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Inflammation and a dysregulated immune system are common denominators

of cancer and cardiovascular disease (CVD). Immuno-cardio-oncology

addresses the interconnected immunological aspect in both cancer and CVD

and the integration of immunotherapies and anti-inflammatory therapies in

both distinct disease entities. Building on prominent examples of convergent

inflammation (IL-1ß biology) and immune disbalance (CD20 cells) in cancer

and CVD/heart failure, the review tackles both the roadblocks and

opportunities of repurposed use of IL-1ß drugs and anti-CD20 antibodies in

both fields, and discusses the use of advanced therapies e.g. chimeric antigen

receptor (CAR) T cells, that can address the raising burden of both cancer and

CVD. Finally, it is discussed how inspired by precisionmedicine in oncology, the

use of biomarker-driven patient stratification is needed to better guide anti-

inflammatory/immunomodulatory therapeutic interventions in cardiology.

KEYWORDS

immuno-cardio-oncology, inflammation, immune cell dysbalance, repurposed
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Introduction

Initially focused on the detrimental effects of cancer therapies on the cardiovascular

system, the field of cardio-oncology has expanded, and further investigates the

commonalities between cancer and CVD. In this regard, there is accumulating

evidence that inflammation and a dysbalanced immune system are common triggers

in the pathogenesis of cancer and CVD. This concept is covered in immuno-cardio-

oncology, which beyond the use of immunotherapies or anti-inflammatory therapies to

counteract cancer or cancer therapy-related side effects also addresses the interconnected

immunological aspect in both cancer and CVD, and the hereto-related potential of
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integrating immunomodulatory strategies in both disease

entities. Important in this context is the raising appreciation

that cancer and CVD/heart failure interact in a bidirectional

manner with low-grade inflammation as common trigger.

Improved cancer prognosis and survival rate due to the

success of recently implemented onco-therapies, allowed the

awareness that among survivors, CVD is the leading cause of

noncancer-related mortality (1). For lung cancer, it has been

reported that 89% of the patients have an increased risk of

developing atherosclerotic heart disease compared to those not

afflicted with cancer (2, 3). In general, a low-grade chronic

inflammation provoked by the release of pro-inflammatory

cytokines (tumor necrosis factor-a, interleukin (IL)-1b, IL-6,
and interferon-g), chemokines, and soluble factors by the

primary tumor cells and cells of the microenvironment into

the bloodstream is suggested to stimulate CVD and heart failure

(4). On the other hand, there is epidemiological evidence that

CVD patients are more prone to develop cancer (5, 6), stating

CVD as an oncogenic risk factor (7, 8). This is further supported

by experimental findings illustrating that failing hearts stimulate

tumor growth (9–12) (reverse cardio-oncology) independent of

hemodynamic impairment (10), via epigenetically driving

myeloid cells in hematopoietic reservoirs toward an

immunosuppressive state and inducing monocytosis (9) and

via the release of inflammation markers like the matricellular

protein periostin (11). The relevance of secreted tumor-

promoting factors is further corroborated by the observation

that heart failure and inflammation markers are associated with

new onset cancer incidence among participants with heart

failure (10). This bidirectional interaction of cancer and CVD

with inflammation and a dysregulated immune system as

common denominators offer the opportunity to transfer

knowledge, technologies and concepts from the haema-/

oncology field to the cardiovascular field and vice versa. It

further opens avenues to accelerate the repurposed use of

approved anti-inflammatory and immunomodulatory

therapies, including advanced therapies e.g. chimeric antigen

receptor (CAR) T cells, that can treat both disease entities (13).

With the activation of IL-1ß signaling and dysregulation of

CD20 B immune cells being prominent examples illustrating the

common involvement of inflammation and a dysregulated

immune balance in cancer and CVD, this minireview

addresses how further inspired by the CANTOS trial, anti-IL-

1ß drugs are beyond CVD and heart failure, evaluated in cancer,

and how vice versa the anti-CD20 monoclonal antibody

(rituximab), the first therapeutic antibody approved for

oncology patients, is evaluated in the context of CVD and

heart failure. Next, the repurposed use of advanced therapies is

discussed, to finally comment the roadblocks and challenges for

anti-IL-1ß and anti-CD20 repurposed strategies in cancer and

CVD, and the lessons learned for improved therapies, including

the relevance of biomarker-driven stratification and treatment

of patients.
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Convergence of inflammation and
immune cell disbalance in CVD,
heart failure and cancer and
repurposed therapies

IL-1ß biology and anti-Il-1ß therapies

The landmark CANTOS (Canakinumab Anti-Inflammatory

Thrombosis Outcome Study) trial (14), the largest cytokine

inhibition trial ever completed, providing compelling proof for

the inflammatory hypothesis in atherothrombosis, further

evidenced that inflammation is an important trigger and

valuable target in both CVD and cancer. Along with the

primary observation that rates of cardiovascular events were

lower in canakinumab-treated patients compared to the placebo

group, further investigations revealed that IL-1ß antagonism

reduced the incidence of lung cancer and cancer-related

mortality (15), accentuating convergence in IL-1ß biology in

CVD and cancer. Canakinumab treatment did not alter all-cause

mortality, which was due to offsetting effects of reduced cancer

mortality but increased fatal infections. Finally, the outcome of

CANTOS was FDA rejection and European license withdrawal.

The full reasons for the rejection have not been disclosed by

Novartis, which do not further pursue canakinumab for

cardiovascular indications, but test now its anti-cancer

potential in patients with no-small-cell lung cancer (16). The

high pricing of canakinumab (ca. 200,000 €/year in the United

States), further favors its use for (no-small-cell lung) cancer

rather than for a common indication as a secondary prevention

following myocardial infarction (MI) (17).

IL-1ß is generated by the Nod-like receptor protein 3

(NLRP3) inflammasome, a multiprotein complex, part of the

innate immunity, which gets activated following dangerous

associated molecular patterns, like the alarmins S100A8 and

S100A9 (18, 19), tobacco (20) and cholesterol crystals (21), as

well as by pathogen associated molecular patterns (PAMPs), like

coxsackievirus B3 (22, 23) and human papillomavirus (24),

covering a broad spectrum of triggers present in or provoking

both CVD/heart failure and cancer (25). Oxidized LDL and

cholesterol crystals are DAMPs which activate the NLRP3

inflammasome and lead to IL-1ß secretion. IL-1ß subsequently

drives atherogenesis at different stages. It increases the adhesion

and homing of pro-inflammatory monocytes as well as the

expression of matrix metalloproteinases, the latter boosting

plaque rupture (21). IL-1ß release following MI leads to

myelopoiesis and splenic monocytosis (26). Hereby, it triggers

the homing and infiltration of monocytes to the atherosclerotic

plaque, supporting the so called “cardiovascular continuum” and

begetting subsequent MI (27). The CANTOS study was built on

this concept and the hypothesis that anti-IL-1ß antagonism

could blunt the recurrence of cardiovascular events. Beyond

atherosclerosis and ischemic heart disease, the NLRP3
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inflammasome and downstream cytokines IL-1ß, IL-18, to IL-6

play a key pathogenic role in non-ischemic, inflammatory heart

disease [myocarditis (22, 28–30), pericarditis (31)] and the

progression to heart failure (32, 33).

Evidence states that polymorphisms in the NLRP3

inflammasome gene are linked with CVD and cancer

development (25). Clonal hematopoiesis, the occurrence of

recurrent somatic mutations in leukemia-associated genes,

most commonly in DNMT3A, TET2, and ASXL1, promoting

expansion of clonal populations of hematopoietic stem or

progenitor cells, is associated with hematologic malignancies

like acute leukemia and can also occur in the absence of overt

hematologic transformation. In fact, the latter, so called clonal

hematopoiesis with intermediate potential (CHIP), contributes

causally to the development of CVD and doubles the risk for

CVD, whereas clonal hematopoiesis only accounts for 0.5% of

hematologic cancers (34, 35). Intriguingly, loss of the TET2 gene

in hematopoietic cells, encoding an epigenetic regulatory protein

involved in DNA methylation, accelerates atherogenesis

involving increased NLRP3-mediated IL-1ß signaling (36). In

addition, an explorative study demonstrated that presence of

CHIP variant TET2 clones may predispose patients to improved

outcomes with targeted anti-IL-1ß therapy (37). Clonal

hematopoiesis is an age-dependent risk factor for leukemia

and CVD and can occur without candidate driver mutations

(38). It is further common in patients with non-hematologic

cancers following radiation or chemotherapy where it is

associated with an increased risk of hematologic cancers and

adverse clinical outcome (39).

In cancer, NLRP3 and IL-1ß drive cancer progression by

different means, involving promotion of tumorigenesis,

angiogenesis, immunosuppression, and metastasis (40).

NLRP3, IL-1ß and downstream IL-6 are further activated

following cancer therapies including doxorubicin (41–44),

tumor cell-targeting CAR T cells (45, 46) and immune

checkpoint inhibitors (47, 48), contributing to the cytokine

release syndrome and cardiac toxicity. The relevance of

NLRP3 and IL-1ß in cancer progression and cancer therapy-

related (cardiac) detrimental effects form the rationale of several

clinical trials currently investigating the efficacy of anti-IL-1ß

drugs, mainly the IL-1ß antagonist canakinumab and the natural

anti-ILR antagonist, anakinra, as anti-cancer therapy alone, or in

combination with CAR T cells or the checkpoint inhibitors anti-

PD1 or anti-PDL1 (40). Clinical trials directed to investigate the

anti-cancer effect of specific NLRP3 inflammasome inhibitors

which either target components of its canonical signaling

pathway or are specific to the NLRP3 protein, have not been

performed so far (49). This might be explained by the

complexicity of NLRP3 in cancer and stresses the need for

further preclinical studies. Indeed, beyond tumorigenic effects,

also anti-tumorigenic effects of the NLRP3 inflammasome have

been reported depending on the type of cancer (49). This

involves among others the NLRP3-mediated release of IL-18
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activity (50, 51). The tumor-suppressive function of the

NLRP3 inflammasome has mostly been demonstrated for

colon cancer where its preventive role is achieved by tumor

immunosurveillance, maintaining epithelial integrity, producing

mucus and suppressing the proliferation of intestinal epithelial

cells (52). It is the result of cell type-specific responses, which

altogether determine the propensity for tumorigenesis in colon

cancer (53). Several single-nucleotide polymorphisms in the

NLRP3 region associated with hypoproduction of IL-1b and

decreased NLRP3 expression are associated with susceptibility to

Crohn’s disease (54), which is a strong risk factor for colon

cancer. In addition, individuals with polymorphisms in NLRP3,

and caspase 1 have a greater risk of gastric cancer when they are

infected with Helicobacter pylori, displaying the interplay

between genetic and environmental factors in tumorigenesis

(55). Further evidence from cancers with virus-triggered

etiology and inflammasome genetics in susceptibility to cancer

development suggests that the NLRP3 inflammasome may have

a protective role in virus-associated cancers (24, 56). Though,

further investigations are needed to solidate this hypothesis. A

dysregulated inflammasome signaling and dysbiosis both affect

intestinal inflammation and cancer development, accentuating

that in addition to genetic factors, environmental factors such as

diet influence the ecology of the gut microbiota, inflammasome

activation, and cancer (52).

Related to heart failure, a phase 1B trial with the specific

NLRP3 inhibitor dapansutrile (OLT1177) has been completed in

patients with stable systolic heart failure (https://clinicaltrials.

gov/ct2/show/NCT03534297, accessed October 2021). The non-

specific NLRP3 inhibitor, colchicine, a microtubule destabilizer

traditionally used for the treatment and prevention of gouty

arthritis, has been shown to exert anticancer effects in vitro and

in animal models. In addition, colchicine decreased the risk of

incident all-cause cancers in male patients with gout (57). A pilot

trial of colchicine in urothelial cancer and other solid tumors is

ongoing (NCT05279690). Colchicine is also first-line therapy for

first and recurrent pericarditis. Its cardiobeneficial effect is and

has been explored in different clinical trials ranging from acute

MI (58) over stable coronary artery disease (59) to stable systolic

heart failure (60). The benefit of colchicine in community-

treated patients with PCR-proven COVID-19 advocates its use

in those at risk of complications like myocarditis (61). Three

clinically approved biologics for blocking IL-1, of which none of

the 3 have an indication for CVD at the present time:

canakinumab, anakinra, and the soluble chimeric Fc fusion

protein of IL-1R1 and IL-1R3, rilonacept, have been and are

currently under evaluation in trials over the wide range of CVD.

The IL-6 (with IL-6 being downstream IL-1) antagonist,

tocilizumab, which blocks soluble and membrane‐bound IL‐

6R, exerts beneficial effects in a high‐risk population

(rheumatoid arthritis patients), even as it increases total

cholesterol and low‐density lipoprotein levels (62). Its
frontiersin.org

https://clinicaltrials.gov/ct2/show/NCT03534297
https://clinicaltrials.gov/ct2/show/NCT03534297
https://doi.org/10.3389/fimmu.2022.1018772
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Van Linthout and Volk 10.3389/fimmu.2022.1018772
potential has also been demonstrated for refractory severe

immune checkpoint inhibitor associated myocarditis (63).

Reduction in biomarkers of inflammation and thrombosis

relevant to atherosclerosis has been shown in individuals with

chronic kidney disease and elevated levels of C-reactive protein,

following treatment with the novel IL-6 ligand inhibitor,

ziltivekimab (64). The NLRP3 inflammasome activator,

S100A9 has been identified as a promising biomarker and

therapeutic target for different cancers (19, 65, 66) as well as

for MI (67) and myocarditis (18, 68), accentuating the relevance

of evaluating the potential of anti-S100A9 compounds in clinical

studies of cancer (19) and heart failure (69).
CD20 B cells and anti-CD20 therapies

The chimeric mouse/human CD20-targeting monoclonal

antibody (mAb) rituximab (RTX), the first therapeutic

antibody approved for oncology patients, has since its initial

approval in 1997, improved the prognosis of various B cell

malignancies (70). About one million patients worldwide are

given anti-CD0 antibodies such as RTX for the treatment of B

cell-associated diseases. In clinical practice, CD20 depleting

agents are not only approved for B cell-related cancers, but

also increasingly used on- and off-label for autoimmune diseases,

such as rheumatoid arthritis, multiple sclerosis and systemic

lupus erythematosus (71). Though, RTX in patients with

hematological cancers and autoimmune disease has been

associated with both atrial and ventricular arrhythmias (72)

and acute myocardial ischaemia (73). Its use in CVD is untested

and currently contraindicated.

The transmembrane phospholipid protein CD20, which

appears on surface in the physiological maturation from pre-B

to mature B lymphocytes, is also expressed on B cell-derived

malignancies. Anti-CD20 mAb acts by depleting normal and

malignant B cells. Anti-tumor activity of anti-CD20 has been

attributed to 4 main mechanisms: antibody-dependent cellular

toxicity, complement-dependent cytotoxicity, antibody-

dependent phagocytosis, and FcR-dependent mechanisms.

Though, despite two decades of clinical use, there is still

incomplete understanding of the mechanisms behind RTX

efficacy, and the biological function of CD20. Part of the

complexity is the importance of the cellular microenvironment

and circulatory dynamics of B cells in the efficiency of CD20

mAb-directed therapies (74). In non-B cell derived cancers,

presence of CD20+ B cells in tertiary lymphoid structures

around tumors is predictive of improved cancer outcome and

response to checkpoint blockade (75, 76). It is suggested that the

B cells might contribute to the anti-tumor response by

producing antibodies against the tumors (76), or they express

regulatory potency, but further studies are needed to understand

the specific anti-tumor mechanism. Nevertheless, this finding
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addresses the dichotomous role of CD20+ B cells depending of

the microenvironment and immune context, accentuating the

complexity of translating CD20+ immunotherapies in cancer.

Beyond their role in cancer, there is accumulated evidence

that B cells, both directly (by differentiating into plasma cells and

secreting antibodies) and indirectly (by antigen presentation and

cytokines/chemokines secretion), play an essential role in the

progression of atherosclerosis and heart failure (77–79). Several

subsets of B cells exist which differentially affect atherosclerosis

(80). B1 (B1a and B1b) cells are considered atheroprotective via

their release of primarily IgM natural antibodies against

oxidation-specific epitopes that block the uptake of oxidized

LDL by macrophages, preventing foam cell formation and

facilitating the clearance of apoptotic cells (81, 82). In contrast,

B2 cells (marginal zone and follicular B cells) are proatherogenic

via the release of proatherogenic (auto)antibodies (79, 83). B

regulatory cells have been reported to protect against

atherosclerosis via inducing immunosuppressive T regulatory

cells (84), but their importance remains controversial (85).

Innate response activator B cells exert proatherogeneic effects

by promoting myeloid activation (80, 86). In mice, CD20-

mediated B cell depletion affects predominantly B2 cells, while

B1 cells are relatively maintained (87), and is atheroprotective

(79, 83). In patients, RTX-treatment has been associated with

reduced endothelial dysfunction (88), decreased intima-media

thickness (89) and lower arterial stiffness (90).

In the heart, anti-cardiac autoantibodies contribute directly to

cardiac injury by functional or cytotoxic effects following target

cell binding as well as indirectly by the formation of antigen-

antibody complexes and related complement activation and

inflammation [for review (77)]. Experimental evidence

illustrates the involvement of mature B lymphocytes in the

mobilization of inflammatory monocytes into the heart after

acute MI in mice, leading to increased infarct size and

deterioration of cardiac function (78). In frame with the shown

protective effect of RTX in this experimental acute MI setting, an

early phase experimental medicine trial, recently demonstrated

safety and feasibility of a single infusion of RTX given acutely in

patients with ST-elevation MI (STEMI) (91) i.e. targeting the

initial inflammatory phase of damage seen in acute MI. In patients

with dilated cardiomyopathy, the frequency of TNF-a-secreting B
cells is increased and positively correlates with procollagen type III

(92). In chronic states, RTX has been successfully applied in a case

series of patients with inflammatory cardiomyopathy (93), and

improved survival in cardiac allograft patients with antibody-

mediated rejection (94). Though, accelerated allograft

vasculopathy with RTX after cardiac transplantation has also

been demonstrated (95). Safety of RTX is currently evaluated in

a phase II, single-centered, single group, prospective clinical trial

in stable patients with functional class III/IV according to the

NYHA classification with HFrEF with an inadequate response to

treatment (96).
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(Repurposed) use of
advanced therapies

CAR T cell therapy has achieved durable clinical responses

in patients with CD19-expressing refractory and relapsed B cell

malignancies and CD269 (B-cell maturation antigen (BCMA))-

expressing multiple myeloma cells and is increasingly

investigated as a therapeutic option of other malignancies (97).

Despite their clinical success, the use of CAR T cells can result in

significant toxicities that are directly associated with the

induction of powerful immune effector responses. This

includes the induction of a potentially life-threatening cytokine

release syndrome, which can lead to cardiovascular

manifestations as tachycardia, hypotension, reduced ejection

fraction and cardiogenic shock. Pretreatment with anti-

inflammatory drugs, like anti-IL-6R mAb, new gene-editing

technologies of ex vivo CAR T cell generation decreases this

risk. In addition, next-generation of designed bispecific CD3-

engager antibodies, targeting endogenous T cells to a defined

target cell with high efficiency but limited side effects (98) opens

new opportunities to use in cancer and non-cancer diseases

without enhanced risk of CVD or even to treat CVD/heart

failure by immune targeting (99).

Intriguingly, cardiac fibroblasts are the main source of

NLRP3 inflammasome activity in the heart (100), whereas the

NLRP3 inflammasome in cancer-associated fibroblasts links

tissue damage with inflammation in breast cancer progression

and metastasis (101). The raising relevance of fibroblasts as

inflammatory supporter cells, together with their well-

recognized importance as extracellular matrix-producing cells

in both heart failure and cancer (102), identify fibroblasts as

potential novel target cell in advanced therapies counteracting

heart failure and cancer. Therefore, selective targeting

“inflamed” fibroblasts would be a major breakthrough. Very

recently, Rurik et al . designed a highly innovative

immunotherapy strategy to generate transient CAR T cells that

can recognize the fibrotic cells in the heart by in vivo RNA-

delivery technology. Analysis of a mouse model of heart failure

revealed that the approach was very successful in reducing

fibrosis and restoring cardiac function (103).
Lessons from and opportunities for
repurposed use of anti-IL-1ß and
anti-CD20 therapies

Lessons from NLRP3/IL-1ß and CD20 cells in cancer and

CVD indicate their complexity in the pathogenesis of both separate

disease entities. Their contribution to the pathogenesis is time- and

context-dependent, depending on the microenvironment and

immune contexture, and for NLRP3/IL-1ß may even be cell-
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on cancer and CVD/heart failure addresses the difficulty of

immunotherapies within each field and of translating

immunotherapies from one field to the other. On the other

hand, findings from the CANTOS study illustrating how IL-1ß

antagonism may reduce cardiovascular events and the incidence of

lung cancer underscore the possibility of killing two birds with one

stone. Though, further studies are needed to clarify whether, based

on the current knowledge related to the involvement of the NLRP3

inflammasome in cancer progression and cancer-therapy

(doxorubicin, CAR T cells, checkpoint inhibitors,…)-related

cardiac toxicity and side effects, this statement also accounts for

anti-IL-1ß drugs as combination therapy with an anti-cancer

treatment. The double anticancer and cardioprotective effect of

anti-IL-1ß drugs let raise the hypothesis that combination of an

anti-IL1ß drug with an anti-cancer therapy will allow to decrease

the dose of the primary anti-cancer drug and herewith related

deleterious effects. Therefore, further preclinical investigations are

needed evaluating both the anti-cancer effect and the

cardioprotective potential of the adjuvant anti-IL-1ß drug via the

use of translational models, i.e. tumor-bearing mice treated with

the anti-cancer drug. A large limitation of studies exploring the

protective effect of anti-IL-1ß on doxorubicin-induced

cardiotoxicity so far was that mainly non-tumor bearing mice

were used, lacking the contribution of the tumor-associated

inflammation on cardiac dysfunction. Furthermore, many studies

were/are often directed at exploring only one of both aspects, be it

the oncologist investigating the anti-cancer aspect and the

cardiologist evaluating the cardioprotective effect of the drug,

underscoring the necessity of interdisciplinary investigations.
Biomarker-driven stratification

Learning from precision medicine in oncology and the

disappointing results from past clinical trials with anti-

inflammatory therapies in CVD and heart failure reflecting the

diversity of inflammation in those patients (69), has led to the

recognition of the need for patient stratification to better

guide anti-inflammatory/immunomodulatory therapeutic

interventions in the cardiology field (104). In fact, the outcome

of the CANTOS trial (14), is partly built on the specific inclusion

of post-MI patients with a residual inflammatory risk mirrored

by high sensitive C-reactive protein levels, reflecting high IL-1ß

levels (105), and their hereto treatment with the IL-1ß antibody

canakinumab. Another example illustrating the power of

biomarker-driven therapies, here the treatment of patients

with a specific immune profile with a hereto-connected

immune cell-targeted strategy, follows from virus-negative

inflammatory cardiomyopathy patients with endomyocardial

biopsies positive for CD20-positive B cells. Evidence from a

case series illustrated that the clinical course of those patients,
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refractory to a classical immunosuppressive therapy with

prednisolone and azathioprine, improved following repurposed

treatment with the anti-cancer drug RTX (93).

Despite the ability to identify and quantify specific immune

cell subsets in endomyocardial biopsies of patients with

suspected myocarditis/inflammatory cardiomyopathy,

aetiology-specific therapies for myocarditis/inflammatory

cardiomyopathy are still in their infancy (106, 107). This

might be partly explained by the tools used to diagnose

myocarditis/inflammatory cardiomyopathy, which is –

following the ESC guidelines – based on the quantification of

CD3 and CD68/Mac-1 infiltrating cells in endomyocardial

biopsies via immunohistochemistry (≥ 14 leukocytes/mm2

including up to 4 monocytes/mm2 with the presence of CD3

positive T-lymphocytes ≥ 7 cells/mm2) (108). This classical

diagnostic work-up does not differentiate between T cell

subsets (e.g. Treg/Teff), nor between pro- and inflammatory

monocytes. This calls for a further defined and standardized

evaluation of immune cells subtypes, gene expression profiles, or

imaging to better mirror the cardiac immune homeostasis in

those patients, allowing better patient stratification and

differentiation of the stage in the pathogenesis. In this regard it

is important to address that immune signatures (109) or ratios

(Treg/Teff; pro-/anti-inflammatory monocytes) better reflect the

immune status, not being restricted to only one specific marker

or target, which due to redundancy of inflammation may be

compensated via other inflammatory signaling pathways. Novel

technologies initially used in the (immuno)-oncology field,

including single cell (nucleus) sequencing, multiplex
Frontiers in Immunology 06
immunofluorescence, and mass cytometry may here be of

value to close the current gaps related to the diagnosis of

myocarditis based on immunohistochemistry. This does not

imply their integration per se in daily diagnostic procedures.

Though, screening of clinical samples via those state-of-the art

techniques may identify novel diagnostic targets, which may

then be integrated in routine diagnostic procedures.
Conclusion

Deeper understanding of the interaction between

inflammation, cancer, CVD/heart failure – addressed in

immuno-cardio-oncology – opens new options for preventing

negative effects of cancer and cancer therapies on the heart on

the one hand and for repurposing novel targeted therapeutic

options and concepts from the cancer field for treating CVD (or

vice versa) on the other hand (Figure 1). Hereto, further

investigations are needed to disentangle context- and tissue-

specific inflammation among the diversity of cancer types and

CVD/heart failure.
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FIGURE 1

Immuno-cardio-oncology – anti-inflammatory and immunomodulatory strategies in CVD/heart failure and cancer. Inflammation and a
dysbalanced immune system, provoked by risk factors such as smoking, age, diabetes mellitus and obesity, are common triggers in the
pathogenesis of cancer and CVD/heart failure. Anti-cancer therapies comprise strategies directed to activate the immune response e.g.
checkpoint inhibitors, to deplete tumor cells (anti-CD20, CAR T cells, CD3 engager), and cytostatic drugs e.g. doxorubicin, of which checkpoint
inhibitors, CAR T cells and doxorubicin provoke cardiac inflammation. In contrast, immunosuppressive therapies like corticosteroids and B7-
antagonists are used for the treatment of CVD and heart failure. Repurposed (immune) cell depletion strategies (anti-CD20, CD19 antibodies,
CAR T cells, CD3 engager) have entered the cardiology field. Anti-inflammatory therapies (e.g. anti-IL-1ß drugs) are under investigation for the
treatment of cancer, cancer therapy-related inflammation and CVD/heart failure.
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