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Amino acid metabolism-based
molecular classification
of colon adenocarcinoma
via in silico analysis

Yile Xie, Huimin Chen* and Jing-Yuan Fang*

State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and
Hepatology, Ministry of Health, NHC Key Laboratory of Digestive Diseases, Division of
Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Renji Hospital, School of
Medicine, Shanghai Jiao Tong University, Shanghai, China
Amino acid metabolism is closely related to the occurrence and development

of colon adenocarcinoma (COAD). Studies on the relationship between COAD

and the expression of amino acid metabolism are still rare. Based on in silico

analysis, we used 358 amino acid metabolism-related genes (AAMRGs) to

determine the amino acid metabolism characteristics and then classified

COAD into two distinct subtypes, namely AA1 and AA2. Then we analyzed

the clinical characteristics, somatic mutation landscape, transcriptome profile,

metabolism signatures, immune infiltration, and therapy sensitivity of these two

subtypes. The AA1 subtype had inferior overall survival and was characterized

by lower amino acid metabolic activity, higher tumor mutation burden, and

higher immune cell infiltration, while AA2 displayed higher metabolic activity

and relatively better survival. Furthermore, the AA1 subtype was likely to benefit

from irinotecan in chemotherapy and immune checkpoint blockade therapy

including programmed cell death protein-1 (PD-1) and cytotoxic T-

lymphocyte-associated protein-4 (CTLA-4) immune checkpoint inhibitor but

was resistant to targeted therapy cetuximab. The AA2 subtype showed higher

sensitivity to 5-fluorouracil and oxaliplatin. To provide perspectives on cell-

specific metabolism for further investigation, we explored metabolic activity in

different cell types including lymphocytes, mast cells, myeloid cells stromal

cells, and epithelial cells via colorectal cancer single-cell data. Additionally, to

assist in clinical decision-making and prognosis prediction, a 60-AAMRG-

based classifier was generated and validated in an independent cohort.
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Introduction

Colorectal cancer is the third most common new case of

cancer and the second most common cause of cancer death in

2020 (1). Colon adenocarcinoma (COAD) accounts for 69.7% of

all colorectal cancer (2). Due to the high heterogeneity, COAD

brings more challenges to clinical treatment and management.

The heterogeneity derives from many aspects, including genetic

and epigenetic alterations, tumor microenvironment (TME) cell

population diversity, microbiome multiformity, and metabolism

adaptations. The treatment methods for COAD are mainly

surgery, chemotherapy, targeted therapy, and immunotherapy

and the therapeutic response is also influenced by diverse

factors. Therefore, it is necessary to have a deeper

understanding of the biodiversity of COAD, especially its

relationship with clinical characteristics. For instance, the

previous classical gene expression-based classification consensus

molecular subtypes (CMSs) captured the intrinsic heterogeneity of

colorectal cancer, in which colorectal cancer could be classified

into 4 distinguishing types, CMS1 (immunotype), CMS2 (classical

type), CMS3 (metabolic type), and CMS4 (mesenchymal type) (3).

In addition, some research on COAD molecular typing and

prediction models based on transcriptome data have emerged,

which provide new aspects for accurate classification and

treatment effect prediction of COAD (4, 5).

Metabolic reprogramming is a major feature of tumors and is

involved in rapid growth, evasion of immune clearance, and

adaptation to the metastatic environment (6). There has been

some thorough and detailed research focused on the role of

glucose metabolism, lipid metabolism, and amino acid

metabolism in cancers (6, 7). Amino acid metabolism has

extremely extensive effects in producing materials for metabolite

biosynthesis, epigenetic modification, bioenergy supply,

detoxifying ammonia, and maintaining intracellular redox status

(8). Emerging studies have pointed out the significant

participatory role of specific amino acid metabolisms, such as

glutamine (9, 10), tryptophan (11), cystine (12), and serine (13), in

COAD progression and resistance to various therapies. Amino

acid-related metabolic genes may serve as a prognostic prediction

model for COAD. In addition, targeting amino acid metabolism

may reshape the immune microenvironment, overcome

immunotherapy resistance, and improve the efficacy of existing

treatments (7). A growing number of metabolism-related

molecular models have been applied to COAD classification

(14–16); however, the amino acid metabolism-related gene

expression-based classifier has not been reported.

Recognizing that the high-throughput transcriptomics

mirrors numerous molecular features behind tumor phenotype

and clinical behavior, we envisioned that classifying COAD

tumors based on amino acid metabolism will deepen our

understanding of the metabolic heterogeneity of COAD from

a new perspective and contribute to precise therapy. In this
Frontiers in Immunology 02
study, we aim to divide primary COAD samples into subgroups

based on curated amino acid metabolism-related genes

(AAMRGs), and evaluate the clinical variables, molecular

features, potential therapy response through in silico

bioinformatic analysis, then establish a classifier assisting

clinical decision-making and prognosis prediction.
Materials and methods

Patient and sample data collection

COAD transcriptome data for classification were accessed

from The Cancer Genome Atlas (TCGA), and 420 primary

COAD patients with transcriptome data with corresponding

overall survival information extracted from the Genomic Data

Commons (GDC) Data Portal (https://portal.gdc.cancer.gov/)

were enrolled in this study for in silico analysis. Patients with an

overall survival time of fewer than 30 days were removed to

prevent bias. The gene expression value was transformed into

log2 [transcripts per kilobase million (TPM) +1] for further

analysis. Missing values in clinical information were excluded

when comparing differences in clinical characteristics between

subtypes. Gene somatic mutation data (MAF files) were available

in 372 of the above 420 patients in TCGA-COAD datasets and

were also obtained via the GDC Data Portal.
Colon adenocarcinoma subtypes based
on amino acid-related genes

For further in silico analysis, a total of 360 amino acid

metabolism-related genes (AAMRGs) were acquired from

previous work (Table S1) (17, 18), and 358 of them were

detected in TCGA-COAD transcriptome data. Then, we

performed K-means consensus clustering with the gene

expression profiles of 358 AAMRGs to identify subtypes

by using the CancerSubtypes package in R software (19). The

following details were set for subtyping: number of

repetitions = 1,000 bootstraps; pItem = 0.8 (resampling 80% of

any sample); maxK=10 (k-means clustering with up to 10

clusters). An appropriate number of clusters was determined

based on the clustering results and clinical ease of use. The

Kaplan−Meier method with a log-rank test was performed to

compare overall survival differences between the subtypes.
Characteristics specific to the
AA subtypes

To investigate multiple characteristics between AA subtypes,

we compared clinical and molecular features between the two

AA subtypes. A Chi-square test was used to explore the clinical
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feature distribution between different AA subtypes. The somatic

mutation profile of COAD patients from TCGA was analyzed

with the maftools R package (20). Gene expression profiles were

also utilized for calculating the distance of samples from four

CMSs via the CMScaller R package (21). Transcriptomic

alterations were compared between AA subtypes with

differentially expressed gene analysis via the limma R package

(22)(Table S2). Pathway enrichment analysis of gene ontology

biological progress (GOBP) was performed based on

differentially expressed genes (P value <0.05 and log2FC >0.5),

and gene set enrichment analysis (GSEA) based on the Reactome

pathway database was carried out with genes with statistical

significance via cluster profile (23) and the ReactomePA R

package (24).

To evaluate different biological process activities based on

gene expression profiles, single-sample gene set enrichment

analysis (ssGSEA) was performed to compute enrichment

scores via the GSVA R package (25), and 114 metabolism-

related pathways (26) and 5 immune-related signatures,

including anti-CTLA-4 resistance-associated MAGE-A

(CRMA) (27), IFN-gamma response (28), immune checkpoint

(29), hot tumor (30) and EGFR signatures (31), were collected

for ssGSEA. Pearson correlation analysis was applied to

investigate the correlation between amino acid metabolism-

related genes and immune-related signature enrichment scores.
Estimation of immune cell infiltration

The CIBERSORT algorithm was used to estimate the

infiltration of a total of 22 immune cell populations in COAD

samples by using their cell-specific gene signatures (32).

Additionally, the Microenvironment Cell Populations-counter

(MCP-counter) method was performed to evaluate the

abundance of eight immune and two nonimmune stromal cell

populations via the MCPcounter R package (33), and the

ESTIMATE algorithm was applied for estimating immune and

stromal fractions via the estimate R package (34).
Generation and validation of the
AA classifier

The top 30 significantly differentially expressed AAMRGs

with the largest log2FC value in both AA subtypes were selected

for the development of the prediction model, and thus, a 60-gene

classifier was generated (Table S3). For validation, the 60-gene

classifier was carried out on the TCGA-COAD dataset itself and

an independent dataset GSE41258 from the Gene Expression

Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/) database

based on the Nearest Template Prediction (NTP) classification,

a method that allows us to apply given signatures to individual
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sample class prediction on GenePattern (https://www.

genepattern.org/). Overall survival analyses were also

performed by Kaplan−Meier methods and compared by the

log-rank test. The concordance correlation coefficient between

the AA subtypes and predicted AA subtypes in the TCGA cohort

was calculated via the DescTools R package (35).
Estimation of the potential therapy
response

To predict the response to three first-line treatment drugs

(5-fluorouracil, oxaliplatin, and irinotecan) between the two AA

subtypes, the oncoPredict R package (36) was implemented

using ridge regression to estimate the half-maximal inhibitory

concentration (IC50) for each COAD sample based on the gene

expression profile from the Genomics of Drug Sensitivity in

Cancer 2.0 (GDSC2) database (37). All parameters were set to

recommended values.

To predict target therapy (cetuximab and bevacizumab) and

immunotherapy (CTLA4 and PD1 monoclonal antibody)

response between AA subtypes, SubMap analysis on

GenePattern was applied for comparing the expression data

between AA subsets with colorectal cancer patients treated with

cetuximab (GSE5851) or bevacizumab (GSE53127) and

melanoma patients treated with immunotherapies extracted

from previous work (38).
Estimation of cell type-specific
metabolic activities based on
single-cell data

Colorectal single-cell RNA sequence datasets GSE144735

were downloaded from the GEO database. The VISION

algorithm was used to score each cell type in metabolic

pathways obtained from KEGG and REACTOME via the

scMetabolism R package (39).
Statistical analyses

Analyses were performed based on R program (V.4.1.1).

Overall survival analyses were performed by Kaplan−Meier

methods and compared by the log-rank test. A Chi-square test

was carried out to compare clinical characteristics, gene mutation

rates, and therapy response ratios between AA subtypes. Pearson

correlation analysis was applied to investigate the correlation

between amino acid metabolism-related genes and immune-

related signature enrichment scores. The Wilcoxon test was

used to compare the means of the two groups. P value < 0.05

was considered statistically significant.
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Results

Consensus clustering identifies two
metabolism subtypes in COAD

Based on 358 detected genes of 360 previously reported

amino acid metabolism-related genes (17, 18) (Table S1), we

carried out K-means consensus clustering on transcriptome data

comprising 420 primary COAD patient samples from TCGA

and divided them into two subtypes, AA1, and AA2. The overall

survival of these two subtypes was significantly differentiated,

and the AA1 subtype displayed a worse prognosis (Figures 1A–

C) . For fur ther exp lora t ion , we inves t iga ted the

clinicopathological features of these two subtypes. There were

no significant differences in age, gender, or American Joint
Frontiers in Immunology 04
Committee on Cancer (AJCC) stage between the two subtypes

(Figures 1D, E). We observed that the AA1 phenotype could be

described as a COAD subtype predominantly originating from

the right colon and was associated with a higher MutL Homolog

1 (MLH1) silent mutation rate, a higher proportion of

microsatellite instability (MSI) status, and a CpG island

methylator phenotype (CIMP) subtype compared to the AA2

subtype (Figures 1F–I). Univariate analysis demonstrated that

the AA subtype was an independent predictor for clinical

prognosis (Figure 1J). Furthermore, using CMS classification

(3), samples of the AA1 subtype were mainly classified into

CMS1 and CMS4, the worst prognosis subtype in CMSs, while

samples of AA2 were mainly classified into CMS2 and CMS3

with relatively better survival (Figures 1K, L). These results
A B C D

E F G H I

J K L

FIGURE 1

K-means consensus clustering identifies two metabolism subtypes in COAD. (A) Consensus clustering matrix heatmap and dendrogram for k=2
shows two distinct group patients based on the amino acid metabolism genes in the TCGA dataset. (B) Plot for silhouette width of 420 TCGA
primary COAD patients indicating each object of the classification fit into respective cluster well. (C) Overall survival of two AA subtypes in the
TCGA cohort. (Log-rank test). (D) The percentage of patients with AJCC staging between AA subtypes. (E–I) The proportion of clinical
characteristics including age and gender (E), primary tumor location (F), MLH silence rate (G), MSI status (H), and methylation subtype (I)
between two AA subtypes. (Chi-square test). (J) Univariate analysis of AA group, age, gender, AJCC stage, and TNM stage in overall survival.
Univariate Cox Proportional Model was used to estimate the hazard ratios. (K, L) The distribution of CMS subtypes in AA subtypes. COAD: colon
adenocarcinoma, MLH: MutL Homolog 1, MSI: Microsatellite instability, CIMP, CpG island methylator phenotype; AJCC, American Joint
Committee on Cancer; HR, hazard ratio; CMS, consensus molecular subtypes.
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suggest that the heterogeneity in amino acid metabolism may be

connected with the prognosis of COAD.
Correlation of the AA subtypes with
tumor mutations

The fact that AA1 tumors were intensively associated with

hypermutation status and highly consistent with hypermutated

CMS1 subtypes drove us to investigate whether there were

mutation landscape differences between the two subtypes. The

somatic mutation panorama showed that the overall mutation

rate in AA1 was higher (Figure 2A). Consistent with the clue

offered by MSI status and CMS classification, the tumor

mutation burden (TMB) was significantly higher in the AA1

subtype than in the AA2 subtype (Figure 2B). APC, TP53, TTN,

KRAS, PIK3CA, SYNE1, MUC16, FAT4, OBSCN, and RYR2 were

the top 10 mutant genes in two subgroups, among which TTN,

SYNE1, MUC16, OBSCN, and FAT4 acquired higher mutation

rates in the AA1 subtype while APC acquired higher mutation

rates in AA2 subtype (Figure 2C). In addition to those high-

frequency mutations, we examined the mutation rates of several

driver genes reported previously (40), BRAF (41), SMAD4 (42),

and EGFR (43, 44), and found that AA1 displayed higher BRAF

and SMAD4 mutation rates (Figure 2D).
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Correlation of the AA subtypes with
transcriptome differences

To better characterize the features of the two subtypes, we

performed transcriptomic data differential analysis. The gene

expression pattern differed significantly between AA1 and AA2

(Figures 3A, B) (Table S2). Pathway enrichment analysis based on

gene ontology biological process (GOBP) showed that AA1

enriched pathways were mainly focused on ‘extracellular matrix

organization’, ‘immune cell chemotaxis and migration’, and

‘adaptive immune’, while AA2 enriched pathways in energy

metabolism such as ‘amino acid, hormone, steroid metabolic

process’, and ‘cell proliferation’ (Figure 3C). Gene set

enrichment analysis (GSEA) based on the Reactome pathway

database drew a similar conclusion: AA1 was enriched with

extracellular matrix remodeling and immune pathways, while

AA2 was closely related to metabolism-related events.

Furthermore, we analyzed the activation status of pathways

involved in various biological processes, including signaling,

immunity, metastasis, and metabolism, between the two

subtypes through ssGSEA (Figure 3F). The AA1 subtype was

also active in several colon cancer progression-related signaling,

immunity, and metastasis pathways such as epithelial-

mesenchymal transition, angiogenesis, JAK-STAT signaling, and

inflammatory pathways (Figure 3F). In amino acid metabolism,
A

B C D

FIGURE 2

Correlation of the AA subtypes with tumor mutations. (A) OncoPrint of the mutation landscape of top 10 genes in AA1 and AA2 subtypes.
(B) Tumor mutation burden between two subtypes. (Mann-Whitney Wilcoxon test) (C) The mutation rates of the most frequent mutant genes in
two subtypes. (Chi-square test) (D) The mutation rates of key driver genes BRAF and SMAD4 in two subtypes. (Chi-square test). *P <0.05, **P <
0.01, ***P < 0.001, ****P < 0.0001, n.s. , not significant.
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AA1 was only activated in ‘valine, leucine and isoleucine

biosynthesis pathway’, while AA2 had an extensive activation in

‘arginine and proline metabolism’, ‘tyrosine metabolism’, ‘glycine,

serine and threonine metabolism’ pathways. In addition, among

other metabolism pathways, we found several inflammatory

pathways, including ‘ADP ribosylation’, ‘glycosaminoglycan

biosynthesis’, ‘prostanoid biosynthesis’, and ‘cyclooxygenase

arachidonic acid metabolism’, were significantly activated in

AA1. While energy metabolism-related pathways such as

‘oxidative phosphorylation’, ‘gluconeogenesis’, and ‘fatty acid

degradation’ were highly activated (Figure 3F).
Correlation of the AA subtypes with
immune infiltration

The evolution of cancer is strongly dependent on the

complicated tumor microenvironment (TME), which comprises

a variety of cell types, including fibroblasts, endothelial cells, and

immune cells. Given the distinct differences in immune pathway
Frontiers in Immunology 06
characteristics in the two subtypes (Figures 3C–F), we investigated

the immune microenvironment features through three

algorithms: CIBERSORT (32), Microenvironment Cell

Populations-counter (MCP-counter) (33), and ESTIMATE (34)

(Figure 4A). Via the CIBERSORT algorithm, 22 immune cell

fractions were calculated in each sample, and the fractions of naive

B cells, CD8 T cells, activated NK cells, monocytes, macrophages

(M0, M1, M2), and neutrophils were significantly higher in the

AA1 subtype, while plasma cells were higher in the AA2 subtype

(Figure 4B). Notably, the M1/M2 macrophage ratio was higher in

AA1 (Figure 4B). The MCP-counter results showed that all

evaluated types of immune cells and mesenchymal cells

(endothelial cells and fibroblasts) were significantly enriched in

AA1 than in AA2 (Figure 4C). The immune score and stromal

score of the ESTIMATE algorithm resembled the conclusions of

the previous two algorithms (Figure 4D).

We observed that the CRMA score was higher in the AA2

subtype (Figure 4E), which suggested that the AA2 subclass may

be linked with primary resistance to anti-CTLA-4 therapy. Other

immune-related signatures, such as IFN gamma (28), immune
A B C

D

E

F

FIGURE 3

Correlation of the AA subtypes with transcriptome differences. (A) T-SNE analysis of transcriptome data from two subtypes. (B) Volcano plot of
the differential expressed genes between two subtypes. (C) Gene Ontology Biologic Process of the top differentiated pathways between two
subtypes. (D, E) ssGSEA of the enriched pathways in two subtypes. (F) Heatmaps of the signaling, immune, metastasis, and metabolism-related
signatures in two subtypes.
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checkpoint (29), and hot tumor (30) were higher in AA1

(Figures 4F-H), which indicated that AA1 may benefit more

from immunotherapy. Correlation analysis of immune-related

signatures with differential amino acid metabolism-related genes

showed that IL4I1, LAP3, and SDS were the top three genes with

the highest positive correlation, while ASNS, PCBD2, and

CAMKMT were negatively correlated with immune

signatures (Figure 4I).
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Correlation of the AA subtypes with
treatment prognosis

According to the aforementioned widely differed molecular

characteristics between the AA1 and AA2 subtypes, we

hypothesized that the two subtypes might also benefit

differently from chemotherapy, immunotherapy, or targeted

therapy. We predicted the half maximal inhibitory
A B

C D

E

I

F G H

FIGURE 4

Correlation of the AA subtypes with immune infiltration. (A) Heatmap of the abundance of tumor microenvironment cell fractions using
CIBERSORT, MCP-counter, and ESTIMATE algorithm between two subtypes. (B) Boxplot of the abundance of immune cell populations
distinguished by two subtypes analyzed by the CIBERSORT algorithm. (Mann-Whitney Wilcoxon test) (C) Boxplot of the abundance of immune
cell populations, fibroblasts, and endothelial cells distinguished by two subtypes analyzed by MCP-counter algorithm. (Mann-Whitney Wilcoxon
test) (D) Boxplot of ESTIMATE score, immune score, and stromal score in two subtypes analyzed by ESTIMATE algorithm. (Mann-Whitney
Wilcoxon test) (E–H) Tumor immune-related signatures in two subtypes. (Mann-Whitney Wilcoxon test) (I) Bubble chart of the correlation of
main AAMRG with immune scores. *P <0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001, n.s. , not significant.
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concentration (IC50) of three first-line chemotherapy drugs of

patients in the AA1 and AA2 subtypes based on the GDSC2

database and found that AA2 was more sensitive to 5-

fluorouracil and oxaliplatin, while AA1 was more sensitive to

irinotecan (Figure 5A), which helped us to provide a rational

drug application for AA subtypes. In addition, we found that

AA1 was more sensitive to Janus Kinase (JAK) inhibitor

JAK_8517 and AZ960_1250, insulin-like Growth Factor I

Receptor (IGF1R) inhibitor IGF1R_3801, and Heat Shock

Protein 90 inhibitor Luminespib_1559 (which could effectively

down-regulate IGF-1R b protein). AA2 was sensitive to TGFb/
SMAD4 receptor inhibitor SB505124 (Figure 5B). Moreover,

using the SubMap algorithm, we also explored the

correlation between the AA subtypes and response groups

toward the targeted drugs cetuximab and bevacizumab.

There was little significance between the AA subtypes and the

bevacizumab response group, but AA1 was more relevant to the

cetuximab nonresponse group (Figure 5B), which was

consistent with the lower EGFR score in the AA1 subtype

(Figure 5C). Then, we compared the expression profiling of

AA1 and AA2 with the melanoma dataset containing 47 patients
Frontiers in Immunology 08
who received a programmed cell death protein-1 (PD-1)

immune checkpoint inhibitor or cytotoxic T-lymphocyte-

associated protein-4 (CTLA-4) immune checkpoint inhibitor

(38). AA1 exhibited a significant association with the CTLA4-

and PD1-sensitive groups, which indicated that the AA1 subtype

was more likely to benefit from immune checkpoint blockade

therapy (Figure 5D).
Generation and validation of the AA
classifier in the GEO dataset

For better clinical application, we generated a classifier with

a total of 60 genes containing the top 30 AAMRGs in each AA

subtype (Table S3). The concordance with the original

prediction based on Consensus Cluster was evaluated in the

TCGA cohort. We observed a concordance of 88.8% in the AA1

subtype and 89.1% in the AA2 subtype, which indicated that the

60-gene signature can reproducibly determine the COAD-AA

classification. Besides, the concordance correlation coefficient

(CCC) between the AA subtypes and the predicted AA subtypes
A B C D

E F

FIGURE 5

Correlation of the AA subtypes with treatment prognosis. Generation and validation of the AA classifier in the GEO dataset. (A) Bar chart of the
predicted IC50 of COAD chemotherapy drugs 5-fluorouracil, oxaliplatin, and irinotecan of two AA subtypes. (Mann-Whitney Wilcoxon test).
(B) Bar chart of the predicted IC50 of JAK inhibitor (JAK_8517 and AZ960_1250), IGF1R inhibitor (IGF1R_3801), and TGFb/SMAD4 receptor
inhibitor (SB505124_1194) of two AA subtypes. (Mann-Whitney Wilcoxon test) (C) EGFR signatures in two subtypes. (Mann-Whitney Wilcoxon
test) (D) SubMap analysis for immunotherapy prediction in melanoma cohort (upper) and the response of targeted therapy cetuximab and
bevacizumab in colorectal cancer cohort (bottom). (E) Overall survival of two AA subtypes typed by 60-gene classifier in GSE41258 cohort.
(Log-rank test) (F) Clinical and pathological characteristics of the two subtypes in the GSE41258 cohort. *P <0.05, **P < 0.01, ***P < 0.001,
****P < 0.0001.
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was 0.78 (95% CI, 0.74-0.81). Subsequently, we validated the

classifier in an independent colorectal cancer dataset, GSE41258,

through the NTP algorithm. Similarly, the AA1 subclass in the

GSE41258 dataset had poorer overall survival (Figure 5E), a

higher proportion of MSI, right colon location, and worse T and

N stages (Figure 5F).
Exploration of the cell type-specific
metabolic activity landscape with single-
cell data

To further comprehend the metabolic status among different

cell types in the tumor environment, we calculated the cell type-

specific KEGG and REACTOMEmetabolic pathway activity in a

single-cell RNA sequence dataset (39). As marked with

underlines in the figure, we found that amino acid-related

metabolic pathways, including branched-chain amino acids

(BCAAs) (valine, leucine, and isoleucine), tryptophan,

glutathione, and arginine metabolism, were almost highly

activated in epithelial and stromal cells (Figures 6A, B).

Among immune cells, mast cells and myeloid cells acquired

relatively higher amino acid metabolisms activity, such as

glutamate and glutamine, arginine, and histidine metabolism.

However, lymphocytes, including T cells and B cells, displayed a

relatively lower metabolic level. In addition to amino acid

metabolism, other metabolic processes differed in the AA

subtypes like glycosaminoglycan biosynthesis and arachidonic

acid metabolism, highly upregulated in the AA1 subtypes, were

mainly found to be active in both stromal cells and mast cells.
Discussion

In this study, for the first time, we established an amino acid

metabolism-related gene expression-based classification to

predict prognosis and assist individual treatment decisions in

COAD. The two AA subtypes displayed distinct overall survival

and clinical and molecular features. AA1 had an inferior overall

survival and harbored ‘inactive amino acid metabolism’ and

‘inflammatory and mesenchymal TME’ characteristics. The

higher MSI, TMB, and inflammatory microenvironment of

AA1 contribute to its sensitivity to ICB therapy. AA2 was

associated with ‘active amino acid metabolism’ features, and a

higher EGFR score predicted that AA2 could benefit from EFGR

inhibitor treatment.

Primary tumor location is associated with distinct

differences in the microbiome, clinical characteristics,

chromosomal and molecular characteristics, treatment, and

prognosis (45). Left colon cancer has a better prognosis than

right colon cancer under routine chemotherapy and targeted

treatment. The primary locations of AA1 subtype tumors are

mostly in the right colon. The right COAD is characterized by
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MSI, CIMP status, and BRAF/PI3KCA mutation (45) consistent

with AA1 features. Meanwhile, AA1 harbors more BRAF

mutations. The right COAD has been thought to arise through

an alternative serrated neoplasia pathway (46). A sessile serrated

adenoma is highlighted by BRAF V600E point mutation, CIMP,

and MLH1 methylation compared to classic adenomas (47).

These results suggest that the amino acid metabolic features of

right COAD and sessile serrated adenoma might be more biased

toward AA1.

Next, we explored the characteristics of these two subtypes

from mutation, transcriptome, tumor environment, and

therapeutic response aspects. Mutations in oncogenes or

tumor suppressors are known to alter cellular metabolism to

fuel cancer (48). At the DNA level, there was a higher tumor

mutation burden in AA1. BRAF and SMAD4 are highly mutated

in the AA1 subtype, and SMAD4mutation correlates with worse

clinical outcomes and resistance to chemotherapy (49). In

addition, we found high-frequency mutations, such as TTN

(muscle protein), SYNE1 (structural proteins), MUC16 (O-

glycosylated protein), OBSCN (cytoskeletal proteins), and

FAT4 (maintaining cell polarity), all of which were higher in

the AA1 than AA2 type. TTN, SYNE1, and MUC16 mutations

are associated with increased TMB and correlated with an

enhanced response to ICB immunotherapy in solid tumors

(50–53). OBSCN mutation might promote tumor proliferation,

migration, and metastasis (54, 55). FAT4mutation could predict

survival outcomes for stratifying patients with colorectal cancer

independent of TNM staging (56). These high-frequency

mutations deserve further study to explore their biological

functions in COAD.

Amino acids play many important roles in cell growth and

survival, including participating in the TCA cycle, nucleobase

synthesis, and regulating redox balance (57). Our results showed

that AA2 had an extensive activation in ‘arginine and proline

metabolism’, ‘tyrosine metabolism’, ‘glycine, serine, and threonine

metabolism’ pathways. Arginine can be endogenously synthesized

or taken up from the environment, and is critically involved in

processes including the synthesis of nitric oxide and polyamines to

maintain rapid proliferation (58). Due to the low expression of

arginine synthesis-related enzyme, arginine auxotrophic tumors

cannot endogenously synthesize sufficiently, and thus tend to

depend on the uptake of extracellular arginine. Pegzilarginase, an

inducer of arginine deprivation may promote an immune-

stimulatory TME and improve the immunotherapy effect (59).

Besides, a variety of catabolic enzymes involved in polyamine

catabolism are potential targets for the treatment of COAD (58).

Metabolites, rate-limiting enzymes, and ARH in tryptophan

metabolism are related to CRC. Upregulated tryptophan

catabolites such as kynurenine block effector T cell activation

and trigger T cell apoptosis to prevent the immune system from

successfully destroying cancer cells. Specifically, the enzyme

IDO1breakdown tryptophan into kynurenine may be a potential

therapeutic target for colorectal cancer (57). Serine and glycine
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contribute carbon to the serine, glycine, one-carbon (SGOC)

metabolic network, which plays a role in various cellular

processes, including nucleotide synthesis, lipid, and protein

synthesis, methylation metabolism, polyamine metabolism, and

redox balance. Serine and glycine were also reported as

immunosuppressive metabolites and promoted the survival of

non-transformed TME cells to form a protective niche for tumors.
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Hence, limiting serine metabolism may have substantial

therapeutic implications for immunotherapy (60). In our results,

the activation of these three metabolic sectors in AA2 is consistent

with this non-beneficiary feature of immunotherapy. Therefore,

we wonder whether the combination of specific metabolic

inhibitors and immunotherapy can improve the response rate.

Branched-chain amino acid (BCAA) metabolism, containing
A B

FIGURE 6

Exploration of the cell type-specific metabolic activity landscape with single-cell data. (A, B) Metabolic activity of different cell types in single-
cell sequence data.
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valine, leucine, and isoleucine, is the only upregulated amino acid

metabolic pathway in the AA1 subtypes. Emerging studies have

shown that the BCAAmetabolic enzymes BCAT1 and BCAT2 are

aberrantly activated and functionally required for malignant

tumors such as chronic myeloid leukemia (61), acute myeloid

leukemia (62), and PDAC (63). High levels of BCAT1 also

displayed a DNA hypermethylation phenotype (62). In addition,

tumor cell BCAAs and their metabolites, such as branched-chain

a-keto acid, can maintain the proliferative status of Treg cells (64)

or reduce the phagocytic activity of macrophages (65). BCAT1 can

also downregulate glycolysis in T cells (66). Together, BCAA

metabolic reprogramming plays a significant role in immune

suppression, thus boosting cancer progression (67). However,

clinical and biological research on BCAAs and COAD is still

rare. Our work indicated that the combination of BCAA

starvation or metabolic enzyme inhibitors with conventional

tumor therapy might further improve the prognosis of the AA1

subtype, which needs more evidence to prove the mechanism.

Although these two subtypes did not differ significantly in age,

gender, TNM stage, or AJCC stage, their prognosis was significantly

different. Considering the tumor microenvironment, we

hypothesized that the differences in stromal and immune-related

factors contribute to the prognosis. By comparing the transcriptome

data, we found that immune-, ECM- and metastasis-related

pathways were significantly enriched in the AA1 subtype. ADP

ribosylation, glycosaminoglycan biosynthesis, prostanoid

biosynthesis, and cyclooxygenase arachidonic acid metabolism

were upregulated in AA1. ADP-ribosylation (ADPR) is a

posttranslational modification (68); however, its relationship with

COAD survival is unknown. Glycosaminoglycan is a component of

the ECM that plays an important role in supporting cells and

providing a platform for cell interactions (69). Dysregulation of

glycosaminoglycanmetabolism, which is highly upregulated in AA1

and mainly expressed by stromal cells and mast cells, promotes

sustained proliferation, angiogenesis, metastasis, and evasion of the

immune response (69). PGE has been shown to promote tumor

progression by silencing tumor suppressors, inducing cancer stem

cell formation, enhancing immunosuppressive cells, and impairing

cytotoxic CD8 T-cell and NK-cell functions (70). These

dysregulated pathways in AA1 indicated that the enriched and

activated stromal cells may largely contribute to the inferior

prognosis of AA1. The heterogeneity of AA subtypes might also

determine the different sensitivities of therapies. AA1 was more

sensitive to irinotecan, ICB therapy (both anti-CTLA-4 and anti-

PD-1), and bevacizumab. Meanwhile, AA1 harbored more

resistance to cetuximab. Referring to the BRAF mutate COAD,

the combination of anti-BRAF, anti-MEK, and anti-EGFR targeted

therapy may improve the efficacy in AA1. In contrast, AA2 was

more sensitive to 5-fluorouracil and oxaliplatin and may benefit

more from cetuximab treatment. Finally, we established a 60-

AAMRG-based classifier to simulate the 358-AAMRG classifier

well, which is more concise and convenient in clinical application.
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In conclusion, we built a new binary classifier of COAD, and

using the AAMRG classifier can partially explain the

heterogeneity of COAD. This classifier would help to timely

select AA1 subtype patients who would benefit more from

precise therapy and achieve better clinical outcomes.
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