed

that immune tolerance against FVIII under non-hemophilic

conditions was maintained by programmed death (PD) ligand

1 (PD-L1)-expressing Treg (81). In addition, B cell-activating

factor (BAFF) cytokine family is a key regulator of B cell

differentiation in normal homeostasis and immune disorders.

A recent study demonstrated that BAFF levels are elevated in

pediatric HA inhibitor patients and in those who failed to

achieve immune tolerance with anti-CD20-mediated B cell

depletion. Using a mouse model, the authors found that BAFF

modulated tolerance induction and inhibitor eradication by

downregulating plasma cells, demonstrating the important role

of BAFF in the modulation of anti-FVIII response (82).

Moreover, memory B and/or long-lived plasma cells

(LLPCs) play a key role in maintaining established anti-FVIII

immune responses. Importantly, FVIII-specific memory B cells

are present in HA patients with inhibitors, while these cells are

absent in healthy controls or patients without inhibitors (83).

Following re-exposure to FVIII, the unique memory B cells can

rapidly differentiate into plasma cells that produce high levels of

anti-FVIII antibodies (84). Additionally, there is evidence that

memory B cells contribute to replenishing the pool of LLPCs in

the bone marrow (BM) (85). GC reaction memory B cells can

develop into plasma blasts that migrate to the BM, and mature

into LLPCs that maintain serum levels of antibodies for

prolonged periods. LLPCs persistently producing anti-FVIII
Frontiers in Immunology 05
antibodies in BM are unlikely to be affected by conventional

high dosages of FVIII infusions (84, 86). Therefore, for long-

term induction FVIII tolerance, it is highly necessary to develop

novel strategies targeting FVIII-specific memory B cells

and LLPCs.
Novel strategies for treating HA
with inhibitors

Conventional hemostatic
bypassing agents

The development of FVIII inhibitors in HA patients remains

challenging in clinical management. Currently, the mainstay of

treating HA inhibitor patients requires controlling bleeding

symptoms and eliminating alloantibodies against FVIII.

Unfortunately, ITI protocols are not always effective in

patients with high levels of inhibitors (87–89), making

alternative strategies clinically necessary. In recent years,

promising therapeutic strategies have been identified,

including treatment with immunomodulatory drugs or

molecules, oral or transplacental delivery of FVIII, and cell or

gene therapy (90–92).

For patients who appear to be ineffective for standard

replacement therapies and have confirmed inhibitors, a

“bypass approach” should be adopted immediately to stop

bleeding regardless if the patients undergo ITI or not (9); this

approach includes treatment with recombinant activated factor

VII (rFVIIa) and activated prothrombin complex concentrate

(aPCC). Either rFVIIa or aPCC could be used to treat bleeding

episodes (BEs) in both HA and hemophilia B (HB) patients with

inhibitors (9). However, a major concern remains about the risks

of thrombotic microangiopathy in aPCC-treated patients

receiving non-factor prophylactic agents such as emicizumab

(93). In addition, bypassing agents are expensive and provide

incomplete hemostatic correction in some patients (94). As such,

new strategies for the control and prevention of BEs are highly

anticipated. Various new approaches based on non-factor

replacement therapies have been developed and entered

clinical trials, which include facilitating the coagulation

pathway (e.g. emicizumab) and blocking the anticoagulant

pathway (e.g. concizumab, fitusiran).
Emicizumab: Bispecific monoclonal
antibody

The new hemostatic agent emicizumab is a humanized

bispecific monoclonal antibody that binds to and bridges

activated factor IX (FIXa) and factor X to simulate the

physiological function of FVIII (95). It has been licensed for

bleeding prophylaxis in HA patients with or without inhibitors,
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and is the first non-factor replacement therapy for HA (93).

Subjects enrolled in early clinical trials tolerated once-weekly

subcutaneous injections of emicizumab at various doses (0.3, 1.0,

and 3.0 mg/kg); no bleeding occurred in 73% of subjects, and no

neutralizing antibodies specific for emicizumab were observed

during 12 weeks of treatment in the early phase of clinical trial

(96, 97).

Data from the HAVEN 1 phase 3 trial showed that among

the 109 HA patients aged 12 years and older with high titers of

inhibitors, the bleeding rate in the trial group treated with

emicizumab was 87% lower than in the untreated group (95,

98). Emicizumab significantly improved the quality of life of

patients and had an obvious effect in preventing bleeding. The

HAVEN 2 study enrolled 88 children with inhibitors with a

median age of 7 years (range, 1-15 years) (99). In this trial,

participants who received an emicizumab injection with 4 once-

weekly loading doses of 3 mg/kg followed by a maintenance

regimen of once weekly (1.5 mg/kg, QW) showed a low

annualized rate of treated bleeding event (ABR), with 77% of

participants experiencing no treated bleeding events. Notably,

efficacy was maintained among those who received emicizumab

every 2 weeks (3 mg/kg, Q2W) or every 4 weeks (6 mg/kg,

Q4W). This large prospective study highlighted the special role

of emicizumab as a highly effective novel medication for

pediatric HA patients with anti-FVIII inhibitors.

The efficacy, safety, and pharmaceutics of these treatments

have been further studied in the phase 3 HAVEN 3-5 studies,

which included adults/adolescents ≥ 12 years of age with and

without inhibitors (100–102). These trials demonstrated that

emicizumab prophylaxis achieved remarkable efficacy for

bleeding control and was well tolerated in HA patients,

regardless of FVIII inhibitor status. Of note, the long-term

efficacy and safety of emicizumab for up to 5.8 years were

reported in patients with severe HA (103). Nevertheless,

emicizumab provides more convenient and feasible

administration way (maintenance dose of once every 1, 2 or 4

weeks) than conventional FVIII replacement therapy. No anti-

FVIII antibodies developed among those participants during

administered emicizumab, and neither serious nor thrombotic

adverse events were reported in either of these clinical trials

(104). However, as thrombosis and thrombotic microangiopathy

occurred in some participants who had received aPCC in

HAVEN 1 (95), WFH recommends the use of rFVIIa instead

of aPCC for treating breakthrough bleeding during emicizumab

prophylaxis (9). Moreover, 0.33% (25/7500) of subjects

produced an immune response to emicizumab (93). In the

HAVEN trials, 2 out of 88 pediatric participants in HAVEN 2

(99, 105) and 1 out of 64 evaluable participants in HAVEN 5

(102) developed anti-drug antibodies (ADAs) with neutralizing

potential. Although this occurs infrequently, it is necessary to

monitor the neutralizing ADAs to implement immunological

surveillance in HA patients with emicizumab regimens.
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The final analysis of the STASEY phase III clinical trial

enrolled a total of 193 HA patients age ≥ 12 years with inhibitors

who received emicizumab once weekly for up two years (106).

The results revealed that emicizumab was well-tolerated in the

cohort of participants. The most common AEs were arthralgria

(17.1%), naspharyngitis (15.5%), and headache (15%).

Emicizumab-related AEs were observed in 18.1% of

participants, with injection site reactions being the most

frequent (9.8%). No emicizumab-related thrombotic

microangiopathies (TMAs) or thromboembolic events (TEs)

were reported in five participants who also received aPCC.

ADAs were found in 5.2% of participants, 2.6% of whom were

classified as having ADAs that were neutralizing in vitro. Most

importantly, emicizumab continued to present effective bleeding

control, with 82.6% of participants achieving no bleeding

episodes that required treatment. The final analysis of the

phase IIIb STASEY study further confirmed the favorable

safety profile of emicizumab, which is consistent with the

phase III HAVEN clinical program.

The first case of an emicizumab ADA was reported in

clinical trials (107). In this report, a 6-year-old boy with severe

HA with inhibitors received standard loading doses of

emicizumab and was then administered a 1.5 mg/kg/week

regimen. However, 3 months into treatment the patient

presented with a traumatic bleed due to the loss of

emicizumab effect with a proven ADA. Emicizumab was

discontinued and the patient resumed daily prophylaxis with

rFVIIa. Therefore, it is important for clinicians to be aware that

meaningful ADAs can occur, and to refer the patient to a special

coagulation laboratory for ADAs testing if clinical suspicion

arises. Moreover, real-world data from 52 pediatric patients with

severe HA revealed that emicizumab was safe and well tolerated

and that minor AEs, including headaches, abdominal pain and

nausea, and injection site reactions, occurred in about 7.7% of

patients. Four patients experienced major AEs, including severe

headaches, major bleeding events, development of ADAs, and

recurrence of inhibitors. Emicizumab prophylaxis was

discontinued in three patients (5.7% of the cohort) due to AEs.

No AEs were reported in four PUPs of the cohort (108).

Although emicizumab demonstrated significant reductions

in ABR compared with standard prophylaxis, however,

bypassing agents, such as aPCC, should be used with caution.

As mentioned above, 3 patients developed TMA in HAVEN 1

and 2 additional TEs were reported among 401 participants in

HAVEN 1-4 (109). For the 3 patients who developed TMA, one

proposed explanation is that these patients concomitantly

received aPCC, which contains the targets of emicizumab,

FIX/IXa and FX/Xa. The excess substrate availability could

have resulted in uncontrolled thrombin generation and

subsequent thrombotic complications.

Currently, there are other FVIII mimetics under

development. Mim8 is a next-generation bispecific to FIXa
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and FX, which shows enhanced thrombin generation in vivo

compared with a sequence-identical analog of emicizumab and

an extended half-life of 14 days in cynomolgus monkeys (110).

Subcutaneous administration of Mim8 up to 3 mg/kg/week for

26 weeks resulted in relevant pharmacodynamic effects, with no

signs of thrombi or excessive coagulation activation (111). The

FRONTIER 1 study is an ongoing phase 1/2 study of Mim8 in

the HA participants with or without inhibitors ≥12 years of age.

Another FVIII mimetic bispecific antibody, BS-027125, is

currently in preclinical evaluation with no human data

yet available.
Targeting natural anticoagulants

In recent years, novel non-factor replacement therapies

based on targeting of natural anticoagulants have been

acknowledged; and the efficacy and safety in HA patients with

inhibitors are currently ongoing in clinical trials. These new

strategies consist of targeting negative clotting regulators such as

tissue factor pathway inhibitor (TFPI), antithrombin (AT), or

activated protein C (aPC).

TFPI presents two splicing forms TFPIa and TFPIb. TFPIa
is a soluble form of TFPI that is responsible for inhibiting

prothrombin activity in the extrinsic coagulation system. It

inhibits FVIIa via its K1 domain, FXa via its K2 domain, and

protein S via its K3 domain (112). Current research focuses on

monoclonal antibodies (mAbs) specific to the K2 domain.

Studies on the evaluation of these novel molecules, including

befovacimab, concizumab, and marstacimab, have been ongoing

in participants with HA or HB, regardless of the presence of

inhibitors. Of these, befovacimab also targets the K1 domain of

the TFPI (113). While favorable results were obtained from the

preclinical in vivo studies and phase 1 clinical trials, the phase 2

study was terminated early due to three befovacimab-related

thrombotic serious adverse events (SAEs) (114). Therefore, the

therapeutic window of anti-TFPI treatment must be

further investigated.

Concizumab is an IgG4 humanized mAb selectively

targeting the K2 domain of the TFPI. Results from phase 1-3

clinical trials in healthy volunteers and HA patients showed a

dose-dependent increase in D-dimer and thrombin fragments

after concizumab treatment, accompanied by significant

hemostatic efficacy and tolerability. These results indicate the

adequate safety and half-life characteristics of concizumab,

whether administered subcutaneously or intravenously (115–

117). However, in phase 3 of the clinical trial, three patients

experienced five nonfatal thrombotic SAEs (118, 119). These

AEs were acute myocardial infarction in one patient with HA, a

renal infarction in one HB patient with inhibitors, and three TEs

(deep venous thrombosis, pulmonary embolism, and superficial

thrombosis of the vein) in one patient with HA. This trial had to

be temporarily suspended and resumed after modifying the
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protocols for treating breakthrough bleeding. Shapiro and

colleagues presented the results of concizumab prophylaxis

from the extension parts of phase 2 explorer 4 (HA or HB

with inhibitors) and explorer 5 (severe HA without inhibitors)

trials (119). The long-term efficacy of concizumab was

maintained during the trial, and estimated ABRs at the last

concizumab dose after more than 76 weeks of treatment were

comparable to those observed in the main parts (≥ 24 weeks).

Although the authors found that around 25% of patients

developed ADAs, the ADAs levels were low and transient,

with no observed SAEs in most cases. Phase 3 trials are

currently ongoing, and will provide further insight into the

efficacy and safety of concizumab to treat hemophilia in the

future. Moreover, other humanized mAbs, such as marstacimab,

which specifically binds to the K1 domain of the TFPI, have

shown the feasibility and efficacy of targeting TFPI therapies in

hemophilia. A phase 1b/2 clinical study demonstrated clinically

meaningful reductions in ABRs and treatment-related changes

for all pharmacodynamics biomarkers across all marstacimab

dose levels in participants with hemophilia (120). Together,

therapeutic advances in hemophilia with targeting TFPI

treatments are promising. Currently, two of the three novel

anti-TFPI mAbs have progressed to phase 3 clinical trials.

However, the potential thrombotic issue remains a key

consideration and should be thoroughly evaluated in ongoing

clinical trials.

AT is a member of a small protein family produced in liver

cells and is an effective thrombin inhibitor. Fitusiran is an

antithrombin RNA interference molecule that can silence AT

mRNA expression in liver cells, increase the production of

thrombin, and reduce bleeding tendency (121, 122). Fitusiran-

induced reduction of AT levels can rebalance hemostasis in

patients with HA or HB, with or without inhibitors. The phase 1

dose-escalation study enrolled 25 patients with moderate to

severe HA or HB (122). The results demonstrated a fitusiran

dose‐dependent mean maximum AT reduction of 70%–89%

from baseline, with a reduction of > 75% enabling a similar

degree of thrombin generation compared with healthy

volunteers. One participant reported severe chest pain, and

although thrombosis was ruled out, this event led to treatment

discontinuation. No ADAs developed in the enrolled four

healthy volunteers or the participants with hemophilia during

the study course (122, 123). The results from the phase 2 and

phase 3 clinical trials showed that the thrombin peak height in

the enrolled participants was related to the degree of AT

reduction when fistusiran was subcutaneously administered

each month. AT reduction by ≥ 75% from baseline led to a

significant improvement in thrombin generation and decreased

bleeding frequencies (124, 125). The SAE was a fatal cerebral

sinus thrombosis in one patient during the phase 2 trial, which

occurred after repeated infusions of high FVIII concentrate

doses over more than 24 hours. Three additional nonfatal

vascular thrombotic events occurred in late phase 3 trials
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despite adherence to breakthrough bleed management

guidelines. These were attributed to AT levels decreasing

below 10% (126, 127). As a result, studies targeting higher AT

levels have been resumed, seeking to maintain a favorable

benefit-risk balance for patients. Overall, fitusiran could offer

either HA or HB patients with inhibitor effective prophylaxis

delivered through monthly, low volume, fixed-dose and

subcutaneous administration.

In general, the aim of all therapeutic strategies in hemophilia

is to increase the amount of thrombin generation at sites of

vascular damage, which can be generally achieved by replacing

missed clotting factors or by increasing the concentration of

either the enzymes or substrates that result in the production of

thrombin. Aymonnier and colleagues reported a novel approach

consisting of targeting a natural and potent thrombin inhibitor,

named protease nexin-1 (PN-1) (128). The authors showed that

a PN-1-neutralizing antibody could significantly shorten the

thrombin burst in response to tissue factor in platelet-rich

plasma (PRP) from mild or moderate hemophilia patients. In

contrast, neutralized PN-1 did not improve thrombin generation

in PRP from severe hemophilia patients. However, with

collagen-induced platelet activation, PN-1 deficiency in HA

mice or PN-1 neutralization in patients with severe HA

resulted in significantly improved thrombin generation in

PRP. Recent experimental and clinical studies revealed that

serine protease inhibitors (SERPINs), e.g. a1-antitrypsin and

SerpinPC, could decrease bleeding in hemophilia via selective

inhibition of aPC (129–132). Nevertheless, specific inhibition of

the aPC anticoagulant function by the novel inhibitory mAb has

been designed and developed in recent years (133–135). Indeed,

the administration of mAb selectively inhibits aPC ’s

anticoagulant activity, but does not compromise its

cytoprotective function, and offers a better therapeutic

potential alternative for HA.

Novel strategies for eradicating
inhibitors or immune
tolerance induction

AAV-liver gene therapy

In recent years, hepatic in vivo gene therapy via adeno-

associated virus (AAV) vectors has demonstrated promising

results in clinical trials for hemophilia patients in the first year

after treatment, but FVIII levels steadily decline afterward.

Compared to those in HB, clinical trials in HA have been

slower due to the large size of F8 cDNA (7 kb). Encouragingly,

after removing the sequence encoding the nonfunctional domain

(B-domain deletion, BDD), the truncation of F8 can be

incorporated into AAV vectors (136). The first successful

application of this approach was found in 6 of 7 severe HA

participants who received a single high-dose cohort of an AAV5
Frontiers in Immunology 08
vector encoding a BDD F8 (AAV5-hFVIII-SQ) (137). The FVIII

activity (FVIII:C) level of these participants remained stable at or

above the physiologic range 1 year after receiving AAV5-hFVIII-

SQ liver-directed gene therapy. The annualized rates of FVIII

concentrate use and treated bleeding significantly decreased in

the participants (138). However, multiyear follow-up data from

the participants receiving AAV5-hF8-SQ gene therapy showed

that FVIII expression steadily declined (139). This raises

concerns about the durability and safety of AAV-based liver-

specific gene therapy. Currently, several AAV-based gene

transfer strategies have been modified and clinical trials have

been initiated, which could offer hope to improve the durability

and safety of this therapy for patients with hemophilia

(140–143).

To date, only adult men with endogenous factor levels ≤ 2%

and without the advanced liver disease have received gene

therapy. It remains unknown whether HA patients with

inhibitors respond to AAV liver-directed gene therapy

approach. Evidence from murine and canine models has

demonstrated that liver-directed F8 gene therapy could induce

tolerance towards a primed immune system with pre-existing

inhibitors (144–147). In HA dogs with pre-existing inhibitors

after canine(c) FVIII AAV-based liver-directed gene therapy,

there is an early increase in CD4+ CD25+ FOXP3+ Tregs within

the first few days (145, 146). This is associated with a decline in

anti-cFVIII antibodies but was not observed in HA dogs without

inhibitors receiving similar therapy. Furthermore, immune

tolerance was established in treated dogs even after repeated

challenges with cFVIII proteins. In mouse model studies, AAV-

F8 gene therapy can not only correct FVIII levels, but also results

in low- to undetectable inhibitor titers following subsequent

challenges with rFVIII in HA mice on a BALB/c background

(147, 148). The ability to induce FVIII tolerance in these mice

occurred in both the presence and absence of transient

immunosuppression mediated by B cell depletion with anti-

CD20. In contrast, HA mice on a mixed BL/6-129/sv

background following AAV-F8 gene transfer only resulted in

modest correction of the clotting time below that of untreated

mice regardless of anti-CD20 treatment. These mice lost bleeding

phenotype correction along with the development of inhibitors

when challenged with supplementary rFVIII. However, transient

B cell depletion with anti-CD20 at the time of AAV-F8 gene

transfer resulted in subsequent hyporesponsiveness to FVIII with

significantly lower inhibitors (147). Thus, these results highlight

the potential role of genetics in determining whether a patient

will respond to AAV-F8 gene therapy. Importantly, targeting B

cell method could further improve tolerance induction using this

novel approach.

As mentioned above, a combination regimen targeting

FVIII-specific memory B cells and LLPCs facilitate ITI to

FVIII has recently attracted research interest. A study by Liu

et al. found that anti-CD20 combined with IL-2/IL-2 mAb

complexes plus rapamycin significantly reduced both FVIII-
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specific antibody-secreting cells and memory B-cells in HA

inhibitor mice (148). The combination had a synergistic effect

on the inhibition and neutralization of antibody production.

Moreover, as LLPCs play a key role in maintaining established

antibodies, the same group developed a novel strategy that could

target LLPCs (149). In the regimen, AMD3100, an antagonist of

CXCR4, was used to block the CXCL12/CXCR4 interaction and

inhibit the homing and retention of LLPCs (150). The results

demonstrated that the combined treatment using AMD3100, G-

CSF, anti-CD20 and IL-2/IL-2 mAb complexes effectively

eradicated LLPCs and inhibitor titers in either FVIII protein-

or FVIII plasmid-primed HA inhibitor mice. Encouragingly, a

recent study found that B cell depletion with anti-CD20

eliminates memory B cells and enhances FVIII tolerance when

combined with rapamycin, preventing neutralization of the

newly expressed clotting FVIII in HA mice following AAV8-

coF8 gene therapy. In addition, it has been reported that

combining rapamycin and anti-CD20 therapy with

conventional FVIII ITI treatment could induce FVIII tolerance

in patients with previously refractory FVIII inhibitors (151).

Herein, a combination of anti-CD20/mTOR inhibition strategies

could increase the success of ITI and allow for the inclusion of

HA inhibitor patients for AAV-mediated F8 gene therapy or

FVIII ITI in clinical trials.
LV-platelet gene therapy

Lentiviral vector (LV)-mediated gene therapy has

demonstrated significant potential for treating FVIII

deficiency. In particular, LV-mediated platelet-targeted gene

transfer into hematopoietic stem cells (HSCs) results in stable

integration of the F8 gene into the host genome, leading to

persistent therapeutic effects in hemophilia models with and

without inhibitors (152–157). The ectopic expression of FVIII

under the platelet-specific promoter control enables FVIII

storage together with VWF in a-granules in platelets. This

could shield FVIII from the circulating neutralizing anti-FVIII

antibodies until it is delivered to the site of injury upon platelet

activation. Even relatively small numbers of activated platelets

that locally excrete FVIII could be sufficient to promote efficient

clot formation in the recipient mice. Notably, none of the

transduced mice developed an anti-FVIII immune response

even when challenged with rFVIII. The inhibitor titers

decreased with time in the pre-existing anti-FVIII immunity

models after LV-F8 gene therapy (57, 152, 155, 157, 158).

Furthermore, infusion of platelets containing FVIII triggers

neither primary nor memory anti-FVIII immune responses in

HA mice (92), indicating that it could become a useful

alternative treatment approach for HA inhibitor patients if the

availability of AAV-based gene therapy is limited by certain

circumstances. Importantly, novel gene therapy strategies could
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also induce Tregs expansion and CD4+ T cell-mediated immune

tolerance (155).

Since the LV-F8 gene therapy approach targets HSCs, this

strategy could result in lifelong FVIII production. Encouragingly,

the LV-mediated therapeutic strategy could also provide an

alternative gene therapy for patients with pre-existing

immunity to the AAV. Currently, a phase 1 clinical trial using

an LV-mediated targeting platelet F8 gene delivery system has

been initiated at the Medical College of Wisconsin

(ClinicalTrials.gov: NCT03818763) (141). However, either total

body irradiation or chemotherapy plus immune suppression is

required to facilitate engraftment and efficacy, which could limit

widespread applications of this strategy in clinical settings.
Nonviral delivery system

Oral tolerance induction via transplastomic lettuce

expressing FVIII or FIX fused to a transmucosal carrier is at

the forefront of hemophilia treatment research. Such

bioencapsulated factors can be ingested, cross the intestinal

epithelium, and induce Treg cells within the gut-associated

lymphoid tissue (141). Sherman et al. demonstrated that the

FVIII heavy chain and C2 domain can be expressed as cholera

toxin B subunit fusion proteins in tobacco chloroplasts (159).

Oral delivery of a mixture of these bioencapsulated antigens

could suppress and reverse inhibitor formation in HA mice.

Intestinal microbiota plays a vital role in maintaining immune

homeostasis through the interaction between the microbiome

and the intestinal immune system (160). A recent study revealed

that tolerance induction by oral delivery of antigens

bioencapsulated in plant cells occurs via the unique immune

system of the small intestine, and the inhibition of antibody

formation primarily performed by CD4+ CD25− FoxP3− LAP+

Tregs (but not of CD4+ CD25+ FoxP3+ Tregs) (161). Antigen

release from the plant cells occurs via bacteria with required

enzymatic degradation activities in the small intestine and

delivery to the associated immune system. The composition of

this microbiome is distinct from that of the large intestine, and

their augmentation could further promote plant cell-based oral

tolerance induction in the treatment of hemophilia. The ongoing

advances of the novel nonviral delivery system in animal HA

models make it a likely candidate for clinical trials.

Since the goal of the development of tolerogenic therapies is

to suppress antibody formation, Tregs have been proposed as a

potential clinical therapy for various adverse immune disorders.

Adoptive transfer of ex vivo-expanded Tregs improved immune

cell engraftment and graft-versus-host disease after HSC

transplantation in the clinical trial (162). Nevertheless,

chimeric antigen receptor (CAR) Tregs expansion has been

identified as a novel biomarker of response and toxicity after

CAR T cell therapy, which raises the prospect that this subset
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could regulate CAR T cell response in humans (163).

Interestingly, Yoon et al. demonstrated that FVIII-specific

CAR (ANS8 CAR) Tregs can be engineered, and demonstrates

their ability to inhibit T- and B-cell effector responses to FVIII

(164). Importantly, ANS8 CAR-transduced Tregs can suppress

the recall antibody response of murine splenocytes from FVIII

knockout mice to FVIII in vitro and in vivo. Notably, CAR-

modified Tregs engineered in a non-MHC restricted manner

have widespread applications and have gained increasing

attention in recent years (165, 166). This novel cellular therapy

remains a promising approach for the future tolerogenic

treatment of HA patients with existing inhibitors.
Closing remarks

Anti-FVIII immunity represents a major limitation of HA

therapy. Multiple factors impact inhibitor development in

patients with HA, although novel alternative therapeutic

options can be used to prevent bleeding disorders in HA

patients with and without harboring inhibitors. However, the

benefits are only available for a small number of HA patients,

and the lack of infrastructure facilitating the worldwide

availability of novel strategies remains a barrier. There is also

an unmet need to provide further insight into the longer-term

efficacy and safety of these novel approaches. As such,

mechanistic insights into humoral immunity to FVIII and

identifying new biomarkers connecting inhibitor generation

remain top priorities for clinical or preclinical investigations.
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29. Lorenzo JI, López A, Altisent C, Aznar JA. Incidence of factor VIII inhibitors
in severe haemophilia: The importance of patient age. Br J Haematol (2001)
113:600–3. doi: 10.1046/j.1365-2141.2001.02828.x

30. Strauss T, Lubetsky A, Ravid B, Bashari D, Luboshitz J, Lalezari S, et al.
Recombinant factor concentrates may increase inhibitor development: A single
centre cohort study. Haemophilia (2011) 17:625–9. doi: 10.1111/j.1365-
2516.2010.02464.x
Frontiers in Immunology 11
31. Chen J, Schroeder JA, Luo XF, Shi QZ. The impact of von willebrand factor
on factor VIII memory immune responses. Blood Adv (2017) 1:1565–74.
doi: 10.1182/bloodadvances.2017009209
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Glossary

HA Hemophilia A

FVIII Factor VIII

WFH World Federation of Hemophilia

ITI Immune tolerance induction

Teffs Effector T cells

Tregs Regulatory T cells

VWF von Willebrand factor

NNAs Nonneutralizing antibodies

ELISA Enzyme-linked immunosorbent assays

HLA Human leukocyte antigen

GO Gene Ontology

rFVIII Recombinant FVIII

pdFVIII Plasma-derived FVIII

PUPs Previously untreated patients

HIPS Hemophilia Inhibitor Previously Untreated Patients Study

EDs Exposure days

BU Bethesda units

ISTH International Society of Thrombosis and Hemostasis

DAMPs Danger-associated molecular patterns

APCs Antigen presenting cells

DCs Dendritic cells

rFVIIa Recombinant activated factor VII

aPCC Activated prothrombin complex concentrate

BEs Bleeding episodes

HB Hemophilia B

AEs Adverse events

GC Germinal center

BAFF B cell-activating factor

LLPCs Long-lived plasma cells

BM Bone marrow

MHC-II Major histocompatibility complex class II

LRP Lipoprotein receptor-related protein

HSPGs Heparan sulfate proteoglycans

PS Phosphatidylserine

Lyso-PS Lysophosphatidylserine

MZ Marginal zone

ADAs Anti-drug antibodies

TMAs Thrombotic Microangiopathies

TEs Thromboembolic events

QW Once weekly

TFPI Tissue factor pathway inhibitor

AT Antithrombin

aPC Activated protein C

mAb Monoclonal antibody

SAE Serious adverse event

AAV Adeno-associated virus

LV Lentiviral vector

BDD B-domain deletion

(Continued)
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ABR Aannualized rate of bleeding events

PN-1 Protease nexin-1

PRP Platelet-rich plasma

SERPINs Serine protease inhibitors

FVIII:C FVIII activity

HSC Hematopoietic stem cell

CAR Chimeric antigen receptor
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