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small animal models
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1Department of Molecular Microbiology and Immunology, Saint Louis University School of
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Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University,
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This review outlines the propensity for metabolic syndrome (MetS) to induce

elevated disease severity, higher mortality rates post-infection, and poor

vaccination outcomes for viral pathogens. MetS is a cluster of conditions

including high blood glucose, an increase in circulating low-density

lipoproteins and triglycerides, abdominal obesity, and elevated blood

pressure which often overlap in their occurrence. MetS diagnoses are on the

rise, as reported cases have increased by greater than 35% since 1988, resulting

in one-third of United States adults currently diagnosed as MetS patients. In the

aftermath of the 2009 H1N1 pandemic, a link between MetS and disease

severity was established. Since then, numerous studies have been conducted

to illuminate the impact of MetS on enhancing virally induced morbidity and

dysregulation of the host immune response. These correlative studies have

emphasized the need for elucidating the mechanisms by which these

alterations occur, and animal studies conducted as early as the 1940s have

linked the conditions associated with MetS with enhanced viral disease severity

and poor vaccine outcomes. In this review, we provide an overview of the

importance of considering overall metabolic health in terms of

cholesterolemia, glycemia, triglyceridemia, insulin and other metabolic

molecules, along with blood pressure levels and obesity when studying the

impact of metabolism-related malignancies on immune function. We highlight

the novel insights that small animal models have provided for MetS-associated

immune dysfunction following viral infection. Such animal models of aberrant

metabolism have paved the way for our current understanding of MetS and its
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impact on viral disease severity, dysregulated immune responses to viral

pathogens, poor vaccination outcomes, and contributions to the emergence

of viral variants.
KEYWORDS

metabolic syndrome, obesity, type 2 diabetes, hypertension, dyslipidemia,
vaccination, vaccine efficacy, viral infection
Introduction

First described in 1977 (1), metabolic syndrome (MetS) is

diagnosed in an individual whose metabolism is disrupted,

leading to an imbalance in the processing of food for energy,

the synthesis of protein, lipids, and amino acids, as well as the

elimination of metabolic waste. Alarmingly, MetS diagnoses

have increased by 35% since 1988, culminating in one-third of
02
American adults diagnosed with MetS (2). The diagnostic

criteria for MetS are when an individual concurrently

experiences three or more of the following conditions: high

blood glucose, high levels of circulating low-density lipoprotein,

high levels of circulating triglycerides, abdominal obesity, and

high blood pressure (2–4) (Figure 1). As such, it is very common

for these subcomponents of MetS to occur concurrently within a

patient. MetS patients also often experience insulin resistance
FIGURE 1

Diagnostic criteria for metabolic syndrome (MetS). Pictorial representation of the diagnostic criteria used to diagnose metabolic syndrome
(MetS). MetS is diagnosed when an individual displays at least three of the following pathophysiological conditions: high blood glucose, high
cholesterol, high triglycerides, abdominal obesity, and high blood pressure (conditions depicted in blue). In addition to these conditions, MetS
patients often experience nonalcoholic fatty liver disease (NAFLD), chronic inflammation, and insulin resistance (conditions depicted in green).
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and nonalcoholic fatty liver disease, with evidence implicating

chronic inflammation as the link between the MetS diagnostic

criteria (5). Underlying causes of MetS are multifactorial,

including being overweight or obese, resistant to insulin,

having a sedentary lifestyle, predisposing genetic factors, and

advanced age (2). While it has been well established that MetS

enhances the risk for developing life-threatening conditions

including heart disease, type 2 diabetes, stroke, and is a risk

factor for sudden cardiac death (3, 4, 6), the realization that

individuals with MetS experience more severe disease following

viral infections and reduced protection from vaccination have

only recently been appreciated.

In this review, we focus on the individual metabolic

perturbances encompassed by MetS and highlight the animal

studies which identify these conditions as predictors of elevated

viral disease severity (7, 8), higher mortality rates following infection

(9–11), and poor vaccination outcomes (12–15). Independently,

each of the conditions associated withMetS is a risk factor for severe

pathology; however, when these conditions present together, as they

do in patients with MetS, the chance of developing serious

physiological complications significantly increases (2, 6). While

retrospective human cohort studies have laid much of the
Frontiers in Immunology 03
groundwork for linking metabolic perturbances to impaired viral

immunity, small animal models serve as critical tools for

understanding this phenomenon and uncovering the mechanisms

driving dysregulated metabolism-associated immune dysfunction

in response to viral pathogens. Throughout this review, we

comment on works that utilized small animal models to explore

the impact of high cholesterol, triglycerides, glucose, and

hypertension on host immune responses to viral pathogens.

Given that the different comorbidities associated with MetS often

overlap in the types of immune dysfunction they induce, we have

combined these known defects into one summarizing graphic,

depicted in Figure 2. In addition, we summarize how such

metabolic perturbances have been shown to enhance viral disease

severity and influence the emergence of virulent viral variants.
Impact of high cholesterol and
triglyceride levels on viral immunity

As two diagnostic criteria for MetS diagnosis, elevated

cholesterol and triglyceride levels have long been shown to
FIGURE 2

Insights gained from small animal models of the impact of MetS on viral immunity. Several small animal models have been utilized to interrogate
the impact of MetS on viral immunity. The main animal models employed thus far are those that model dyslipidemia, obesity, hyperglycemia,
and hypertension. Studies done utilizing these animal models have revealed that MetS-associated conditions lead to enhanced viral disease
severity, blunted type I interferon responses, elevated viral titers, impaired macrophage infiltration to sites of infection, impaired T cell effector
responses, generation of poorly neutralizing antibodies, poor antibody maintenance, and impaired maintenance of memory T cells.
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influence the susceptibility to viral infection and disease severity.

Cholesterol is a sterol synthesized by all animal cells, essential for

providing structural integrity to cells and as a building

component for vitamins and hormones (16). Cholesterol

travels through the body inside of lipoproteins which are

comprised of fat and protein. There are two major types of

cholesterol-carrying lipoproteins: high-density lipoprotein

(HDL) and low-density lipoprotein (LDL). LDL, often known

as the bad cholesterol, contributes to fat deposition within

arteries (17). Conversely, HDL transports cholesterol away

from the arteries to the liver where it can be metabolized and

excreted from the body (18). Triglycerides are the most

commonly found fat in the human body and are important for

storing excess energy obtained through diet (18). When

cholesterol and/or triglyceride levels fall outside of the normal

range, the resulting phenomenon is referred to as dyslipidemia,

which is associated with all-cause mortality and enhanced risk

for cardiovascular disease (19). Due to the reliance of viruses on

lipids to replicate and produce viral progeny, whether host

dyslipidemia impacts viral infection outcomes is an exciting

avenue for discussion.

It is well understood that viruses hijack host lipid

metabolism by manipulating gene expression to sustain their

lifecycles and produce new progeny virions (reviewed in (20)).

Studies done with viruses such as influenza A virus (IAV),

herpes viruses, and hepatitis viruses have eloquently

highlighted the significant alterations in lipid metabolism that

occur within hosts following infection (21–26). Remarkably,

these patterns of altered metabolism can be sustained even

after viral clearance (27). Specifically, severe fever with

thrombocytopenia syndrome virus (SFTSV) relies on host cell

cholesterol, fatty acid, and triglyceride synthesis pathways to

replicate and produce progeny; in fact, treating cells with

inhibitors of these synthesis pathways before SFTSV infection

significantly lowers the titer of infectious progeny post-infection

(28). Previous work supports this idea as disruption of lipid rafts,

lipid droplets, or diminished levels of circulating triglycerides

can reduce the production of infectious rotavirus progeny (29–

31) and interrupts hepatitis C (32, 33) and dengue virus

replication (34, 35). These studies suggest that altering host

lipid metabolismmay be a mechanism to alter viral infection and

reduce disease severity.

Multiple animal studies have supported clinical observations

demonstrating the impact of high cholesterol on viral replication.

Braunwald et al. employed a high cholesterol diet in amurinemodel

of viral infection using A/J mice genetically modified not to be

susceptible to mouse hepatitis virus type 3 (MHV3). The authors

noted that following a hypercholesterolemic diet, these mice

succumbed to MHV3 infection and had high MHV3 titers in

their livers accompanied by necrotic hepatocytes and elevated

serum transaminase levels (36), indicating intense virus-induced

liver pathology in mice with high cholesterol levels. Delving deeper

into the impact of dyslipidemia on susceptibility to viral infections,
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Loria et al. conducted a seminal study in which mice fed a diet rich

in cholesterol were infected with coxsackievirus B. Following

infection, the authors noted that mice with elevated cholesterol

levels displayed enhanced morbidity to coxsackievirus B infection

compared to mice with normal cholesterol levels (37). While these

studies employed the use of high cholesterol diets to interrogate the

impact of dyslipidemia on virus-induced morbidity, it is important

to note that these diets were high in sucrose, making the results

indicative of a positive correlation between unhealthy diet and

enhanced severity of viral disease. Future studies using fine-tuned

diets to induce hypercholesterolemia independent of heightened

sucrose could bolster the reported relationship between

hypercholesterolemia and enhanced viral disease severity.

Combining the in vitro studies highlighting the importance of

lipid metabolism for viral replication with in vivo animal models

which mimic the impact of high cholesterol on viral infection,

multiple studies have focused on the mechanisms to explain how

elevated cholesterol and triglycerides contribute to increased viral

disease severity. Campbell et al. found a correlation between high

cholesterol and increased mortality in mice following

coxsackievirus B infection, in addition to elevated viral titers in

the blood and liver. These authors also noted that mice fed a

cholesterol-rich diet had a defect in the ability of monocytes and

macrophages to infiltrate into infection sites compared to the

migration abilities of phagocytes primed in mice with normal

cholesterol levels (38), graphically depicted in Figure 3. Utilizing a

similar approach where the effects of a cholesterol-rich diet were

compared with those of a standard diet, high cholesterol feeding

resulted in dyslipidemia prior to IAV infection (39). Louie et al.

reported that these high cholesterol mice displayed exacerbated

morbidity yet did not show higher viral loads compared to mice

with normal cholesterol levels post-IAV infection (39).

Transcriptomics from lungs of mice fed a high cholesterol diet

revealed an upregulation in the expression of genes involved in

cytokine production by CD4 T, CD8 T, and dendritic cells (39).

Furthermore, morbidity was also correlated with the numbers of

cytokine-producing lymphocytes and granulocytes (39). These

results suggest that high cholesterol levels enhance morbidity by

exaggerating cellular immune responses. These findings bolster

the idea that supraphysiological levels of cholesterol can

contribute to worsened disease development following viral

infection, and that lowering cholesterol levels can reduce the

severity of virally induced disease in the host.

Given the evidence that cholesterol and triglycerides are

important for modulating viral infection and disease severity,

research efforts to modify lipid metabolism in animal models to

improve infection outcomes have begun. For example, Karlsson

et al. noted that obese mice with high cholesterol levels treated with

a statin following IAV infection showed protection from severe viral

disease. Yet, treatment of wild-type mice with a statin did not

protect against severe viral disease (40). Multiple studies have

demonstrated that statin treatment and lowered cholesterol levels

have anti-inflammatory effects which could improve disease
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outcomes (reviewed in (41)). Further, other studies support a role

for statins having a direct anti-viral effect based on in vitro findings

that showed a significant reduction in Zika or dengue virus viral

titers in cells treated with statins compared to controls (42, 43).

Based on findings from murine models of high cholesterol, it

is unsurprising that human cohort analyses conducted during the

SARS-CoV-2 pandemic have revealed that many COVID-19

patients requiring hospitalization had a history of low HDL and

high triglyceride levels before infection, with more severe cases

being correlated with lower HDL and higher triglyceride levels at

the time of infection (44). Other data reported from SARS-CoV-2

infections revealed a link between a history of generalized

dyslipidemia to severe cases of COVID-19 (45). Interestingly,

Lee et al. noted that sterol regulatory element-binding protein 2

(SREBP-2)-induced inflammatory responses were elevated in

COVID-19 intensive care unit patients (46). SREBP-2 is

essential for cholesterol biosynthesis, suggesting that high

cholesterol levels contributed to the cytokine storm and ensuing

pulmonary damage in these COVID-19 patients. Further, these

authors utilized a murinemodel to test whether inhibiting SREBP-

2 impacted sepsis outcomes and demonstrated that blocking

SREBP-2 activation helped suppress cytokine storm, pulmonary
Frontiers in Immunology 05
damage, and promoted high survival rates (46). The studies above

provide a strong link between dyslipidemia and severe viral

infection outcomes, although specific mechanisms driving this

phenomenon have yet to be elucidated. However, these data

suggest that heightened cholesterol levels could foster high levels

of viral replication within the host, thus providing the potential for

more severe disease. In turn, elevated viral titers could contribute

to inflammation-mediated tissue pathogenesis and incite

exaggerated cellular responses, which could lead to enhanced

immune-mediated pathology.
Impact of obesity on viral immunity

Obesity, abnormal or excessive fat accumulation, is a

diagnostic component of MetS. Obesity rates have tripled

worldwide since 1975, with more than 4 million people dying

yearly due to complications associated with this condition (47).

Specifically, within the US, current statistical models project 50%

of adults will have obesity by 2030 (48), and global obesity rates

are projected to encompass 50% of adults by 2050 (49). In the

1950s and 1960, increased susceptibility to viral infection and
FIGURE 3

Impact of hypercholesterolemia on viral immunity. In a state of normal cholesterol levels, an invading virus hijacks host cell machinery to
replicate and produce progeny virions that are released from the infected cell. A macrophage recruited to the infection site can engulf viral
progeny and contribute to the anti-viral state by transcribing genes that stimulate the innate immune response, like pro-inflammatory cytokine-
encoding genes. In a state of hypercholesterolemia, there is a defect in macrophage recruitment to infection sites. Consequently, there are
fewer macrophages found at infection sites, blunting this arm of the immune response.
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severe viral diseases was noted in studies of obese animals and

instances of overnutrition in humans (50, 51). In the subsequent

years, many studies emphasized a connection between obesity

and severe viral disease (reviewed in (52)). By the early 2000s,

research efforts focused on exploring ties between obesity and

immune regulation were centered on the impact of obesity-

associated inflammation on insulin resistance (53–57). However,

only following the 2009 H1N1 pandemic was obesity cited by the

US Centers for Disease Control and Prevention (CDC) as a risk

factor that could predict severe viral infection outcomes. During

the 2009 H1N1 pandemic, a large proportion of H1N1 patients

hospitalized due to severe disease or who succumbed to infection

were obese (58). Further, amidst the SARS-CoV-2 pandemic,

obesity was again cited as a risk factor for severe SARS-CoV-2-

induced illness and has been correlated with higher mortality

rates following SARS-CoV-2 infection (7, 8, 59, 60). Intense

efforts have been focused on determining mechanisms

underlying metabolic dysfunction caused by obesity (56, 57,

61, 62), but the exact mechanisms by which MetS induces

immune dysregulation and more severe viral disease are

unknown and are an active area of research. Small animal

models have been essential for dissecting metabolic pathways

and how their dysregulation in the obese state can impact

immune responses to viral pathogens.

Several murine models exist for use in the interrogation of

obesity and associated metabolic perturbances on overall health,

including genetically obese and diet-induced obese (DIO) mice.

Although genetically obese animals serve as excellent

recapitulatory models of morbid obesity, the leptin (ob/ob or

Lepob) or leptin receptor (db/db or Leprdb) mutations that induce

obesity in these models rarely occur in humans. Thus, the use of

DIO mice more closely models human obesity as it supports

examining the effects of chronic over-nutrition and the ensuing

oxidative stress it exerts on the immune system. Nonetheless, DIO

models largely recapitulate the same immune system perturbances

as genetically obese models, but the resulting phenotypes in DIO

mice tend to be less exaggerated. In this section, we will discuss

insights into the impact of obesity on immune function gleaned

from both genetically obese and DIO mice.

Animal studies interrogating the impact of obesity on viral

disease severity and antigen-specific immune responses have

repeatedly illustrated that obesity exacerbates viral disease

severity and dampens virus-specific immune responses (14,

63–68). Studies have suggested that a major contributor to

obesity-associated immune dysfunction is the skewing of

macrophage polarization within excessive stores of adipose

tissue. Nearly since the advent of murine obesity studies,

macrophages have been noted at the forefront of obesity-

associated immune dysregulation due to their accumulation in

adipose tissue. Though previously thought to be a neutral storage

site for excess lipids, adipose tissue is an endocrine organ that

secretes an array of hormones and adipokines central to

maintaining systemic metabolism (69). Although adipose
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tissue (AT) houses several resident cell types, the most

abundant leukocyte population found here is adipose tissue-

resident macrophages (ATM) (70). In the obese state, ATM

populations greatly increase in humans and mice, at times

constituting 50% of the tissue (71). This intense inflation of

ATM numbers in the obese state is believed to occur in part due

to fat accumulation causing adipocytes to rapidly enlarge, thus

inducing a hypoxic state which promotes necrosis and attracts

more macrophages into the adipose tissue (reviewed in (72)).

The increase in ATM, contributes to chronic low-grade

inflammation which occurs due to the propensity for ATM to

secrete large amounts of pro-inflammatory cytokines like TNF-a
and interleukin-1b (IL-1b) (70, 73–76), graphically depicted in

Figure 4. Numerous studies discussed below expand from

focusing on macrophage-associated enhanced inflammation to

detailing a role for obesity-induced defective type I interferon

(IFN) responses. Many viral pathogens excel at antagonizing the

host type I IFN signaling pathway to promote the production of

progeny virions; thus, viral infection could be more fraught for

individuals with obesity who may already have a blunted type I

IFN response due to metabolic perturbances.

Studies of the interplay between obesity and viral immunity

have focused heavily on respiratory pathogens, such as

influenza virus, particularly in the aftermath of the 2009

H1N1 pandemic. In several studies, obese mice displayed

significantly higher mortality rates compared to wild-type

counterparts following influenza virus infection (66, 77–81),

and reducing the dose of influenza virus given to obese animals

was insufficient for mitigating their enhanced mortality (64).

Obese mice often showed higher lung titers (66, 67, 80), in

addition to elevated lung inflammation, leading to more

significant pathology and tissue damage (67, 77–81). In an

experimental study, O’Brien et al. observed significantly higher

host and viral protein levels in bronchoalveolar lavages from

obese animals, suggesting obese mice experienced defects in the

maintenance of the barrier permeability (81), thus potentially

accounting for enhanced edema and inflammation seen in

these animals post-influenza virus infection. Interestingly,

elevated lung titers are not the only factor contributing to

enhanced respiratory tract pathology, as obese mice in a study

done by Milner et al. had an equivalent viral burden in the

lungs when compared to wild-type mice, yet significantly

greater levels of lung inflammation and tissue damage (79).

Similarly, elevated lung viral titers cannot be attributed as the

sole cause for enhanced mortality as O’Brien et al. found

enhanced mortality and inflammation in obese animals when

compared to wild-type counterparts, yet obese animals in this

study did not display significantly higher viral titers or

worsened pathology in comparison to wild-type animals (81).

Potentially underlying these contradictory findings are studies

aimed at characterizing expression of interferon a and b (IFN-

a and IFN-b) at sites of infection within the respiratory tracts

of obese mice. These type I IFN anti-viral cytokines are
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https://doi.org/10.3389/fimmu.2022.1015563
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Geerling et al. 10.3389/fimmu.2022.1015563
essential for establishing an anti-viral state, and their mRNA

transcript levels were markedly lower in obese mice when

compared to the expression noted in wild-type mice

following influenza virus infection (66, 77, 78, 82),

graphically depicted in Figure 5; the same was true for

expression of pro-inflammatory cytokine- and chemokine-

encoding mRNAs (77, 80, 81). These findings pin obesity at

the forefront of inhibiting the innate immune system from

adequately responding to acute viral infection. This type of

immune defect not only poses a significant risk for combatting

viral infections in the early stages of infection, where innate

immune cells mount a rapid, multifaceted anti-viral attack, but

also a blunted or delayed innate immune response could have

detrimental consequences that prevent the priming of a robust

adaptive immune response. In further examples of the

propensity for the obese state to blunt type I IFN responses,

Honce et al. noted that viral variants were detected early in

obese mice post-influenza virus inoculation relative to wild-

type mice (63). These variants replicated quickly within the

obese hosts and exhibited greater virulence compared to the

parental infecting strain (63). It is possible that these variants

arose specifically within obese mice due to their blunted,

delayed type I IFN response. This finding provides additional
Frontiers in Immunology frontiersin.or07
insight into why obesity has been linked to higher morbidity

and mortality post-viral infection.

Moreover, confirming the impact obesity has on mortality

following viral infection, Karlsson et al. sought to determine if

obesity impacted memory T cell responses, thus predisposing

hosts for greater susceptibility to severe viral disease following

infection with a previously encountered pathogen. As memory T

cells primed during a primary influenza virus infection are

specific for internal viral proteins typically shared among

various influenza strains, these T cells are effective at

combatting infection by heterologous strains. However, this

study revealed that obese mice had a significantly higher

mortality rate following secondary challenge with a different

influenza strain when compared to survival rates of wild-type

counterparts (66). This study brings to the forefront the impact

obesity can have on memory immune responses, as obese mice

were not protected against a second encounter with an influenza

virus. Following a similar line of questioning, wild-type and

obese mice in another study were infected with sublethal doses of

influenza virus, followed by a sublethal dose of Streptococcus

pneumoniae (S. pneumoniae) (83). Obese animals succumbed to

coinfection uniformly and significantly earlier than wild-type

mice, and obese mice also displayed high viral and bacterial titers
FIGURE 4

Obesity promotes accumulation of M1 macrophages. In the non-obese state, adipocytes secrete adiponectin, an adipokine that promotes
macrophage polarization to the M2 phenotype. Within the obese state, adipocytes enlarge to store excess nutrients from overnutrition, which
results in hypoxia and macrophage recruitment into adipose tissue. In the hypoxic state, less adiponectin is secreted, thus inducing
macrophage polarization to the M1 phenotype, contributing to a state of chronic inflammation as these macrophages secrete high levels of
inflammatory cytokines. This chronic inflammation is also believed to underlie and link the conditions that encompass MetS.
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that correlated to extensive cellular damage (83). Interestingly,

O’Brien et al. noted significantly less epithelial regeneration

within bronchoalveolar surfaces when compared to wild-type

mice (81), suggesting impaired wound healing in obese animals.

This respiratory barrier vulnerability could account for their

enhanced susceptibility to secondary infection. These studies

reveal how, in addition to enhancing morbidity and mortality

rates following a primary infection, obesity can also enhance

host susceptibility to secondary infection, whether in the form of

a challenge with the original invading pathogen, or a

heterologous challenge with a different pathogen. These

findings are critical to note as secondary infections are

common among patients with influenza virus (84, 85) or

SARS-CoV-2 (86–88) infections, confirming the toll obesity

imposes on public health outcomes.

Finally, in addition to studies exploring the impact of obesity

on respiratory infections, other research efforts have confirmed

that obesity enhances morbidity and mortality in non-respiratory

infections. In our previous study, we showed that dengue virus

infection caused enhanced morbidity in obese mice based on

weight loss and thrombocytopenia compared to wild-type mice

(89). Similarly, in a study examining the impact of obesity on

alphavirus infection outcomes, we showed that obese mice

displayed significantly higher morbidity in terms of weight loss

and mortality following infection withMayaro virus, chikungunya

virus, and Ross River virus (90), all of which are mosquito-borne
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pathogens. Further, in our studies of West Nile virus (WNV), we

noted that obese mice displayed significantly higher viral titers in

peripheral organs and the brain. We also found that these mice

had a significantly higher mortality rate post-WNV infection

when compared to wild-type counterparts (68). Similarly, upon

infection with the rodent-borne viral pathogen lymphocytic

choriomeningitis virus (LCMV), obese mice again experienced

significantly higher mortality rates compared to wild-type mice

and elevated viral titers (91). Interestingly, Pepin et al. highlight an

important finding utilizing antiretroviral therapy (ART) to

manage human immunodeficiency virus (HIV) infection. Rather

than directly interrogating the impact of obesity on HIV-

associated immune defects, these authors draw attention to the

inherent predisposition for metabolic derangements that

individuals who rely on ART for managing HIV infections

experience. For example, prolonged ART treatment does not

restore proper immune function in patients with HIV, but

rather it is typically associated with premature immune aging,

persistent immune hyper-activation, and chronic inflammation

(92). Unsurprisingly, these predispositions result in patients with

HIV exhibiting impaired metabolic control (93), MetS-associated

comorbidities like obesity (94), NAFLD (95), type 2 diabetes (96),

and high prevalence of insulin resistance (97–99). In their study,

these authors found that ART worsened high fat diet-induced

MetS conditions in mice, like enhanced glucose dysregulation

(100). Further, ART exaggerated adiposity in the obese mice, and
FIGURE 5

Obesity blunts anti-viral type I IFN responses. In the non-obese state, a lung epithelial cell produces type I interferons (type I IFNs) in response
to infection by a respiratory pathogen. In turn, these proteins mediate the induction of an antiviral state through tasks such as enhancing
barriers, signaling infected cells to die, and recruiting immune cells to infection sites. In the obese state, mRNA transcripts of type I IFNs are
decreased at infection sites, thus blunting the induction of an antiviral state and allowing the invading virus to persist.
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contributed to further macrophage infiltration and polarization to

the M1 phenotype, accompanied by enhanced inflammation

(100). Taken together, these data highlight the capability of

obesity to predispose for heightened viral disease severity and

mortality to an array of pathogens with varying tropisms, and

some antiviral treatments can compound the impacts of obesity

on antiviral immunity, thus increasing the burden of viral diseases

in humans with metabolic derangements.
Impact of obesity on
vaccine efficacy

As a final comment on the impact of obesity on overall viral

immunity, it is important to consider vaccine efficacy amidst a

state of metabolic perturbances. There have been many recent

outstanding reviews covering the clinical studies that demonstrate

a reduced COVID-19 and IAV vaccine durability (101–104).

Additionally, hospitalizations due to SARS-CoV-2 breakthrough

infections are significantly elevated in individuals with type 2

diabetes, cardiovascular disease, as well as in individuals who are

overweight (105–107). Similar to the viral infection studies

discussed above, previous studies in animals have noted that

metabolic dysfunction, and obesity in particular, are predictors

of poor vaccine responses. Karlsson et al. conducted a study that

eloquently demonstrated the negative impact obesity can have on

vaccine-conferred immunity. In this study, wild-type and obese

mice were infected with a nonlethal dose of influenza virus

followed by a nonlethal dose of S. pneumoniae to simulate a

secondary bacterial infection, a common risk factor associated

with influenza virus infections in vulnerable populations. As

mentioned earlier in this review, coinfected obese mice

displayed a significantly higher mortality rate when compared

to coinfected wild-type counterparts (83). The authors of this

study noted that vaccinating obese mice against either pathogen

failed to protect these animals from heightened mortality.

Highlighting that obesity prevented the production of a

protective vaccine-induced adaptive immune response.

Providing insight into why the vaccines fail to confer

protection in obese animals, other studies revealed impaired

vaccine-induced immune responses in obese animal (64, 67, 80,

108–110). Specifically, the frequency of antigen-specific CD8 T

cells found in obese mice following influenza virus vaccination

was significantly lower than in wild-type counterparts (67).

Further, Karlsson et al. noted a reduction in the expression of

interleukin-7 (IL-7) on antigen-specific CD8 T cells following

influenza virus infection, and this study, as well as others,

revealed that obese-primed T cells exhibited a steep decline in

their ability to secrete IFN-g when compared to wild type-

primed CD8 T cells (65, 66, 111). This finding is consistent

with studies done on IL-7 signaling-deficient mice following

influenza virus infection where a decreased accumulation of
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antigen-specific, functionally active CD8 T cells existed at sites of

infection (112). Taken together, these findings are informative

for vaccine design, as IL-7 plays a canonical role in maintaining

memory CD8 T cells (113), a key fact that makes data generated

by Milner et al. and Rebeles et al. illuminating. Milner et al.

found that influenza-specific CD8 T cells primed in obese mice

produced less IFN-g during a secondary exposure when

compared to their cytokine production during a primary

infection (67). Further, Rebeles et al. noted that upon a

secondary influenza virus challenge, the number of CD8 T

cells at sites of infection in obese mice were significantly

reduced compared to the lungs of wild-type counterparts.

They also noted that recalled CD8 T cells in obese mice

exhibited altered cellular metabolism patterns characterized by

increased oxygen consumption (108). These findings suggest

that the obese microenvironment negatively impacts the

maintenance of memory CD8 T cells, thus dampening their

ability to respond quickly and effectively upon antigen re-

exposure; consequently, these phenomena could explain why

vaccine efficacy appears to be reduced in hosts with obesity.

Pursuing this matter further, several studies reported that

obesity leads to reduced vaccine-induced antibody production

following vaccination in obese mice compared to wild-type

counterparts (64, 67, 80, 109). This finding indicates that the

obese environment fails to foster an expansive antibody repertoire

which could account for higher susceptibility to severe viral disease

upon secondary exposure. Coupled with lower overall antibody

titers, non-neutralizing antibody levels also waned significantly

faster in obese animals when compared to wild-type counterparts

following vaccination (109). Similarly, serum antibody

neutralization capacity was markedly reduced in obese mice

following influenza vaccination (80, 110). Taken together, these

data indicate that obesity dampens the generation of a robust

antibody response post-vaccination, and highlights that antibodies

generated in the obese state tend to wane more rapidly than those

generated in a metabolically healthy microenvironment.
Impact of hyperglycemia on
viral immunity

Serving as another contributing factor to MetS diagnosis,

this section will focus on hyperglycemia and insulin resistance.

Hyperglycemia refers to a state where excess sugar (glucose)

circulates in the blood. In a healthy physiological state,

pancreatic beta cells produce insulin and release it into the

bloodstream when circulating glucose levels are high. Insulin

stimulates cells to capture glucose from the bloodstream, thus

lowering blood glucose levels. When glucose levels in the blood

remain high, beta cells are stimulated to secrete higher insulin

levels to counteract hyperglycemia. An overabundance of insulin

in the bloodstream can gradually desensitize cells to the protein,
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thus making them less likely to store circulating glucose, a

phenomenon known as insulin resistance. Simultaneously, the

increased effort exerted by beta cells to counteract chronic

hyperglycemia can lead to cellular exhaustion, thus damaging

the population of beta cells and inhibiting future insulin release

(114). When insulin resistance occurs, causing blood glucose

levels to remain high, this impairment in glucose storage and

regulation is referred to as type 2 diabetes (115). Previously,

urinary tract infections were the most reported immune system-

related susceptibility for type 2 diabetes patients (116). However,

data recorded from SARS-CoV-2 patients has pinned type 2

diabetes as a significant risk factor for predicting severe viral

infection outcomes (117, 118). Throughout this section, we will

discuss some of the data that have been reported regarding the

impact of hyperglycemia and insulin resistance, or diabetes, on

immunity to viral infections.

Historically, studies elucidating the link between viruses and

hyperglycemia have focused on the role of viruses in inducing or

exacerbating diabetes. These studies done both in vitro and in vivo

in small animal models have utilized numerous viral pathogens,

including herpes viruses (119), encephalomyocarditis virus

(EMCV) (120, 121), coxsackievirus B4 (122), and reoviruses

(123). Infection by the viruses highlighted in these studies was

shown to inflict cellular damage on beta cells, leading to

hypoinsulinemia, and consequently causing hyperglycemia.
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While not directly demonstrating how viral disease severity is

enhanced in instances of hyperglycemia, these studies have

provided an ideal model of understanding the relationship

between hyperglycemia and shortened lifespan, in addition to

revealing an association between viral infection and blood glucose

levels. Around 2000, clinical studies began to record an increase in

the risk of severe viral disease in patients with hyperglycemia

(124). By 2004, plasma glucose levels were shown to be a predictor

of mortality following SARS-CoV infection (125, 126). Studies by

Kumar et al. noted that WNV infection in diabetic mice led to

more severe disease (127), similar to what has been observed in

humans following WNV infection (128–131). IAV studies done

with insulin receptor-deficient mice, which mimic human insulin

resistance, demonstrated that insulin resistance resulted in

reduced immune responses and poor protection against an

H1N1 challenge (132). More recently, Hulme et al. found that

mice with high glucose levels had increased disease severity

following IAV infection. The investigators further demonstrated

that elevated disease severity was due to hyperglycemia-induced

damage to the pulmonary epithelial: endothelial barrier, thus

increasing lung edema (133), graphically depicted in Figure 6.

In vitro studies investigating mechanisms of impaired immune

function associated with hyperglycemia in mice have noted that

hyperglycemia can alter innate immune antiviral defenses (134),

thus blunting early immune responses to viruses. Additionally, in
FIGURE 6

Impact of hyperglycemia on viral immunity. In a state of normal glycemia levels, lung cells can become infected by a respiratory virus, which
may result in moderate damage to bronchial tissue. However, in the hyperglycemic state, severe damage of bronchioles following viral
pathogen infection is more likely due to an impairment in lung barriers, thus enhancing their permeability and increasing the incidence of lung
edema.
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studies looking at immune cell differentiation in hyperglycemic

mice, authors noted that hyperglycemia alters the differentiation

of endothelial progenitor cells, thus leading to an increase in the

frequency of proinflammatory cells (135). This predisposition of

cells from hyperglycemic mice to differentiate into inflammatory

mediators may contribute to the chronic inflammation associated

with immune dysfunction and MetS, especially when considering

that inflammatory cytokines, namely TNF-a, are insulin-

desensitizing (5, 136, 137).
Impact of hypertension on
viral immunity

Hypertension, or high blood pressure, results when the force

exerted by blood circulating against arterial walls within the

body ’s major blood vessels becomes elevated (138).

Hypertension is the most common chronic disease condition

in the world, and due to the common co-occurrence of

hypertension with the previously described metabolic

perturbance characteristics of MetS, a correlation between
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hypertension and altered immunity to viral pathogens would

be unsurprising. However, whether high blood pressure alone

can alter immunity is an active area of investigation, especially

among cohort studies conducted on SARS-CoV-2 patients.

Shortly after the link between hypertension and viral disease

was discovered, many groups worked to develop animal models

that would mimic hypertension to develop treatments and provide

a better understanding of the causes of this highly prevalent chronic

condition (139). As with animal studies of hyperglycemia, early

studies focused on viral infections which caused hypertension in

both animals and humans, with some of the most notable studies

looking at the role of cytomegaloviruses (CMV) in contributing to

hypertension (140, 141). Although it has yet to be studied

extensively in small animal models, data arising from the ongoing

SARS-CoV-2 pandemic has identified hypertension as a factor that

can contribute to severe COVID-19. Compared to COVID-19

patients with healthy blood pressure, hypertensive individuals

were more likely to develop severe pneumonia or organ damage

and experience a delay in viral clearance (142). Further, individuals

with hypertension also displayed exacerbated inflammatory

responses post-viral infection and had a heightened risk for

mortality following SARS-CoV-2 infection (143, 144).
FIGURE 7

Impact of hypertension on viral immunity. In a state of normal blood pressure levels, T cells can be activated and proliferate to respond to virally
infected cells following antigen presentation by a dendritic cell. However, in the hypertensive state, angiotensin II levels are higher, and this
protein can bind to its receptor present on activated T cells. Upon binding, angiotensin II promotes the T cell contraction phase at the expense
of sustaining a robust effector response. This phenomenon can result in delayed viral clearance due to a lack of T cells counteracting virally
infected cells.
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Interestingly, individuals with a history of hypertension but

currently being treated with anti-hypertensive medications had a

substantial decrease in the likelihood of critical outcomes from

COVID-19 (142). Of the minimal number of animal studies

conducted to assess the impact of hypertension on susceptibility

to viral infection, several have noted that sympathetic nerve activity

is exaggerated (145, 146) and thought to contribute to enhanced

morbidity and mortality in hypertensive patients (147). Specifically,

angiotensin II (AngII) expression is elevated in the hypertensive

state and can activate sympathetic nerves, increasing

proinflammatory cytokine expression (148). This increase may

account for enhanced inflammation noted in hypertensive

COVID-19 patients and exacerbated organ damage. Interestingly,

one of the receptors for AngII, angiotensin II type 1-receptor

(AT1R), is expressed on T lymphocytes. Studies in murine

models revealed that engagement of AngII with AT1R decreased

the activation of antigen-specific CD8 T cells (149). This

engagement also accelerated the contraction phase of T cells in

response to stimulation by their antigen (149), graphically depicted

in Figure 7. This finding is also enlightening in the context of

hypertensive COVID-19 patients as it could partially explain the

delayed viral clearance observed in these patients.
Conclusions

As highlighted in this review, human cohort studies of various

metabolic perturbances associated with MetS have drawn attention

to the impact of aberrant metabolism on viral disease severity and

vaccination outcomes. Serving as essential tools for elucidating the

effect of specific physiological perturbances, small animal models

have allowed scientists to begin understanding how conditions such

as obesity, high cholesterol, hypertriglyceridemia, hyperglycemia,

and hypertension induce aberrant immunity to viral pathogens.

These findings suggest that the development of MetS leads to a

blunted host immune response to viral infection by influencing the

immune system in different ways, meaning that patients with MetS
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who often co-present with these inherently overlapping risk factors

could be at even higher risk of severe viral disease development than

patients harboring one of these conditions independently. Future

small animal model studies centered on exploring the interplay

between MetS and viral immunity or vaccination are of great

importance as the proportion of individuals diagnosed with MetS

is projected to rise continually.
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