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Sex-related differences in the
response of anti-platelet drug
therapies targeting purinergic
signaling pathways in sepsis
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Sepsis, a complex clinical syndrome resulting from a serious infection, is a

major healthcare problem associated with high mortality. Sex-related

differences in the immune response to sepsis have been proposed but the

mechanism is still unknown. Purinergic signaling is a sex-specific regulatory

mechanism in immune cell physiology. Our studies have shown that blocking

the ADP-receptor P2Y12 but not P2Y1 receptor was protective in male mice

during sepsis, but not female. We now hypothesize that there are sex-related

differences in modulating P2Y12 or P2Y1 signaling pathways during sepsis. Male

and female wild-type (WT), P2Y12 knock-out (KO), and P2Y1 KO mice

underwent sham surgery or cecal ligation and puncture (CLP) to induce

sepsis. The P2Y12 antagonist ticagrelor or the P2Y1 antagonist MRS2279 were

administered intra-peritoneally after surgery to septic male and female mice.

Blood, lungs and kidneys were collected 24 hours post-surgery. Sepsis-

induced changes in platelet activation, secretion and platelet interaction with

immune cells were measured by flow cytometry. Neutrophil infiltration in the

lung and kidney was determined by a myeloperoxidase (MPO) colorimetric

assay kit. Sepsis-induced platelet activation, secretion and aggregate formation

were reduced in male CLP P2Y12 KO and in female CLP P2Y1 KO mice

compared with their CLP WT counterpart. Sepsis-induced MPO activity was

reduced in male CLP P2Y12 KO and CLP P2Y1 KO female mice. CLP males

treated with ticagrelor or MRS2279 showed a decrease in sepsis-induced MPO

levels in lung and kidneys, aggregate formation, and platelet activation as

compared to untreated male CLP mice. There were no differences in platelet

activation, aggregate formation, and neutrophil infiltration in lung and kidney

between female CLP mice and female CLP mice treated with ticagrelor or

MRS2279. In human T lymphocytes, blocking P2Y1 or P2Y12 alters cell growth

and secretion in vitro in a sex-dependent manner, supporting the data obtained

in mice. In conclusion, targeting purinergic signaling represents a promising
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2022.1015577/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.1015577/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.1015577/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.1015577/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2022.1015577&domain=pdf&date_stamp=2022-11-02
mailto:elisabetta.liverani@ndsu.edu
https://doi.org/10.3389/fimmu.2022.1015577
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2022.1015577
https://www.frontiersin.org/journals/immunology


Abbreviations: CLP, cecal ligation and double punctur

b; MPO, myeloperoxidase; PBMCs, peripheral blood m

phosphate-buffered saline; PF4, platelet factor 4.

Amoafo et al. 10.3389/fimmu.2022.1015577

Frontiers in Immunology
therapy for sepsis but drug targeting purinergic signaling is sex-specific and

needs to be investigated to determine sex-related targeted therapies in sepsis.
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Introduction

Sepsis, a complex clinical syndrome resulting from a serious

infection, is a major healthcare problem associated with high

morbidity and mortality (1). Current sepsis treatments are

limited to supportive therapies (2), and specific pharmacologic

treatments that could greatly improve patient outcomes have not

yet been developed (2, 3). With hospital mortality rates of

affected patients reportedly as high as 50%, there is a critical

need for improved methods for treating sepsis (1).

Sex-related differences in the morbidity and mortality of

sepsis have been observed in animal models and human diseases

(4–8). To date, females has shown decreased mortality and organ

failure in mice and humans compared to their male counterpart

(4, 7). However, the lack of studies comparing both sexes limit

our capacity to evaluate the extent of sex-related differences.

Hence sex should be taken into account when identifying the

optimal pharmacological intervention for sepsis. Sex-related

differences have been observed in other diseases, such as

cardiovascular diseases (4), Alzheimer’s (9), cancer (10), and

ulcerative colitis (11). In some cases, such as ulcerative colitis

(11) and cardiovascular diseases (4) sex-specific treatment has

been identified, improving the patient outcome. But there is a

gap in knowledge for other diseases.

Purinergic signaling represents a novel regulatory

mechanism in immune cell physiology (12). Cells respond to

activation with the release of cellular ATP, which regulates cell

functions (13). In sepsis, large amounts of ADP are released by

tissue damage and immune cells. This leads to over-activation of

purinergic signaling contributing to immune dysfunction (13).

As a result, regulating purinergic signaling can reveal new

avenues in the treatment of sepsis.

Changes in purinergic receptors has been investigated within

sexes. For instance, changes in purinergic signaling response

may be hormone-dependent (14–17) and they vary in the sex

organs (18–20). Indeed, in a murine menopause model, ovarian

protein levels of purinergic receptor P2X2 increased with ageing,

suggesting that the P2X2 receptor is involved with menopause/
e; IL-1b, interleukin-1

ononuclear cells; PBS,
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ageing-related decline in ovarian function in females (21).

Beaucage and coworkers revealed that the P2X7 receptor

subtype might be involved in an age- and sex-dependent

regulation of adipogenesis and lipid metabolism (14, 16).

Platelet ADP-induced activation is regulated by the P2Y12 and

P2Y1 signaling pathways (22, 23). P2Y12 is a Gi protein coupled

receptor (24), while P2Y1 is a Gq protein coupled receptor (23, 24).

Activation of the P2Y12 signaling pathway leads to platelet

aggregation and potentiation of platelet secretion (25) while

P2Y1 activation leads to shape change and aggregation (23, 24).

We have previously shown that blockade of the P2Y12 signaling

pathway in a murine model of sepsis results in improved

outcomes in male mice (26), through decreased a-granule
secretion of inflammatory mediators and reduced mobilization

of P-selectin to the plasma membrane of platelets (26). We have

shown that by blocking specific signaling pathways in platelets, we

can regulate inflammation without compromising platelet

functions. However, P2Y1 deficiency did not alter inflammation

levels or lung injury in a murine model of sepsis in male mice.

However, there are sex-related differences in how platelet respond

to activation. In fact, female platelets are more reactive to agonists,

especially ADP than male (27, 28) suggesting sex-related

differences in ADP- induced platelet activation. Sex-related

differences in the expression of P2Y1 or P2Y12 have been shown

to vary within sexes in the murine brain (29) but information

about the expression of these receptors in other organs is limited.

In this study, we aim to investigate whether either deficiency

or blocking the ADP-receptors P2Y1 or P2Y12 alters inflammation

levels in sepsis in a sex-specific manner. To achieve this aim, we

used a well-recognized murine model of sepsis (cecal ligation and

double puncture) and compared male and female mice upon P2Y1

or P2Y12 deficiency or blockade. Our data show that P2Y12 but not

P2Y1 deficiency, decreased the activity of MPO in lungs and

kidneys, platelet-leukocyte interaction and platelet activation in

male but not female mice. Either P2Y12 or P2Y1 blockade could

decrease activity of MPO in lungs and kidneys and platelet-

leukocyte interaction in male mice. On the other hand, P2Y1

deficiency but not blockade decreased activity of MPO in lungs

and platelet-leukocyte interaction in female mice. In human T

lymphocytes, blocking P2Y1 or P2Y12 alters cell growth and

secretion in vitro in a sex-dependent manner, supporting the

data obtained in mice. Thus, drug targeting purinergic signaling
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appears to be sex-specific and needs to be investigated to

determine sex-related targeted therapies in sepsis.
Materials and methods

Materials

All reagents were of analytical grade and were obtained from

Thermo Fisher Scientific (Waltham, MA) unless stated

otherwise. Ficoll-Paque was from GE Healthcare Bio-Sciences

AB (Uppsala, SE). FITC-conjugated anti-mouse CD11b (clone

M1/70) was obtained from Invitrogen (Waltham, MA). PE-

conjugated anti-mouse CD4 (clone GK 1.5), FITC- conjugated

anti-mouse CD41 (clone MWreg30) and FITC-conjugated

mouse anti p-selectin (clone RB40.34) were obtained from BD

Bioscience (San Jose, CA). FITC-conjugated anti-mouse CD14

(clone MEM-18) were obtained from Sigma-Aldrich (St. Louis,

MO). PE-conjugated anti-human CD4 (clone OKT4) was

purchased from BioLegend (San Diego, CA) and APC-

conjugated anti-human CD8 (clone HIT8a) antibodies was

obtained from eBioscience (San Diego, CA) Invitrogen

(Waltham, MA). Rat IgG2a k isotype control FITC [clone

eBR2a), rat IgG2b K isotype control PE (clone eB149/10H5)]

were purchased from eBioscience (San Diego, CA). Ticagrelor

and MRS2279 was obtained from TOCRIS (Pittsburgh, PA).
Animals and treatments

Animal procedures and handling adhered to the National

Institutes of Health standards and were approved by the

Institutional Animal Care and Use Committee Protocol #A21040

at North Dakota State University (Fargo, ND, USA). Male and

female wild-type and P2Y12 deficient pathogen-free C57BL/6 mice

(weight, 25-30 g; 8-10 weeks of age) were obtained from Schering-

Plough Corporation (Kenilworth, NJ)1-4. P2Y1 deficient pathogen-

free C57BL/6 male and female mice were generated by subcontract

with Lexicon Genetics Inc. (Woodlands, TX) through knockout

constructs as described previously (22, 25, 30). Only 8-10-week

homozygote animals were included. Male and female mice were

housed in a climate-controlled pathogen free environment and

given free access to food and water.

The cecal ligation and double puncture (CLP) procedures were

performed on under anesthesia with isoflurane (2 ± 4% induction in

chamber and 1 ± 2%maintenance in mask) as described previously

(26, 31–33). Following midline laparotomy, the cecum was

identified, the mesentery trimmed, and the stalk joining the

cecum to the large intestine ligated. Care was taken to assure the

intestinal continuity was not interrupted. The cecumwas punctured

twice with a 24-gauge needle on the anti-mesenteric border, stool

expressed, and the cecum returned to the abdomen. Sham control

animals underwent a laparotomy without ligation or double
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puncture. Experiments were performed in P2Y12, P2Y1 KO, and

wild-type (WT) male and female mice that were randomly assigned

to one of four groups for wild-type or KO: wild-type and KO sham

control group (6 animals per group); wild-type and KO undergoing

CLP (CLP group, 6 animals per group).

Ticagrelor andMRS2279 were administrated intraperitoneally

to WTmale and female mice (6 animals per group) with a dose of

30 mg/kg (ticagrelor) (34–36) and 50mg/kg (MRS2279) (37, 38) at

the time of surgery. Sham mice received the same doses of

Ticagrelor and MRS2279. After the procedure but prior to

emergence, sham and CLP mice were fluid-resuscitated (1 ml/

mouse sterile saline, subcutaneously).

At 24 hours post-surgery, mice were anesthetized and blood

samples were collected by cardiac puncture (10:1 in 3.8% sodium

citrate) for hematology studies (Hemavet® Multispecies

Hematology System, Drew Scientific, Inc. Oxford, CT). All

mice were euthanized by cardiac puncture and exsanguination.

Lungs and kidneys were collected and fixed or frozen

immediately in liquid nitrogen.
Myeloperoxidase activity

Lungs and kidneys were homogenized and sonicated. After

centrifugation (10,000 for 10 minutes at 4°C), myeloperoxidase

(MPO) levels were detected using a MPO calorimetric assay kit

(BioVision, USA). The assay was performed as described by the

manufacturer. Briefly, perfused lung and kidney tissues were

homogenized rapidly on ice upon addition of myeloperoxidase

(MPO) Assay buffer and the supernatant collected after

centrifugation (10,000 for 10 minutes at 4°C). Resorufin

standard and MPO positive control were prepared. Standards,

positive controls, and samples were transferred into different wells

of the 96-well plate. Reaction mix prepared with MPO assay

buffer, MPO peroxidation substrate, and hydrogen peroxidase

(0.88M) was added to each well and thoroughly mixed after which

fluorescence (Ex/Em=535/587 nm) was kinetically measured at

37°C for 10 minutes. A resorufin standard curve was plotted and

the MPO activity of the test samples was calculated.
Blood urea nitrogen and creatinine
measurement

Plasma aliquots from each animal were obtained by blood

centrifugation (2,000 x g for 10 minutes) and immediately

frozen. Blood urea nitrogen levels were measured using the

urea nitrogen (BUN) colorimetric detection kit (ThermoFisher

Scientific, USA). The assay was performed as described by the

manufacturer. The plasma samples were diluted with deionized

water (1:30) prior to use. The urea nitrogen standard (100 mg/dL

urea nitrogen) was used. Samples and standards were added to a

96-well plate. Acidic solutions coded as color reagents A and B in
frontiersin.org
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the kit were each added to all wells and incubated for 30 minutes,

and the absorbance was immediately read at 450 nm using a

microplate reader. Plasma creatinine was determined by an

enzymatic assay kit (Mouse Creatinine Assay Kit no. 80350,

Crystal Chem, Downers Grove, IL). The assay was performed as

described by the manufacturer. Samples were added to a 96-well

plate and incubated with the sarcosine oxidase solution

provided. Following a 5-minute incubation at 37°C, a

peroxidase solution was added to the samples and the plate

was incubated for 5 minutes. The absorbance was immediately

read at 550 nm using a microplate reader.
Platelet-leukocyte aggregate formation
and P-selectin expression in whole blood

Murine blood samples were diluted 1:2 in PBS and incubated

with either FITC-conjugated anti-mouse CD11b (dilution 1:100 in

PBS) or CD4 (dilution 1:100 in PBS) or CD14 (dilution 1:100

in PBS) and PE-conjugated anti-mouse CD41 (dilution 1:100 in

PBS) or with FITC-conjugated anti-mouse P-selectin (dilution

1:100 in PBS) for 20 minutes at 25°C. The reaction was stopped by

adding BD FACSTM lysing solution (1:10 in PBS). Samples were

kept in the dark and at 4°C prior to analysis. Flow cytometry was

performed using Accuri-C6 System and data were analyzed with

FlowJo software. Platelet (CD41+) and leukocyte (CD11b+) or T

lymphocyte (CD4+) or monocyte (CD14+) aggregates were

discriminated by forward and side light scatter and identified by

their positive staining for PE-CD41 or FITC-CD11b, or FITC-

CD4, or FITC-CD14 respectively. Events double positive for PE

and FITC were identified aggregates and were recorded as a

percentage of a total of 20,000 gated neutrophils or monocytes

or T lymphocytes. Gating strategies are shown in Supplemental

Figures 1A–C.
Platelet factor 4 and soluble P-selectin
measurement

Plasma aliquots from each animal were obtained by

centrifugation (2,000g for 10 minutes) of the blood samples and

the plasma was immediately frozen. To detect PF4 and soluble p-

selectin concentrations, corresponding ELISA kits (Sigma) were

used. The assay was performed as described by the manufacturer.

Briefly, Standard protein of mouse PF4 and P-selectin were

reconstituted and diluted accordingly to provide a standard

stock solution. Samples and standard were added to a 96-well

plate coated with either anti-human PF4 or anti-P-selectin

antibody, covered and incubated at room temperature for 2.5

hours and overnight at 4°C respectively with gentle shaking. The

plates were washed and biotinylated mouse P-selectin or

biotinylated anti-mouse PF-4 detection antibodies was added to

each well and incubated at room temperature for an hour with
Frontiers in Immunology 04
gentle shaking. After washing, HRP conjugated streptavidin was

added to each well and incubated for 45 minutes at room

temperature. Then 3,3,5,5’-tetramethylbenzidine (TMB) in

buffer solution was added to each well and incubated in the

dark at room temperature for 30 minutes. The reaction was

stopped by adding stop solution (0.2M sulfuric acid) to each

well and the absorbance immediately read at 450nm using a

micro-plate reader.
Thromboxane generation assay

Plasma aliquots from each animal were obtained by blood

centrifugation (2,000g for 10 minutes). Samples were used to

evaluate thromboxane generation using a TXB2 EIA kit from

Enzo Life Sciences (catalog no. ADI-901-002). The assay was

performed as described by the manufacturer. Briefly, TXB2

standard was prepared using Assay Buffer (tris buffered saline

solution supplemented with proteins and sodium azide).

Standards and unknown samples were pipetted into the

appropriate wells. Blue conjugate (alkaline phosphatase-

conjugated with TXB2) and antibody solution (rabbit

polyclonal antibody to TXB2) was pipetted into each well. The

plate was incubated at room temperature for 2 hours and washed

using a wash solution (tris buffered saline containing

detergents). pNpp substrate solution (p-nitrophenyl phosphate

in buffer) was added to each well and incubated at room

temperature for 45 minutes. The reaction was stopped using

trisodium phosphate in water and the optical density read

immediately at 405nm.
Cytokine measurements

Plasma aliquots from each animal were obtained by blood

centrifugation (2,000g for 10 minutes). Levels of RANTES, Il-1b,
IL-17, TNF-a, and IFN-g were determined using the high

sensitivity mouse cytokine discovery array 32-plex (Eve

Technologies, Calgary, Canada).
Human peripheral blood mononuclear
cell isolation

Human blood was obtained from healthy volunteers

following informed consent. The Institutional Review Board of

North Dakota State University approved the study (#3735). The

age of the donors is 39.4 ± 3.0 for females and 38.5 ± 3.6 for

males. Blood was collected in 3.2% sodium citrate vacutainers.

Blood was diluted with RPMI1640, added to 10 ml of Ficoll-

Paque, and centrifuged at 300 g for 30 minutes at RT. Peripheral

blood mononuclear cells (PBMC) were collected from the

interphase and washed twice in PBS. Viable cell numbers were
frontiersin.org
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determined using Eve Automatic Cell counter (NanoEntek,

Walthan, MA). Cells with viability higher than 85% were

selected and viability was taken into account when the cell

number was calculated. Cells (0.5x106 cells/mL) were then

cultured at 37°C and 5% CO2 in RPMI 1640 media, fully

supplemented with penicillin-streptomycin (each at 0.8 mM)

and L-glutamine (2 mM).
Peripheral blood mononuclear cell
culture and treatments

PBMC were co-cultured for 3 days at 37°C in the presence or

absence of LPS (1mM). To block the P2Y12 signaling pathway in

vitro, we used Ticagrelor (100mg/mL), a well-established

selective P2Y12 antagonist, which has been used in multiple in

vitro studies (32, 33, 39, 40). To block the P2Y1 signaling

pathway in vitro, we used MRS2279 (MRS, 100mg/mL), a well-

established selective P2Y1 antagonist, which has been used in

multiple in vitro studies (41–44). Negative control cells received

an equivalent amount of vehicle (saline). Three-days after LPS

exposure, cells were collected and analyzed using flow

cytometry. The supernatant was collected and stored at -20°C

prior to analysis.
CD4+ and CD8+ cell population

CD4 and CD8 phenotyping were measured via flow

cytometry. Isolated PBMC (0.5 x 106 cells) were incubated

with FITC-conjugated anti-human CD4 (1:100 dilution in

saline) and PE-conjugated anti-human CD8 antibodies (1:100

dilution in saline) for 1 hour at room temperature. Cells were

washed in PBS and kept in PBS at 4°C prior to analysis. Cells

were then acquired using Accuri-C6 System and analyzed using

the Flow Jo software. The total number of events acquired was

20,000 for each sample. Data are shown as a % of positive events

as compared to the total number of events acquired (20,000)

(Figure 1). Rat IgG2a k isotype control FITC (clone eBR2a), rat

IgG2b k isotype control PE (clone eB149/10H5) were included

as negative isotype controls. Gating strategies are shown now in

Supplemental Figures 1D, E.
TNF-a measurement

Supernatant from human cell samples were collected by

centrifugation (5,000g for 10 minutes) at day 3. TNF-a levels

were determined by ELISA (Invitrogen - Waltham, MA). The

assay was performed following manufacturer instructions. Briefly,

samples and standards were incubated with Biotin-conjugate

antibody (anti-human TNF-a polyclonal antibody) at room

temperature for 2 hours and washed with assay buffer (PBS
Frontiers in Immunology 05
with 1% Tween 20, 10% BSA). Then samples were incubated

with Streptavidin-HRP for 1 hour at room temperature. The wells

were washed using the assay buffer and TMB substrate solution

(tetramethyl-benzidine) was added to all wells and incubated at

room temperature for 10 minutes. The reaction was stopped using

Phosphoric acid (1M) and the absorbance was read immediately

at 450 nm using a spectrophotometer.
IFN- g measurement

Supernatant from human cell samples were collected by

centrifugation (5,000g for 10 minutes) at day 3. IFN-g
concentrations were determined by ELISA (Invitrogen -

Waltham, MA). The assay was performed following

manufacturer instructions. Standards and samples were added

to the wells, and incubated overnight at 4°C with gentle shaking.

The wells were washed with the wash buffer provided and

standards and samples were incubated with biotin conjugate

for 1 hour at room temperature. After washing the plate,

standards and samples were incubated with streptavidin-HRP

for 45 minutes at room temperature. After washing the plate,

standards and samples were incubated with TMB substrate

solution (tetramethyl-benzidine) in the dark at room

temperature for about 30 minutes. The stop solution was

added, and the absorbance read immediately at 450 nm.
Statistical analysis

Differences among groups were statistically analyzed using one-

way ANOVA; Bonferroni’s Multiple Comparison Test was used as

a post-hoc analysis. Each treatment group included four or more

experiments (n ≥ 4), based on power calculations and work

performed previously (45–47). For human cell experiments: each

independent experiment was performed using platelets and PBMCs

isolated from one donor. PBMCs and platelets from 4 donors were

isolated, co-cultured, stimulated and analyzed. Differences among

groups were analyzed using a one-way ANOVA test. The analysis

was performed in an unpaired fashion. P < 0.05 was considered to

be significant. Data are reported as mean ± standard error of the

mean (S.E.M.) for each group.
Results

Inflammation-induced elevation in
circulating white blood cells counts is
decreased in male P2Y12 and female P2Y1
null mice

First, we analyzed the number of circulating white blood

cells (WBC), lymphocytes (LY) and neutrophils (PMN) in blood
frontiersin.org
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FIGURE 1

Inflammation-induced elevation in circulating white blood cell counts is decreased in male P2Y12 and female P2Y1 KO mice. Blood samples
were collected by cardiac puncture in 3.8% sodium citrate (10:1), and hematology studies were performed. Graphs show counts of White blood
cells (WBC, A, B) lymphocytes (LY; C, D), and neutrophils (PMN; E, F). Sham and CLP in wild-type (WT) and P2Y12 KO and P2Y1 mice of male
(A, C E) and female (B, D, F) mice. Values are expressed as 1x103cells/mL, mean ± S.E.M. n = 5). (*P < 0.05). No differences between WT, P2Y12
KO, and P2Y1 KO sham were noted in both male and female mice (data not shown).
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samples (Figure 1) from WT, P2Y1 KO and P2Y12 KO male and

female mice. Upon CLP surgery, we observed a significant

increase in leukocyte count (white blood cells (A-B),

lymphocytes (C-D) and neutrophils (E-F) in septic mice as

compared with the Sham group in both male (A-C-E) and

female (B-D-F) mice (Figure 1, P<0.05; male CLP vs male

sham or CLP vs female CLP vs female sham). Interestingly,

the increase was more pronounced in male septic mice as

compared with the female counterpart (Figure 1, P<0.05; male

CLP vs female CLP) for white blood cells, lymphocytes, and

neutrophils. However, the sepsis-induced leukocyte count (white

blood cells, lymphocytes, and neutrophils) was not increased in

the CLP P2Y12 KO male mice compared to WT CLP male mice

(Figures 1A, C, E P<0.05; male CLP vs male P2Y12 KO CLP) but

no change in CLP P2Y1 KO male mice was noted (Figures 1A, C,

E). In female mice, no difference was noted between CLP P2Y12

KO mice and WT CLP mice, while leukocyte count

(lymphocytes and neutrophils) was not increased in the CLP

P2Y1 KO female mice compared to WT CLP female (Figures 1B,

D, F) P<0.05; female CLP vs female P2Y1 KO CLP. Platelet count

did not change in all the groups analyzed (data not shown).
Sepsis-induced increase of MPO activity
in the lungs is reduced in male septic
P2Y12 and female septic P2Y1 KO mice

As the lung is one of the most affected organs during sepsis

(48–50), we investigated MPO activity in lung tissue as an

indication of neutrophil infiltration in the tissue (Figure 2).
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Lung samples from Sham and CLP mice were analyzed for male

and female mice in WT, P2Y1, and P2Y12 KO. Although MPO

activity was significantly increased in both male (Figure 2A) and

female (Figure 2B) WTmice following CLP as compared with the

Sham counterpart (Figure 2, P<0.05; male CLP vs male sham and

female CLP vs female sham), a higher increase in MPO activity

was noted in male WT CLP mice as compared with female WT

CLP mice (Figure 2, P<0.05; male CLP vs female CLP). MPO

activity was not elevated in the lungs of KO P2Y12 CLP mice as

compared to the activity in CLP WT mice in males (Figure 2. A

P<0.05; male CLP vs male P2Y12 KO CLP), while no difference

between WT and P2Y12 KO was seen in female mice (Figure 2B).

These data suggest that P2Y12 deficiency alter pulmonary

inflammation and inflammatory cell recruitment in male but

not in female mice during sepsis. In P2Y1 mice, we did not see

any difference in MPO activity in male P2Y1 KO CLP mice as

compared with male WT CLP mice (Figure 2A). However, in

female mice, MPO activity is significantly reduced in female P2Y1

KOCLP compared withWTCLPmice (Figure 2B, P<0.05; female

CLP vs female P2Y1 KO CLP). These data suggest that P2Y1

deficiency alter sepsis-induced pulmonary inflammation and

inflammatory cell recruitment in female mice but not male mice.
Sepsis induced- platelet activation was
decreased in male septic P2Y12 and
female septic P2Y1 KO mice

To determine whether sepsis-induced platelet activation was

sex-dependent or required P2Y12 or P2Y1 signaling, we
A B

FIGURE 2

Sepsis-induced increase of activity of MPO in the lungs is reduced in male septic P2Y12 and female septic P2Y1 KO mice. MPO analysis was
performed in lung samples of Sham and CLP in wild-type (WT) and P2Y12 KO and P2Y1 mice of male (A) and female (B) mice. Values are
expressed as mUnits/mL, mean ± SEM. (*P < 0.05) (n = 5). No differences between WT, P2Y12 KO, and P2Y1 KO sham were noted in both male
and female mice (data not shown).
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measured p-selectin platelet surface expression in septic mice

(WT, P2Y12 KO CLP and P2Y1 KO CLP) for both male

(Figure 3A) and female (Figure 3B). P-selectin was increased

in both WT CLP male and female mice as compared with Sham

counterparts (Figure 3, P<0.05; male CLP vs male sham and

female CLP vs female sham, P<0.05; male CLP vs female CLP).

In P2Y12 KO CLP mice, sepsis-induced p-selectin values were

lower than the WT CLP (Figure 3A P<0.05, male CLP vs male

P2Y12 KO CLP) while no difference betweenWT CLP and P2Y12

KO CLP was noted in female mice. Similarly, to what was noted

in Figures 1 and 2, no difference in p-selectin values was reported

betweenWT CLP and P2Y1 KO CLP in male mice, but p-selectin

was significantly reduced in P2Y1 KO CLP in female mice

(Figure 3B, P<0.05, female CLP vs female P2Y1 KO CLP).
Sepsis induced- platelet-leukocyte
aggregate formation in whole blood was
reduced in male septic P2Y12 and female
septic P2Y1 KO mice

As platelet-leukocyte interaction is a key step in sepsis, we

analyzed platelet-leukocyte aggregate formation in the whole

blood and we investigated whether targeting the receptor P2Y12

or P2Y1 can modulate platelet-leukocyte interaction differently

in male and female mice (Figures 3C, D). First, we measured

interaction between platelets (CD41) and leukocyte (CD11b).

The percentage of CD41+/CD11b+ aggregate was increased in

male CLP and female CLP as compared with their Sham

counterpart (Figures 3C, D, P<0.05, male CLP vs male Sham

and female CLP vs female sham). Female CLP-induced platelet-

leukocyte aggregates was lower than CLP males (Figures 3C, D,

P<0.05, male CLP vs female CLP). In P2Y12 KO CLP mice,

sepsis-induced platelet-leukocyte aggregates values were lower

than the WT CLP (Figure 3C; P<0.05, male CLP vs male P2Y12

KO CLP) while no difference between WT CLP and P2Y12 KO

CLP was noted in female mice (Figure 3D). However, no

difference in platelet-leukocyte aggregates was reported

between WT CLP and P2Y1 KO CLP in male mice

(Figure 3C), but CD41+/CD11b+ aggregates were significantly

reduced in P2Y1 KO CLP in female mice (Figure 3D, P<0.05,

female CLP vs female P2Y1 KO CLP).

Second, we analyzed the aggregate formation of circulating

platelets (CD41+) and T helper (CD4+) cells. The percent of

platelet-CD4 lymphocytes aggregate was increased during sepsis

as compared with the sham control group in male and female

mice (Figure 3C P<0.05, male CLP vs male Sham and female

CLP vs female sham), but in P2Y12 KO male mice platelets-

CD4+ T cells aggregates were diminished, suggesting decreased

platelets and CD4+ T cells interactions (Figure 3C P<0.05, male

CLP vs male P2Y12 KO CLP). In female mice, no change was

noted in platelets and CD4+ T cells interaction upon P2Y12

deficiency. No change in platelets-CD4+ T cells aggregate was
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noted in male CLP P2Y1 KO mice as compared with male CLP

WT mice. But in female mice, platelets and CD4+ T cells

aggregate is reduced in female CLP P2Y1 KO mice as

compared with female CLP WT mice (Figure 3C P<0.05,

female CLP vs female P2Y1 KO CLP). These data suggest that

P2Y12 and P2Y1 deficiency reduce platelet-leukocyte and T cell-

platelet interactions in a sex-dependent manner.
P2Y12 or P2Y1 antagonism attenuates
lung and renal MPO activity in sepsis in
a sex-related manner

Next, we investigated whether P2Y12 or P2Y1 antagonism

alters sepsis-induced MPO activity similarly to receptor

deficiency. Leukocyte trafficking to the lungs and kidneys are

among the most affected organs during sepsis (51, 52). At 24

hours post-CLP, there is evidence of both lung and kidney

damage associated with increased leukocyte influx (MPO

activity) (31, 53, 54). Next, we determined whether blocking

the P2Y12 or P2Y1 receptors alters MPO activity in the lung

(Figures 4A, B) and kidney (Figures 4C, D) of septic male (4A

and C) or female (4B and D) mice. Figure 4A shows that MPO

activity was increased during sepsis in the lung (Figure 4A) in

male mice as compared with the Sham group (P<0.05; male CLP

vs male sham). However, when male mice were treated with

either MRS2279 or ticagrelor, a significant reduction in MPO

was noted in septic male mice as compared with untreated CLP

mice (P<0.05; CLP vs CLP + MRS2279 or CLP vs CLP +

ticagrelor). MPO activity was also increased during sepsis in

the lung (Figure 4B) in female mice as compared with the Sham

group (P<0.05; female CLP vs female sham). However, when

female mice were treated with either MRS2279 or ticagrelor, no

change was noted in MPO levels in the lung in septic female as

compared with untreated female CLP (Figure 4B). Similarly in

kidney samples (Figure 4C), when male mice were treated with

either MRS2279 or ticagrelor, a significant reduction in MPO

was noted in septic mice as compared with untreated mice

(P<0.05; CLP vs CLP + MRS2279 or CLP vs CLP + ticagrelor).

When female mice were treated with either MRS2279 or

ticagrelor, no change was noted in MPO levels in the kidney

in septic females as compared with untreated female CLP

(Figure 4D). These data suggest that blocking either P2Y1 or

P2Y12 receptors decreased activity of MPO in the lungs and

kidneys of male, but not female mice.

We also investigate a plasma indicator of kidney injury such

as blood urea nitrogen (BUN)/creatinine ratios. The ratio was

elevated in the CLP group in both males (Figure 4E) and females

(Figure 4F) as compared to their sham control, demonstrating

increased levels of blood urea nitrogen BUN/creatinine ratios

upon sepsis. Importantly, in male mice (Figure 4E), exposure to

ticagrelor and MRS2279 resulted in a significant decrease in

BUN/creatinine ratios (P<0.05; CLP vs CLP + MRS2279 or CLP
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FIGURE 3

Sepsis-induced platelet activation and CD41+/CD11b or CD41+/CD4+ aggregates were decreased in male septic P2Y12 and female septic P2Y1 KO
mice. Blood samples were collected by cardiac puncture in 3.8% sodium citrate (10:1) (A, B) P-selectin expression on the platelet surface was
evaluated using flow cytometry in whole blood. Data were collected from WT, P2Y12 KO, and P2Y1 mice of male (A) and female (B) mice. Both
Sham and CLP were analyzed. (n=6) (*P<0.05) Values are expressed as Geometric Mean of fluorescence intensity (GMFI), mean ± S.E.M No
differences between WT, P2Y12 KO, and P2Y1 KO sham were noted in both male and female mice. (C, D) Peripheral blood collected from WT, P2Y12
KO, and P2Y1 mice of male (C) and female (D) mice were incubated with antibodies against CD41 (platelet marker) and CD11B (leukocyte marker).
Activated leukocytes were gated based on CD11b expression, and cell shape and data were analyzed as a percentage of aggregates expressing both
CD41 and CD11b. Values are expressed as the percentage of CD41+/CD11b+ cells, mean ± SEM, n=5). No differences between WT, P2Y12 KO, and
P2Y1 KO sham were noted in both male and female mice. (*P<0.05). (E, F) Peripheral blood collected from WT, P2Y12 KO, and P2Y1 mice of male (E)
and female (F) mice was incubated with antibodies against CD41 (platelet marker) and CD4 (T cell marker). T cells were gated based on CD4
expression and cell shape, and data were analyzed based on the percentage of aggregates that express both CD41 and CD4 (n = 6). No differences
between WT, P2Y12 KO, and P2Y1 KO sham were noted in both male and female mice (data not shown). (*P < 0.05).
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FIGURE 4

P2Y12 or P2Y1 antagonism attenuates lung and renal MPO activity in sepsis in a sex-related manner. (A–D) MPO analysis was performed in the lung
(A, B) and kidney (C, D) samples of Sham, CLP, MRS2279-treated CLP, and ticagrelor-treated CLP in male (A, C) and female mice (B, D). Values are
expressed as mUnits/mL, mean ± SEM. (n = 5). (*P < 0.05). (E, F) Blood urea nitrogen (BUN)/Creatinine ratios were determined 24 hours post-
surgery in plasma samples of Sham, CLP + CLP, MRS2279-treated CLP, and ticagrelor-treated CLP in male (E) and female mice (F).
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vs CLP + ticagrelor). No changes were noted in female mice

upon treatments (Figure 4F).
P2Y12 or P2Y1 antagonism alters sepsis-
induced platelet activation, and platelet–
leukocyte aggregate formation in a sex-
specific manner

We investigated whether P2Y12 or P2Y1 antagonism can

influence platelet activation in male and female mice during

sepsis. We analyzed P-selectin expression on the surface of

circulating platelets (Figures 5A, B) and the levels of soluble p-

selectin in the plasma (Figures 5C, D). In both male (Figure 5A)

and female (Figure 5B) mice, sepsis augmented p-selectin

expression on platelet surface as compared with their Sham

control (P<0.05; male Sham vs male CLP or female Sham vs

female CLP). P-selectin expression was higher in septic males as

compared with septic female mice (P<0.05; male CLP vs female

CLP). In male mice, treatment with MRS2279 p-selectin surface

expression was not changed in response to CLP, while ticagrelor

treatment significantly prevented the sepsis induced elevation of

p-selectin surface expression as compared with untreated CLP

(P<0.05; CLP vs CLP + ticagrelor). In female mice, no change

was noted in p-selectin expression upon treatment with either

MRS2279 or ticagrelor as compared with untreated CLP

(Figure 5B). Similar results were noted for soluble p-selectin in

the plasma of septic mice. (Figures 5C, D). Again, soluble p-

selectin was higher in untreated septic male mice as compared

with septic female mice (P<0.05; male CLP vs female CLP). In

male mice, treatment with MRS2279 or ticagrelor lowered

sepsis-elevated soluble p-selectin as compared with untreated

CLP (Figure 5C; P<0.05; CLP vs CLP + MRS2279; CLP vs CLP +

ticagrelor). In female mice, no change was noted in p-selectin

expression upon treatment with either MRS2279 or ticagrelor as

compared with untreated CLP (Figure 5D).

Aggregates of platelets and other immune cells have been

observed in peripheral whole blood during other diseases [22,

23], including sepsis (26, 31). Hence, we investigated the

aggregates of platelets and CD4+ T cells (Figures 5E, F) or

CD14+ cells (Figures 5G, H) circulating in the whole blood of

sham control, CLP mice, and CLP mice treated with MRS2179

or ticagrelor in both male and female (Figure 5). Aggregates were

analyzed using flow cytometry. CD4+ or CD14+ cells were

gated, and the percent of aggregates as events positive for both

CD41 and CD4 Figures 5E, F) or CD41 and CD14 (Figures 5G,

H) respectively was determined. Platelet-CD4+ T cell aggregate

formation was increased during sepsis as compared with the

sham control group in both male and female mice (Figures 5E, F,

P<0.05; male Sham vs male CLP, female Sham vs female CLP).

The % of platelet-CD4+ T cell aggregate was significantly higher

in male CLP mice as compared with CLP female mice (P<0.05;
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male CLP vs female CLP). Treatment with either MRS2279 or

ticagrelor dramatically diminished aggregate formation in male

mice (Figure 5E; P<0.05; CLP vs CLP +MRS2279; CLP vs CLP +

ticagrelor), suggesting that blockade of either P2Y12 or P2Y1

signaling pathway contribute to decrease platelets and CD4+ T

cells interactions in male mice. No change was noted in female

mice when either P2Y12 or P2Y1 were blocked (Figure 5H).
P2Y12 or P2Y1 antagonism decreased
sepsis-induced platelet secretion in both
male and female mice

We and other groups have previously observed an increase

in platelet secretion during sepsis in animal models and patient

samples (26, 31, 55, 56). Hence, we determined platelet secretion

in septic male and female mice with and without blockade of

either P2Y12 or P2Y1 signaling pathway (Figure 6). We measured

plasma levels of platelet-factor 4 (PF-4) and Thromboxane

(TBX-B2). As previously observed, both PF-4 and

Thromboxane were elevated in male or female septic mice as

compared with Sham control (Figure 6) P<0.05; Sham vs CLP in

male and female). Interestingly, in contrast with the data

obtained in KO mice (Figure 4), levels of both PF-4 and

Thromboxane upon sepsis were comparable between male and

female mice. Septic-induced Thromboxane increase was not

noted in CLP male mice when mice were treated with either

MRS2279 or ticagrelor as compared with untreated male CLP

mice (Figure 6A, P<0.05; CLP vs CLP +MRS2279; CLP vs CLP +

ticagrelor). Similar data were noted in female mice (Figure 6B),

where either MRS2279 or ticagrelor treatment prevented the

sepsis- elevated level of Thromboxane (P<0.05; CLP vs CLP +

MRS2279; CLP vs CLP + ticagrelor). Similarly, PF-4 levels were

not elevated in CLP male mice when mice were treated with

either MRS2279 or ticagrelor as compared with untreated male

CLP mice (Figure 6C; P<0.05; CLP vs CLP + MRS2279; CLP vs

CLP + ticagrelor). Similar data were noted in female mice, where

either MRS2279 or ticagrelor treatment prevented the elevated

level of PF-4 (Figure 6D; P<0.05; CLP vs CLP + MRS2279; CLP

vs CLP + ticagrelor). These data suggest that blocking either

P2Y12 or P2Y1 signaling pathway prevents sepsis-elevated

platelet secretion in a sex-independent manner.
P2Y12 or P2Y1 antagonism selectively
alter cytokine levels in the plasma in a
sex-specific manner

As an increase in circulating cytokines has been observed in

patient samples (49, 57) and it has been related to the severity of the

disease (58, 59), we investigated levels of RANTES, IL-10, IL-1b, IL-
17, TNF-a and IFN-g in plasma samples (Figure 7). As expected, all
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FIGURE 5

P2Y12 or P2Y1 antagonism alters sepsis-induced platelet activation, and platelet–leukocyte aggregate formation in a sex-specific manner.
(A, B)_Blood samples were collected by cardiac puncture in 3.8% sodium citrate (10:1) P-selectin expression on platelet surface was evaluated using
flow cytometry in whole blood. Data were collected from Sham and CLP in male (A) and female mice (B). Mice were untreated or treated with MRS
(50mg/kg) or ticagrelor (30 mg/kg). Values are expressed as % of platelets positive to p-selectin, mean ± S.E.M. (*P < 0.05). (C, D) Soluble p-selectin
was analyzed in the plasma collected from Sham and CLP male (C) and female (D) mice using an ELISA kit. Mice were untreated or treated with
MRS (10mg/kg) or ticagrelor (10mg/kg). Values are expressed as pg/mL, mean ± S.E.M. (*P < 0.05). (E-H) Samples were collected from Sham and
CLP male (E–G) and female (F–H) mice. Samples were incubated with antibodies against CD41 (platelet marker) and CD4 (T cell marker, E, F) or
CD14 (monocyte marker, G, H). T cells or monocytes were gated based on CD4 or CD14 expression respectively and cell shape. Data were
analyzed based on the percentage of aggregates that express both CD41 and CD4 (E, F) or CD14 (G, H). Values are expressed as the percentage of
CD41+/CD11b+ cells, mean ± SEM n = 7).
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cytokines’ levels were significantly higher in septic mice as

compared with their Sham counterpart for males (Figures 7A, C,

E, G, I, K) and female (Figures 7B, D, F, H, J, L) mice.

For male mice, the sepsis-induced increase in RANTES

plasma levels was decreased in mice treated with ticagrelor

(Figure7A, P<0.05; CLP vs CLP + ticagrelor), while no change

was noted when septic male mice were exposed to MRS2279. On

the other hand, in female mice, the sepsis-induced increase in

RANTES plasma levels was decreased when mice were exposed

to MRS2279 (Figure 7B, P<0.05; CLP vs CLP MRS2279), while

no change between septic mice was noted when mice were

exposed to ticagrelor. Similar data were observed for IL-10

(Figures 7C, D) and IL-1b (E-F).

On the contrary, IL-17 levels were non increased in septic

male mice treated with either ticagrelor or MRS2279 (Figure 7G,
Frontiers in Immunology 13
P<0.05; CLP vs CLP MRS2279 and CLP vs CLP + ticagrelor). On

the other hand, in female mice, the sepsis-induced increase in IL-

1b plasma levels was noted while mice were exposed to MRS2279

(Figure 7F, P<0.05; CLP vs CLP MRS2279), while an increase in

IL-17 was noted in septic female mice exposed to ticagrelor as

compared with septic untreated female mice (Figure 7H, P<0.05;

CLP vs CLP MRS2279 and CLP vs CLP + ticagrelor).

No change was noted in both male and female mice in TNF-

a levels in any of the treated groups as compared with septic

males and females (Figures 7I, J).

Similarly, for male mice, the sepsis-induced increase in IFN-

g plasma levels were noted while mice were exposed to ticagrelor

(Figure 7K, P<0.05; CLP vs CLP + ticagrelor), while no change

between septic mice was noted when mice were exposed to

MRS2279. On the other hand, in female mice, no change
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FIGURE 6

P2Y12 or P2Y1 antagonism decreased sepsis-induced platelet secretion in both male and female mice. Plasma levels of Thromboxane (TBX-B2)
(A, B) or PF4 (C, D) were evaluated in female (left) and male (right) mice that underwent Sham or CLP surgery. Mice were treated with MRS2279
(MRS) or ticagrelor. Values are expressed as pmol/mL (*p < 0.05, n = 6).
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FIGURE 7

P2Y12 or P2Y1 antagonism selectively alters cytokine plasma levels in a sex-specific manner. Plasma samples obtained from each animal were used for
detection levels of RANTES (A, B), IL-10 (C, D), IL-1b (E, F), IL-17 (G, H), TNF-a (I,J), and IFN-g (K, L). Both Sham and CLP samples were analyzed for
male and female mice. Mice were treated with MRS2279 (MRS) or ticagrelor. Values are expressed as pg/mL (*P < 0.05; **P < 0.01; n = 5).
Frontiers in Immunology frontiersin.org14

https://doi.org/10.3389/fimmu.2022.1015577
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Amoafo et al. 10.3389/fimmu.2022.1015577
between treated septic mice and their treated counterpart was

noted (Figure 7L).
P2Y1 antagonism selectively alters CD4
and CD8 cell populations in female but
not male human PBMCs

To determine whether the sex-specific effects of purinergic

signaling blockage that we noted in mice during sepsis is also

observed in human cells, we investigated whether blocking P2Y1

or P2Y12 signaling pathways influence CD4 and CD8

differentiation when PBMCs cells are stimulated with LPS

(Figure 8). PBMCs were isolated from male and female donors

and P2Y1 or P2Y12 signaling pathways were blocked using

MRS2179 and ticagrelor respectively (Figure 8, 100mg/mL).

PBMCs were incubated with LPS (1mM) for 72 hours.

Percentage of CD4 and CD8 cells (Figures 8A, B) was

determined using flow cytometry and cytokine secretion was

determined by ELISA (Figures 8C, D).

In PBMCs isolated from male donors, in unstimulated

PBMCs the % of CD8+ cells increased in unstimulated cells

when treated with either MRS2179 or ticagrelor as compared

with untreated unstimulated cells (Figure 8A, P<0.05; Unstim vs

Unstim + MRS2279; Unstim vs Unstim + ticagrelor). No changes

were noted in LPS-stimulated PBMCs isolated from male donors.

Interestingly in unstimulated PBMC from female subjects,

exposure to MRS2279 increased the % of CD8+ cells as

compared with untreated cells (Figure 8B, P<0.05; Unstim vs

Unstim + MRS2279; LPS vs LPS + MRS2279). No change was

noted when unstimulated cells from female donors were

incubated with ticagrelor (Figure 8B). Similar results were noted

in LPS-stimulated PBMC from female donors (Figure 8B). Indeed,

exposure to MRS2279 increased the % of CD8+ cells as compared

with untreated cells (Figure 8B, P<0.05; LPS vs LPS + MRS2279).

No change was noted when LPS-stimulated cells from female

donors were incubated with ticagrelor (Figure 8B).

In PBMC isolated from male donors, no change was noted in

the CD4+ population in unstimulated PBMCs cells when the cells

were incubated with MRS2279 or ticagrelor (Figure 8C). However,

in LPS-stimulated male PBMCs, the % of CD4+ cells decreased in

LPS-stimulated cells when treated with MRS2179 but not ticagrelor

compared with untreated LPS-stimulated cells (Figure 8C, P<0.05;

LPS vs LPS + MRS2279). When female PBMCs were incubated

with MRS2279, the % of CD4+ cells increased in unstimulated cells

as compared with untreated cells (Figure 8D, P<0.05; Unstim vs

Unstim + MRS2279). In contrast, in LPS-stimulated PBMCs the %

of CD4+ cells decreased in LPS-stimulated cells when treated with

either MRS2179 or ticagrelor as compared with untreated LPS-

stimulated cells (Figure 8D, P<0.05; LPS vs LPS +MRS2279; LPS vs

LPS + ticagrelor). These data indicate that blocking purinergic

signaling alters the % of the CD8 and CD4 population depending

on LPS stimulation in a sex-specific manner.
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P2Y1 antagonism selectively alters IFN-g
and TNF-a levels in female but not
male PBMCs

Next, we measured the concentration of TNF-a (Figure 8C)

and IFN-g (Figure 8D) in the supernatant of PBMCs cultured in

the presence and absence of LPS (1mM - 72 hours) (Figures 8E–

H). In male unstimulated cells, TNF-a content was significantly

increased when PBMCs were exposed to either MRS or

ticagrelor (Figure 8E). In female unstimulated cells, we noted a

significant increase TNF-a when cells were treated with MRS,

but not ticagrelor (Figure 8E, P<0.05; Unstim vs Unstim + MRS;

Unstim vs Unstim + ticagrelor). In male LPS-stimulated cells, a

significant decrease was noted when cells were incubated with

either MRS or ticagrelor (Figure 8E, P<0.05; LPS vs LPS + MRS;

LPS vs LPS + ticagrelor). In female LPS-stimulated cells, no

change was noted in TNF-a in the supernatant when cells were

treated with MRS, but a significant decrease was noted when

cells were incubated with ticagrelor (Figure 8F, P<0.05; LPS vs

LPS + ticagrelor). In unstimulated cells from male donors, INF-g
content was significantly increased when PBMCs were exposed

to either MRS or ticagrelor (Figure 8G, P<0.05; Unstim vs

Unstim + MRS, Unstim vs Unstim + ticagrelor). In

unstimulated cells from female donors, no change was noted

in INF-g content between the supernatant collected from

unstimulated cells as compared with unstimulated cells treated

with either MRS or ticagrelor (Figure 8H). In LPS-stimulated

cells from male donors, a significant increase was noted when

cells were incubated with MRS but not ticagrelor as compared

with the LPS-treated control (Figure 8G, P<0.05; LPS vs LPS +

MRS). In LPS-stimulated cells from female donors, INF-g was

significantly decreased in cells treated with either MRS or

ticagrelor as compared with untreated LPS control (Figure 7H,

P<0.05; LPS vs LPS + MRS; LPS vs LPS + ticagrelor).
Discussion

Sex differences in the morbidity and mortality of sepsis have

been observed in animal models and human diseases (4–8). To date,

females have shown decreased mortality and organ failure in mice

and humans compared to their male counterparts (4, 7). However,

the lack of studies comparing both sexes limits our capacity to

evaluate the extent of sex-related differences and to determine a sex-

specific treatment as a result. Our previous studies revealed that

platelets are important in sepsis and blocking purinergic signaling in

platelets alters the outcome of sepsis in male mice (23, 26, 31).

However, we are aware of sex-related differences in purinergic

signaling responses (41, 60–63) and in platelet activation (20).

Hence, it is essential to investigate how female mice respond to

sepsis and whether blocking purinergic signaling alters platelets’

response in a sex-dependent manner. Our data suggest for the first

time that the purinergic receptor P2Y12 and P2Y1 influence sepsis-
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FIGURE 8

P2Y12 or P2Y1 antagonism selectively alter CD4 and CD8 cell populations and cytokine secretion in human PBMCs. Cells isolated from female
(black) and male (white) donors were stimulated with LPS (right panel) or left unstimulated (left panel) for 72 h. Cells isolated from male (A-C-E-G)
and female (B-D-F-H) donors were stimulated with LPS (right panel) or left unstimulated (left panel) for 72 hours. Unstimulated cells were cultured
without stimuli. Cells were exposed MRS2279 (100µg/mL) or ticagrelor (100µg/mL). Negative control did not receive any treatment. Cell populations
positive to CD8 (A-B) or CD4 (C-D) were determined using flow cytometry. Data are expressed as % of expression ± S.E.M. (*p < 0.05, n=6).
Cytokine levels in the culture supernatants were determined for TNF-alpha (E-F) and IFN-g (G-H). The groups analyzed were: negative control,
MR2279-treated, and ticagrelor-treated cells. Cells were stimulated with LPS (right panel) or left unstimulated (left panel) for 72 h. Values are
expressed in pg/ml; means ± S.E.M. are plotted (*p < 0.05, n = 6).
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induced activity ofMPO in lungs and kidneys, circulating cytokines,

platelet activation and platelet-leukocyte interaction differently in

male and female mice. Hence targeting platelets and the purinergic

receptor P2Y12 and P2Y1 may be an appropriate therapeutic

strategy that is sex dependent.

In our previous studies in male mice using a CLP model of

sepsis (19, 21), P2Y12 but not P2Y1 deficiency diminished platelet

activation and ameliorated the outcome of sepsis (26). When we

compared these data with data obtained from female mice, we

noted that P2Y1 but not P2Y12 deficiency could improve the

outcome of sepsis, in terms of neutrophil infiltration in the lungs

and kidney, platelet activation, and platelet interaction with other

immune cells. Previous data have also shown that purinergic

signaling is activated differently in male and female mice (27, 28),

and the expression of P2Y1 and P2Y12 receptor varies between

sexes (29). Ticagrelor is currently used as anti-platelet therapy

(64–66) and clinical studies have confirmed that the effects of

ticagrelor in preventing cardio-vascular diseases in patients were

comparable between men and women (67–69), hence a sex-

related therapy may not be required for cardiovascular disease

treatment. However, other studies identified significant changes

between male and female patients suggesting a discrepancy in the

literature that needs to be clarified (70, 71). The effects of

ticagrelor on inflammatory conditions have been studied in a

variety of animal models (35, 72–75), although most of the studies

were performed exclusively on male mice (36, 73–75). Moreover,

clinical trials investigating the effects of ticagrelor in patients

during inflammatory conditions, such as inflammatory factors

during myocardial infarction (76) or pneumonia (75) has started

but they have not provided definitive answers. So far, our data

suggest that targeting P2Y12 may not be the most appropriate

approach to treating females in sepsis, and more data are required

to determine whether there is any sex-specificity.

Interestingly, in male mice, blocking P2Y1 shows a decrease in

activity of MPO in lungs and kidney and platelet-leukocyte

interaction, similarly, to blocking P2Y12. This was observed in

animal models of other diseases, such as colitis (38), Alzheimer

(42) and multiple sclerosis (44) when blocking P2Y1 improved the

outcome of the disease. However, the data are different from what

we observed upon P2Y1 deficiency. In previous studies, P2Y1

blockade and P2Y1 deficiency did show comparable results (38,

77, 78), suggesting that the discrepancy we have observed now

could be due to sepsis in general or the CLP model. As previous

studies investigating either P2Y1 deficiency or antagonism were

performed almost exclusively in male mice (37, 38, 44, 77), our

experiments were the first to investigate changes in inflammation

levels in sepsis in female mice upon P2Y1 blockade and compare

them with the male counterpart. In this model of sepsis, P2Y1

blockade did not improve activity of MPO in lungs and kidneys

nor altered platelet interaction with other cells. Surprisingly, this is

different from what we observed upon P2Y1 deficiency. This

discrepancy could be due to the dose of MRS2279 used or the

off-target effects of MRS2279. We have previously noted P2Y12-
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independent effects upon P2Y12 antagonism in vivo (26) and in

vitro (79, 80) but so far, no studies have reported similar results

when targeting P2Y1. Moreover, the discrepancy could be due to

the fact that the P2Y1 antagonist is administered at surgery, while

P2Y1 deficiency may alter organ and/or tissue during

development. However, it is interesting to notice that the data

appear to be sex-specific as we noted the opposite in male mice.

Sex-related differences in the immune response have been

reported, indicating that some sex-related differences may be

germline encoded. Sex-related differences in purinergic signaling

expression and responses in female mice as compared with male

mice have been reported (41, 60–63). Cytokine secretion upon

inflammation has shown to vary between sexes (81). Indeed, we

have observed that cytokine levels such as RANTES, IL-1b, IL-10,
and IL-17 are altered by blocking P2Y1 or P2Y12 differently in

septic male and female mice. Hence, purinergic signaling may

regulate cytokine secretion in sepsis in a sex-related manner.

Blocking P2Y12 or P2Y1 has shown to change cytokine secretion in

several previous studies (26, 31, 74, 82, 83) but changes between

male and female mice have not been measured. It would be

interesting to investigate thoroughly whether P2Y1 and P2Y12 are

expressed differently in the immune system of males and females.

One study investigated LPS-induced lung injury in female mice

that revealed platelet activation and neutrophil infiltration is

dependent on P2Y1 (41). This is a different sepsis model than

the one used in this study, but it may suggest that modulating the

P2Y1 receptor alters platelet response during LPS-induced

inflammation. Furthermore, changes in purinergic signaling

may be hormonal-dependent. Indeed, other purinergic receptors

such as a P2X7 appeared to be hormonal-dependent (14, 16),

hence it would be interesting to determine whether the expression

of P2Y1 or P2Y12 is related to hormone secretion.

To determine whether this sex-specificity of P2Y1 and P2Y12

activation was observed in human cells, we investigated whether

PBMCs respond to purinergic signaling blockade in vitro when

stimulated to LPS. We have previously investigated P2Y12 signaling

pathways in human T cells and reported that human T cells express

P2Y12 and P2Y12 receptors and blockade altered T cell proliferation

and activation in a stimuli-dependent manner (80). However, no

experiments have compared P2Y1 or P2Y12 blockade in LPS-

activated PBMCs obtained from male and female donors. Our

data exhibited that PBMCs obtained from male donors blocked by

either P2Y1 or P2Y12 inhibitors similarly altered CD4+ and CD8+

populations, and these changes depended on whether the cells had

been activated with LPS. These observations are supportive of our in

vivo data, where blocking either P2Y1 or P2Y12 improved the

outcome of sepsis similarly. However, in PBMCs obtained from

female donors, the CD8+ population growth was altered only when

P2Y1 was blocked. This is in line with the data we obtained in septic

female P2Y1 deficient mice. Data on female mice have shown that

P2Y1 blockade but not P2Y12 could decrease leukocyte chemotaxis

and platelet-leukocyte interaction (41). Taken together the data

support that blocking P2Y1 could be a more effective strategy to
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modulate the immune response in female mice. In future studies, it

will be important to evaluate whether these changes are due to sex-

related differences in P2Y1 and P2Y12 receptor expression. There are

studies investigating how P2Y1 can regulate CD4+ differentiation in

vivo and in vitro. P2Y1 deficiency decreased CD4+ population

growth and in particular Th17 differentiation during colonic

inflammation (77). In vitro experiments in human PBMCs have

shown that blocking P2Y1 could modulate CD4+ cell activation

(84). Indeed, mRNA levels of P2Y1 are higher than P2Y12 (84). In all

the studies, no differentiation between male and female cells was

analyzed so more data are required before we can identify the most

appropriate therapeutic strategy for treating sepsis in both sexes.

The current study has several limitations. First, we have

selected the time point of 24 hours post-CLP. It has been shown

that at 24 hours organ injury (such as lungs, kidneys, and heart)

(48, 50, 85–87), and cytokine levels increase in blood samples of

CLP mice (48, 85) are comparable to that noted in septic patients

(49, 57). However, to deepen our understanding of sex-related

differences in sepsis, exploring a variety of time points is essential.

Second, it is true that sepsis can occur at any age, but infants,

people with chronic conditions, people with weakened immune

systems, and older adults are at high risk (as stated by the Center

for Disease Control and Prevention). Indeed, the incidence of

sepsis increases with age and is associated with extremely high

mortality rates (88, 89). Here, we have selected 8-10-week-old

mice, which is comparable to a fertile adult in humans, however, it

would be interesting to investigate older or younger male and

female mice. These experiments could also investigate whether

hormonal changes could be related to P2Y1 and P2Y12 expression.

Finally, exploring a range of doses for both antagonists will also be

an essential future study to determine whether the sex-related

effects are dose-dependent.

In conclusion, modulating P2Y12 or P2Y1 receptors can be

effective in improving sepsis outcomes, depending on the sex.

Targeting purinergic signaling represents a promising therapy

for sepsis and identifying sex-specific purinergic signaling may

lead to more sex-related targeted therapies in sepsis.
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