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Human immunodeficiency virus (HIV) infection might have effects on both the

human bacteriome and mycobiome. Although many studies have focused on

alteration of the bacteriome in HIV infection, only a handful of studies have also

characterized the composition of the mycobiome in HIV-infected individuals.

Studies have shown that compromised immunity in HIV infection might

contribute to the development of opportunistic fungal infections. Despite

effective antiretroviral therapy (ART), opportunistic fungal infections continue

to be a major cause of HIV-related mortality. Human immune responses are

known to play a critical role in controlling fungal infections. However, the effect

of HIV infection on innate and adaptive antifungal immunity remains unclear.

Here, we review recent advances in understanding of the fungal microbiota

composition and common fungal diseases in the setting of HIV. Moreover, we

discuss innate and adaptive antifungal immunity in HIV infection.
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Introduction

The human mycobiome inhabits the skin, respiratory tract, gastrointestinal tract,

genitourinary tract, and other mucosal surfaces of the host. It has been shown that over

600 different fungi can cause disease in humans (1). In addition, over 300 million people

are affected by serious fungal diseases, causing over 1.6 million deaths each year (2). The
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increased incidence of global epidemic mycoses might be

attributed to changes in the environment, population growth

in endemic areas, and increased human immunodeficiency virus

(HIV)-related immunosuppressive status (3).

In HIV infection, differences in bacterial population

composition, including the oral microbiome (4, 5), lung

microbiome (6, 7) and gut microbiome (8, 9), have been

reported in HIV-infected compared to uninfected individuals.

In addition, immunity compromised by HIV infection may lead

to altered fungal composition, promoting the development of

opportunistic fungal infections in HIV-infected individuals (10).

It has been shown that opportunistic fungal infections have an

unacceptably high toll on people living with HIV (PLWH) and

are a major driver of HIV-related death (11). Although ART

might decrease the mortality rate, the substantial burden of

fungal disease remains high for HIV-infected individuals who

are undiagnosed, untreated or fail ART (12). Fungal diseases in

HIV infection have also not received sufficient attention from

the global community (11).

It has been shown that host innate and adaptive immune

responses play an important role in controlling fungal infections

(13). Innate antifungal immune responses are triggered when

fungal antigens, such as a- and b-glucans, O- and N-linked

mannans, and chitin, stimulate pattern recognition receptors

(PRRs) expressed on host cells, including C-lectin receptors

(CLRs), NOD (nucleotide-binding and oligomerization

domain)-like receptors (NLRs), and Toll-like receptors (TLRs),

to initiate signal transduction cascades, which promote the

production of chemokines and cytokines to eliminate fungal

pathogens and activate adaptive responses (14). However, the

substantial loss of CD4+ T cells in HIV infection might lead to

deficiencies in antifungal immunity, contributing to an increased

risk of opportunistic fungal infections. Furthermore, depletion of

interleukin (IL)-17 and IL-22-producing T helper (Th) 17 cells

might result in impaired integrity of mucosal epithelial barriers,

leading to fungal translocation from the gut lumen into the

systemic circulation (15, 16). Microbial translocation might

contribute to HIV-associated immune activation and

inflammation, as well as the development of non-AIDS events

(15, 16).

Because appropriate culture conditions remain unclear,

most of the human mycobiome is nonculturable by culture-

dependent methods (17). However, with the advent of new

techniques, next-generation sequencing has been widely used

for mycobiome detection in recent years (18). Internal

transcribed spacer (ITS) sequencing and 18S rRNA are the

most applied techniques to detect the mycobiome (19). In this

review, we discuss alterations in the mycobiome and common

fungal diseases in HIV infection, as well as the effects of HIV

infection on innate and adaptive antifungal immunity.
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Alterations of the mycobiome in
HIV infection

The oral mycobiome in HIV infection

Alterations in oral bacterial communities and virome in HIV-

infected individuals have been reported in many studies (4, 5, 20–

22). The possible reasons for oral microbiome dysbiosis might be

the disrupted oral immunity caused by HIV infection, including

changes in secretory components in saliva, deficiency of innate

immune responses and adaptive immune responses (5).

In addition to oral bacterial and virus communities, the oral

mycobiome might contribute to understanding host−pathogen

interactions that occur in HIV infection (23). For example,

Ghannoum et al. characterized the oral mycobiome in healthy

individuals using ITS sequencing (24), detecting 74 culturable

and 11 nonculturable fungal genera (24). Candida species were

the most frequent of the oral mycobiome (isolated from 75% of

participants), followed by Cladosporium (65%), Aureobasidium

and Saccharomycetales (50%, respectively) (24). Previous studies

have demonstrated that oral fungal colonization is altered in

HIV infection (25–28) (Table 1). In HIV-infected individuals,

Candida (92%), Epicoccum (33%), and Alternaria (25%) are the

most common genera in the oral mycobiome, whereas the most

abundant oral mycobiome genera in HIV-uninfected controls

are Candida, Pichia, and Fusarium, present in 58%, 33%, and

33%, respectively (25, 26). A recent study also compared the oral

mycobiome between 30 HIV-infected individuals and 30 healthy

controls and explored the effect of ART on the oral mycobiome

in HIV infection. They found Candida, Mortierella, Malassezia,

Simplicillium, and Penicillium to be significantly increased in

HIV-infected individuals and dramatically decreased after ART.

In contrast, the abundances of Verticillium, Issatchenkia, and

Alternaria were significantly increased in PLWH after ART (27).

They found that the composition of the oral mycobiome in the

HIV-infected subjects after 6 months of ART was similar to that

in the HIV-uninfected individuals. Moreover, Mortierella,

Malassezia, Simplicillium, and Chaetomium were positively

associated with viral load (VL), and Verticillium, Thyrostroma

and Archaeorhizomyces were negatively associated with VL and

positively correlated with CD4+ T-cell counts. In addition,

Saccharomyces was positively correlated with VL and

negatively associated with CD4+ T-cell counts (27). Therefore,

HIV infection and ART administration might impact on the

composition of the oral mycobiome, and the dysbiosis of oral

mycobiome in HIV infection could be partially restored after

ART. Furthermore, some oral fungi were sensitive to the changes

in CD4+ T-cell counts and VL in the blood of HIV-infected

individuals, thus changes in the oral mycobiome in HIV

infection after ART may reflect the immune status of patients.
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The respiratory tract mycobiome in
HIV infection

Due to incomplete restoration of pulmonary immunity with

ART, HIV-infected individuals continue to have high burdens of

pulmonary comorbidities, including chronic obstructive

pulmonary disease (COPD) (34, 35), lung cancer (36–38),

pulmonary fibrosis (39) and pulmonary emphysema (39–41).

Overall, the complex respiratory tract microbiome, including

the lung mycobiome, may play an important role in lung

disease (42).

Previous studies have indicated that the diversity and

composition of the lung microbiome in HIV-infected patients

are altered compared with HIV-uninfected individuals (43–45)

(Table 1). In addition, studies have also reported alterations in the

respiratory tract mycobiome in HIV-infected individuals. Bittinger

et al. analyzed bronchoalveolar lavage (BAL) samples from 42 lung

transplant patients, 19 HIV-positive patients, 13 patients with

various pulmonary diseases and 12 healthy controls; only low

levels of fungal reads were detected in the healthy individuals, and

the fungi detected comprised taxa with little clinical significance,

except for Aspergillus. Conversely, clinical pathogens such as
Frontiers in Immunology 03
Pneumocystis, Cryptococcus, and Aspergillus were found in BAL

of HIV-infected subjects (30). Another study published by Cui

et al. compared fungal communities in the respiratory tract from

24 healthy subjects and 32 HIV-infected subjects: 9 species were

overrepresented in the BAL of HIV-infected subjects, including

Pneumocystis jirovecii, Junghuhnia nitida, Phlebia tremellosa,

Oxyporus latemarginatus, Sebacina incrustans, Ceriporia lacerata,

Pezizella discrete, Trametes hirsute, and Daedaleopsis confragosa

(29). Of these species, Pneumocystis jirovecii and Ceriporia lacerata

are known to be pulmonary pathogens associated with

immunosuppression. In addition, Pneumocystis jirovecii

pneumonia (PCP) is one of the most common opportunistic

infections in PLWH. These data reveal that alterations in the

respiratory tract mycobiome might be an important driver of

opportunistic infection in HIV-infected individuals.
The gut mycobiome in HIV infection

The gut microbiome is being progressively recognized as

playing an important role in promoting immune activation and

inflammation in HIV infection. Dysbiosis of the gut microbiome
TABLE 1 The mycobiome in HIV infection.

References Study cohort Samples Design Mycobiome alterations

The oral mycobiome in HIV infection

Chang et al.
(27)

30 HIV+ subjects prior to and
after 6 months of ART and
30 healthy controls

Saliva Cross-
sectional
and
longitudinal

• Increased Candida, Mortierella, Malassezia, Simplicillium, and Penicillium in the HIV
group, decreasing after ART.
• Increased Verticillium, Issatchenkia, and Alternaria in HIV+ subjects after ART.

Fidel et al.
(28)

149 HIV+ subjects and 88
HIV- subjects

Oral rinse Cross-
sectional

• Predominated by four major clusters: Candida albicans, Candida dubliniensis, Malassezia
restricta, and Saccharomyces cerevisiae.
• Several clinical variables affect the oral mycobiome, including HIV positivity and ART.

Mukherjee et
al. (25)

12 HIV-infected and 12
uninfected individuals

Oral rinse Cross-
sectional

• Enrichment of Candida, Epicoccum, and Alternaria in HIV-infected individuals (present in
92%, 33%, and 25%, respectively) and Candida, Pichia, and Fusarium in uninfected
individuals (58%, 33%, and 33%, respectively).

The respiratory tract mycobiome in HIV infection

Cui et al. (29) 32 HIV-infected and 24 HIV-
uninfected individuals

Oral washes,
induced sputa,
and BAL

Cross-
sectional

• Increased Pneumocystis jirovecii, Junghuhnia nitida, Phlebia tremellosa, Oxyporus
latemarginatus, Sebacina incrustans, Ceriporia lacerata, Pezizella discrete, Trametes
hirsute, and Daedaleopsis confragosa in HIV-infected individuals.

Bittinger et
al. (30)

19 HIV+ subjects and 12
healthy controls

Oropharyngeal
wash and BAL

Cross-
sectional

• Increased clinical pathogens Pneumocystis, Cryptococcus, and Aspergillus in HIV-
infected individuals.

The gut mycobiome in HIV infection

Hamad et al.
(31)

31 HIV-infected individuals
and 12 uninfected-HIV
individuals

Fecal Cross-
sectional

• Enriched Ascomycota, Pichia, Penicillium brevicompactum and Penicillium in healthy
controls and enriched Candida albicans and Candida tropicalis in HIV-infected
individuals.

Wu et al. (32) 75 HIV-infected patients and
55 HIV-uninfected
participants

Fecal Cross-
sectional

• Nectriaceae, Hypocreales, and Sordariomycetes were the top 3 fungal taxa in HIV-
infected individuals. While Basidiomycota, Phallaceae, and Phallales were particularly
enriched in HIV-uninfected controls.

Yin et al. (33) 18 HIV-infected patients and
22 healthy controls

Fecal Cross-
sectional

• Aspergillus was the most abundant genus (49.92%) in the HIV-infected group, while the
most abundant fungal genus was Candida (38.31%) in the healthy controls.
• Unclassified_Aspergillaceae and Dirkmeia were enriched in the high-CD4+ T-cell
group, while Candida, Sordariales, Saccharomycetaceae, and Neocosmospora were
enriched in the low-CD4+ T-cell group.
HIV, human immunodeficiency virus; ART, antiretroviral therapy; BAL, bronchoalveolar lavage.
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has been demonstrated in many studies (9, 46, 47), and such

alterations of the gut microbiome composition in HIV infection

might be attributed to the loss of appropriate innate and

adaptive immune responses (48).

In the human gut, the diversity of the fungal community is

much lower than that of the bacterial microbiota (49). Fungi in the

gastrointestinal tract are often ignored, as fungi comprise a tiny

fraction of the gut microbes and most are unculturable. Previous

studies have been shown that Candida, Saccharomyces,

Aspergillus , Cryptococcus , Malassezia , Cladosporium ,

Galactomyces and Trichosporon can grow at 37°C and therefore

have the potential to permanently colonize in the gut (50). In

addition, although Histoplasma spp., Coccidioides spp. and

Blastomyces spp. cannot colonize the mucosal surfaces, they can

cause severe lung infections (51) (Figure 1). A recent study

investigated the gut mycobiome of the Human Microbiome
Frontiers in Immunology 04
Project (HMP) cohort and revealed Saccharomyces, Malassezia,

and Candida to be the most abundant genera present in this

cohort (49). In a study of 96 healthy individuals, the most

common genera in fecal samples were Saccharomyces, Candida

and Cladosporium (present in 89%, 57% and 42%, respectively)

(52). Another study showed that the most prevalent genus in

healthy individuals is Penicillium (present in 73% of samples),

followed by Candida and Saccharomyces (55% for both), Mucor

(38%) and Aspergillus (35%) (53). Additionally, gut mycobiome

alterations in HIV infection have been reported (Table 1). Gouba

et al. found decreased fungal species diversity in HIV-infected

individuals (54), showing significantly more abundance of

Candida spp. in HIV-infected patients than in healthy

individuals. Candida albicans in the gut can affect many

processes, such as digestion and immunity (55). Candida spp.

are more prevalent in HIV-infected individuals with diarrhea and
FIGURE 1

Impact of HIV infection on innate and adaptive immune responses to opportunistic fungal pathogens. HIV infection might lead to impairment of
the innate and adaptive arms of the immune system, resulting in susceptibility to opportunistic fungal infections. Neutrophils control fungal
infections through multiple mechanisms, including AMPs, ROS and NETs. Macrophages directly kill invading fungi through phagocytosis. DCs
recognize fungal antigens by PRRs and also promote Th1 and Th17 immunity, as well as antibody production, to clear fungal infections. HIV can
not only lead to impairment of neutrophil responses, phagocytosis of macrophages and the antigen presentation capacity of DCs but also cause
defects in Th1, Th12 and B-cell responses. Abbreviations: AMPs, antimicrobial peptides; ROS, reactive oxygen species; NETs, neutrophil
extracellular traps; DCs, dendritic cells; Th1, T helper 1 cell; Th17, T helper 1 cell; PRR, pattern recognition receptor.
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recent antibiotic treatment than in healthy controls (54). Yin et al.

showed that Aspergillus was the most abundant genus (49.92%) in

the HIV-infected group, while the most abundant fungal genus

was Candida (38.31%) in the healthy controls (33). Wu et al.

found that 4 taxa from Ascomycota and 16 taxa from

Basidiomycota were differentiated between HIV-infected

individuals and HIV-uninfected controls in the fungal linear

discriminant analysis (LDA) analysis. Nectriaceae, Hypocreales,

and Sordariomycetes were the top 3 fungal taxa in HIV-infected

individuals. While Basidiomycota, Phallaceae, and Phallales were

particularly enriched in HIV-uninfected controls (32). Another

study also compared the fungal populations of fecal samples from

HIV-infected individuals and healthy controls; Ascomycota,

Pichia, Penicillium brevicompactum and Penicillium were more

abundant in healthy controls, whereas the abundances of Candida

albicans and Candida tropicalis were enriched in HIV-infected

individuals (31). In addition, Yin et al. demonstrated the

relationship between CD4+ T-cell counts and the gut

mycobiome in the HIV-infected participants (33). They found

that patients with low CD4+ T-cell counts and patients with high

CD4+ T-cell counts have different fungal community

characteristics. Eurotiomycetes was significantly decreased and

Saccharomycetes was significantly increased in the low CD4+ T-

cell group compared to the high CD4+ T-cell group. At the genus

level, Candida was significantly increased in the low CD4+ T-cell

group, indicating a high risk of opportunistic infection. Moreover,

unclassified Aspergillaceae and Dirkmeia were enriched in the

high CD4+ T-cell group, while Sordariales, Saccharomycetaceae,

and Neocosmospora were enriched in the low CD4+ T-cell group.

It has been shown that members of the genus Neocosmospora can

lead to lung infections in liver transplant patients (56) and contain

highly prevalent and aggressive fungal pathogens (57), suggesting

that the immune T-cell reduction might expose patients to a state

of high-risk infection.
Common fungal diseases in
HIV infection

Oropharyngeal candidiasis

OPC is the most common opportunistic fungal infection in

the early stages of HIV infection (58–60). OPC is caused by

various Candida species, with Candida albicans being the most

prevalent species isolated from HIV-infected patients (58, 59, 61,

62). In patients with a new diagnosis of HIV, the prevalence of

OPC is reportedly 27% (63). It has also been found that OPC

occurs in approximately 80%-90% of HIV-infected individuals

in different phases of the disease (64). Although the occurrence

of OPC in HIV infection has significantly decreased after the

introduction of ART, it remains a common opportunistic

infection in HIV (65, 66).
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The incidence of OPC in HIV infection is influenced by a

multitude of factors (67), including immune status (68),

bacteriome–mycobiome interaction (69), anti-fungal therapy

and ART (70). Several studies have shown that a lower CD4+

T-cell count, especially below 200 cells/ml, is strongly associated
with increased occurrence of OPCs (71–74). A reduction in

CD4+ T cells, especially IL-17-producing cells, in the oral

mucosa may be associated with susceptibility to OPC (75). In

addition, impairment of oral immunity by the reduction of

salivary components such as salivary IgA, defensins, and some

cytokines might lead to the onset of OPC (76). However, host

defense mechanisms executed by keratinocytes, calprotectin,

CD8+ T cells, and phagocytes partly compensate for these

defects, which may play a key role in controlling C. albicans

proliferation and preventing systemic dissemination in HIV

infection (68).
Pneumocystis jirovecii pneumonia

PCP is one of the most common opportunistic fungal

infections in immunocompromised individuals and HIV-

infected individuals (77, 78). In the late 1980s, PCP occurred

in approximately 75% of HIV-infected individuals (79), though

the incidence of HIV-associated PCP has decreased dramatically

with the implementation of ART and chemoprophylaxis (80).

Nonetheless, PCP continues to be a serious problem in HIV-

infected patients who are undiagnosed and untreated or in those

with ART failure (81). It is speculated that there are more than

400,000 cases of PCP worldwide each year (82, 83).

As mentioned above, PCP tends to occur most frequently

when the CD4+ T-cell count is below 200 cells/ml (84–86), and
CD4+ T cells, CD8+ T cells, neutrophils, alveolar macrophages

and soluble mediators have been implicated in clearance of PCP

(87). Carmona et al. demonstrated that Pneumocystis-derived b-
glucans activate dendritic cells (DCs) through the Fas ligand

(FasL) mechanism and the Dectin-1 receptor, leading to

increased expression of costimulatory molecules and T helper

1 (Th1) cell activation (88). Another study found that DCs

stimulated by cell-surface b-glucan components of Pneumocystis

interact with lymphocytes to produce IL-17 and IL-22 (89). Th1,

Th2 and Th17 responses are essential in Pneumocystis clearance

and contribute to host protection against this pathogen (90).

However, Th2 and Th17 responses also play a role in

Pneumocystis-driven pathology (90). In addition, the cytokines

produced by CD4+ T cells, such as IFN-g, also are important for

the control of PCP (87, 90).
Cryptococcal meningitis

Cryptococcal meningitis (CM) is one of the most common

opportunistic infections in the late stage of AIDS (91), and
frontiersin.org
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Cryptococcus neoformans is the most common cause of death in

HIV-infected individuals. An estimated 223,100 cases of CM

occur globally each year, resulting in 181,100 deaths; 135,900

occur in sub-Saharan Africa, and CM accounts for 15% of all

AIDS-related deaths (91). Despite effective ART and antifungal

drugs, the mortality rate of CM in AIDS patients is still as high as

30%-50%, especially in patients in resource-poor areas (92–94).

Evidence suggests that host immune responses to

cryptococcosis play a critical role in disease progression (95–

97). CM can occur following primary lung infection or by

reactivation and dissemination of latent pulmonary infection

in the setting of cell-mediated immunodeficiency when CD4+ T-

cell counts are <100 cells/ml in the late-stages of HIV-infection

(98). Previous studies have shown that CD4+ T cells possibly

mediate protective host immunity against cryptococcal via

production of Th1-type cytokine responses, including IL-2, IL-

12, tumor necrosis factor alpha (TNF-a), and IFN-g, which play

an essential role in recruitment of lymphocytes and phagocytes

to clear the infection (99, 100). Higher levels of IFN-g in

cerebrospinal fluid (CSF) are associated with a faster rate of

fungal clearance and lower fungal burdens (101, 102). Moreover,

higher pre-ART levels of IL-4 and IL-17 and lower TNF-a,
granulocyte colony-stimulating factor (G-CSF), granulocyte-

macrophage colony-stimulating factor (GM-CSF) and vascular

endothelial growth factor (VEGF) might predict future immune

reconstitution inflammatory syndrome (IRIS) (103).
Talaromyces marneffei infection

Talaromycosis is an invasive fungal disease caused by the

opportunistic fungus Talaromyces marneffei (TM) and is

prevalent mainly in Southeast Asia. Since the HIV pandemic,

the prevalence of talaromycosis has rapidly increased, especially in

areas of Southeast Asia, including Thailand, Vietnam and

Myanmar, and East Asia, including South China, Hong Kong,

Taiwan, and northeastern India (104). A recent study showed that

the prevalence of TM infection in Asia was 3.6% in HIV-infected

individuals (105). The prevalence of TM infection in HIV-infected

individuals has been reported to be 6.4% in Vietnam, 3.9% in

Thailand, 3.3% in China, 3.2% in India, and 2.1% in Malaysia

(105). Furthermore, mortality rate of TM infection is reportedly

higher than that of most HIV-related complications in PLWH

(106). Although ART has led to a decline in the incidence of TM

infection, it remains a major problem in undiagnosed and

untreated HIV-infected individuals (81).

Innate and acquired immune responses play a crucial role in

controlling TM infection (107). Innate immune cells, including

monocytes (108), macrophages (109, 110), polymorphonuclear

neutrophils (PMNs) (111), and DCs (112) have been shown to

play an essential role in combating TM. These innate immune

cells promote clearance of TM infection by producing

proinflammatory cytokines such as IL-1b, TNF-a, and IFN-g
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and anti-inflammatory cytokines such as IL-10 (107). A recent

study also demonstrated that single-nucleotide polymorphisms

(SNPs) in TLR2 might contribute to increased susceptibility and

severity of TM in Han Chinese populations (113). Moreover,

another study found that severe TM infection in Southeast Asia

may be related to the high prevalence of anti-IFN-g
autoantibody-associated HLA-DRB1*16:02 and HLA-

DQB1*05:02 alleles (114). A previous study found that HIV-

infected individuals with CD4+ T-cell counts below 200 cells/ml
had a higher risk of TM infection (105). In general, immune

deficiencies that reduce CD4+ T cells and IFN-g, IL-12, and IL-

17 functions may be predisposing factors for TM infection, as

evidenced by the high infection burden in advanced HIV-

infected individuals, highlighting the important roles of Th1

and Th17 responses in host resistance to TM infection (115).
Histoplasmosis

Histoplasmosis is caused by Histoplasma capsulatum, which

is a common endemic mycosis in PLWH (116). Globally,

epidemic distribution of histoplasmosis mainly in regions of

the Americas (81). In addition, histoplasmosis is also endemic in

many Asia areas, including Southeast Asia, India, and China

along the Yangtze River (117, 118). With the spread of HIV, the

case-fatality rates of disseminated histoplasmosis increased

among culture-positive cases, ranging from 10% to 53% (119).

Disseminated histoplasmosis has been neglected due to its

nonspecific symptoms, frequent misdiagnosis as tuberculosis,

and insensitive diagnostic methods (120).

HIV-infected individuals are at greatly increased risk of

developing histoplasmosis, especially those with CD4+ T-cell

counts <200 cells/ml (121). Histoplasma capsulatum yeasts can

infect macrophages and survive within phagocytic cells (122).

The strategies of Histoplasma capsulatum against macrophages

might include immune response evasion on entry, inactivation

of nitrogen and oxygen reactive species, hindrance of lysosomal

pH reduction, production of siderophore, prevention of

phagolysosomal fusion, and induction of apoptosis (123). In

addition to the control of Histoplasma capsulatum infection by

cellular immune response, the roles of antibodies in the

serodiagnosis of histoplasmosis have also been proposed.

Almeida et al. characterized Histoplasma capsulatum proteins

specifically recognized by antibodies in serum samples

from histoplasmosis patients by an immunoproteomic

approach (123).
Aspergillosis

Aspergillosis is a life-threatening fungal disease in

immunocompromised individuals, including PLWH. Previous

study has been shown that the incidence of aspergillosis was 3.5
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cases per 1000 person-years among 35,252 HIV-infected

individuals (124). Although aspergillosis occurs uncommonly

in HIV-infected individuals, it is associated with a short lifespan

after diagnosis.

It has been shown that older people, people with severe

immunosuppression or advanced HIV disease, and people with

leukopenia and neutropenia are at increased risk of developing

aspergillosis (124). Before the advent of ART, invasive

aspergillosis in HIV-infected individuals tended to occur when

CD4 T-cell counts <100 cells/µl, especially in patients with prior

or concomitant opportunistic infections (125). Therefore,

modulation of host immunity plays a critical role in the

control of aspergillosis. Animal studies in aspergillosis have

also demonstrated beneficial effects of G-CSF, GM-CSF, IFN-g,
and monoclonal antibodies (126).
Antifungal immunity in HIV infection

Innate antifungal immunity in HIV
infection

The innate immune response is the first line of defense against

fungal infections (127). Innate immune cells, such as neutrophils,

monocytes, macrophages, and dendritic cells, are known to have a

crucial function in recognizing and clearing fungi, inducing

protective immune responses, and initiating adaptive immune

responses during fungal infections (127, 128). Neutrophils control

fungal infections through multiple mechanisms, including

production of granule proteins, antimicrobial peptides (AMPs)

and reactive oxygen species (ROS) and formation of neutrophil

extracellular traps (129, 130). Indeed, neutrophils are critical cells

against Candida spp. and Aspergillus spp (131). Macrophages not

only directly kill invading fungi through phagocytosis but also

initiate and regulate downstream immune responses to clear

fungal infections by releasing cytokines, presenting antigens, and

recruiting other immune cells (132). Fungal antigens are also

recognized by DCs mediated by CLRs, including dectin-1, dectin-

2 and DC-SIGN, as well as TLRs, including TLR2, TLR4 and

TLR9 (133). DCs might also collaborate with other immune cells,

such as Group 2 innate lymphoid cells (ILC2s), to promote innate

antifungal immune responses and regulate adaptive immune

responses (130). Nevertheless, the effect of HIV infection on

innate antifungal immunity remains unclear.

HIV does not directly infect neutrophils but can cause

impaired neutrophil responses, leading to impaired bacterial

and fungal killing, which might result in increased susceptibility

to bacterial infections and mycoses (134). Enomoto et al. found

that anti-cryptococcal activity in HIV-infected patients is

enhanced by administration of granulocyte colony stimulating

factor (G-CSF) to enhance neutrophil defense (135). Moreover,

Kalem et al. showed that HIV-1 infection of THP-1

macrophages increases the rate of Cryptococcus neoformans
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cell phagocytosis (136); these authors revealed that

macrophages infected with HIV-1 alone might upregulate

production of TNF-a and activate NF-kB signaling but that

Cryptococcus neoformans coinfection rapidly represses this

proinflammatory response (136). In addition, HIV-infected

macrophages might contribute to increased susceptibility to

opportunistic fungal infections (137). Studies have indicated

that HIV infection of macrophages impairs the phagocytosis

and killing of Pneumocystis jirovecii (138), Candida albicans

(139) and Aspergillus fumigatus (140). A possible reason is that

the HIV-1 accessory proteins Nef and Tat downregulate the

mannose receptor expressed on the surface of macrophages. It

has also been shown that HIV-1 reduces the number of DCs and

disrupt their function. In HIV infection, DCs have a reduced

ability to present antigens and stimulate T-cell proliferation and

show a partially activated phenotype and impaired TLR

responses (141, 142). T-cell proliferation in HIV-infected

individuals might be inhibited by plasmacytoid DCs (pDCs)

via induction of indoleamine-2,3-dioxygenase (IDO) (143). IDO

expression by pDCs also blocks T-cell differentiation into Th17

cells, which might have a negative effect in adaptive antifungal

immunity and predispose patients toward opportunistic

infections, such as fungal infections with C. albicans and C.

neoformans (141). Overall, HIV infection might lead to

quantitative and qualitative deficiencies in innate antifungal

immunity (Figure 1).
Adaptive antifungal immunity in HIV
infection

CD4+ T cells are generally considered to play an important

role in defense against fungal infections. The importance of Th1

and Th17 responses in antifungal defense mechanisms has been

described (144). It is well known that the Th1 response provides

protective immunity mainly through production of

proinflammatory cytokines, such as IFN-g, IL-2, IL-12, and
TNF-a (144). The IFN-g produced by Th1 cells activates

phagocytes, such as macrophages, and promotes phagocytosis,

MHC-II molecule upregulation and antigen presentation by

APCs (145). Enhanced protection against Aspergillosis,

Cryptococcosis, and coccidioidomycosis has been demonstrated

in patients receiving IFN-g immunotherapy (146). Th17 cells

produce cytokines, including IL-17A, IL-17F, and IL-22, which

promote neutrophil recruitment and fungicidal activity and

induce production of AMPs from epithelial cells and

keratinocytes to prevent fungal overgrowth (145). The Th17

response has been shown to play an essential role in promoting

clearance of fungi, such as Candida albicans and Malassezia spp

(147). In addition, antibodies are important in limiting the

fungal burden and its clearance (148). Antibodies can defend

against fungal pathogens through direct mechanisms, including
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inhibition of fungal pathogen growth or fungicidal activity, and

indirect mechanisms, including opsonization, complement

pathway activation and antibody-directed cell toxicity (ADCC)

(146). Antibody responses to Cryptococcus neoformans (149)

and Candida albicans (150) have been reported.

HIV infection leads to a rapid and massive reduction in

CD4+ T cells. One recent study showed that levels of Th1

cytokines in CSF, including IL-12 and TNF-a, correlate

positively with HIV-associated cryptococcal meningitis (151).

Moreover, in HIV-infected individuals, IFN-g produced by Th1

cells plays an important function in improving the antifungal

immune response to cryptococcal infection (102) and oral

candidiasis (152). Jarvis et al. found that the Th1 responses of

Cryptococcus-specific CD4+ T cells play a key role in promoting

circulating lymphocyte and monocyte recruitment to the central

nervous system (CNS), CNS macrophage and microglial

activation and organism clearance (153). In addition to the

Th1 response, Th17 cells are critical in defense against

bacterial and fungal infections at mucosal sites (154, 155).

However, Liu et al. found that Th17-associated functions (IL-

22, IL-17 and IL-2) of Candida albicans-specific CD4 T cells are

disrupted in early HIV infection (156). Early massive loss of

Th17 cells in HIV infection has also been shown to be a likely

cause of the high prevalence of chronic mucocutaneous

candidiasis in people with early HIV infection (157).

Therefore, mucosal candidiasis susceptibility in HIV infection

may be attributed to Th17-cell depletion.

HIV-1 replication might lead to abnormalities in all major

lymphocyte populations as well as hyperactivation and

exhaustion of the B-cell compartment (158). Studies have

found that impaired B-cell responses due to HIV infection

might affect B-cell responses in cryptococcal coinfection (159,

160). Moreover, levels of antibodies, such as plasma IgM,

laminarin (Lam)-binding IgM and IgG, are significantly lower

in HIV-infected individuals who develop Cryptococcus-

associated IRIS than in those who do not, supporting the role

for antibody immunity in cryptococcosis (161). Immune status

is also important in antibody responses to Pneumocystis jirovecii

(162). A previous study showed that IgM antibody responses to

Pneumocystis jirovecii major surface glycoprotein (Msg),

including MsgC1 (carboxyl terminus), MsgC3, MsgC8 and

MsgC9, were significantly lower in HIV-infected individuals

than in HIV-uninfected controls (163). Taken together, these

findings suggest that competent adaptive immune responses are

crucial for defense against fungal infections and that HIV

infection might lead to impaired antifungal immunity (Figure 1).
Conclusion

Our review discusses recent findings on alterations in the

mycobiome in the setting of HIV infection. The mycobiome

contributes greatly to opportunistic infections in individuals
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with advanced HIV infection. Despite widespread use of ART,

fungal opportunistic infections are the leading cause of HIV-

related death globally. It is evident that human immune

responses play a critical role in defense against fungal

infection. We review the impact of HIV infection on host

innate and adaptive antifungal immunity, contributing to a

better understanding of the underlying immunopathogenesis

of fungal infections in HIV infection. In addition, further efforts

to develop new diagnostics and global access to antifungal drugs

and other effective therapies are needed to enable early diagnosis

and treatment of fungal infections.
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