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The incidence and complexity of drug-induced autoimmune diseases (DIAD)

have been on the rise in recent years, which may lead to serious or fatal

consequences. Besides, many environmental and industrial chemicals can also

cause DIAD. However, there are few effective approaches to estimate the DIAD

potential of drugs and other chemicals currently, and the structural

characteristics and mechanism of action of DIAD compounds have not been

clarified. In this study, we developed the in silico models for chemical DIAD

prediction and investigated the structural characteristics of DIAD chemicals

based on the reliable drug data on human autoimmune diseases. We collected

148 medications which were reported can cause DIAD clinically and 450

medications that clearly do not cause DIAD. Several different machine

learning algorithms and molecular fingerprints were combined to develop

the in silico models. The best performed model provided the good overall

accuracy on validation set with 76.26%. The model was made freely available

on the website http://diad.sapredictor.cn/. To further investigate the

differences in structural characteristics between DIAD chemicals and non-

DIAD chemicals, several key physicochemical properties were analyzed. The

results showed that AlogP, molecular polar surface area (MPSA), and the

number of hydrogen bond donors (nHDon) were significantly different

between the DIAD and non-DIAD structures. They may be related to the

DIAD toxicity of chemicals. In addition, 14 structural alerts (SA) for DIAD

toxicity were detected from predefined substructures. The SAs may be

helpful to explain the mechanism of action of drug induced autoimmune

disease, and can used to identify the chemicals with potential DIAD toxicity.
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The structural alerts have been integrated in a structural alert-based web server

SApredictor (http://www.sapredictor.cn). We hope the results could provide

useful information for the recognition of DIAD chemicals and the insights of

structural characteristics for chemical DIAD toxicity.
KEYWORDS

drug-induced autoimmune diseases, computational toxicology, machine learning,
molecular fingerprinting, structural alert
Introduction

Autoimmune diseases refer to problems where the immune

system attacks healthy cells in the body by mistake (1). It was

reported that there are about 20 million autoimmune disease

patients in the United States, accounting for about 7% to 9% of

the total population (2). Meanwhile, the incidence of

autoimmune diseases in industrialized countries is also

increasing in recent years with the continuous deterioration of

the environment (3). Up to now, more than 100 types of

autoimmune diseases have been discovered, but the treatment

of autoimmune diseases can only repair the damage already

caused as the main direction. Most patients need long-term or

even lifelong medication, resulting in huge medical economic

burden. It cost more than 100 billion US dollars every year in the

USA healthcare system (4). More importantly, many patients’

conditions are dangerous, seriously affecting the quality of life,

and even fatal.

The development of autoimmune diseases requires both

genetic predisposition and environmental factors to jointly

trigger immune pathways, which gradually develop and

eventually lead to tissue destruction (5). As one of the

environmental factors, medications and industrial chemicals

also have been reported can interfere with human immune

system and induce autoimmune diseases. For instance, drug-

induced lupus accounts for about 10% of all systemic lupus cases

in the USA (6). Besides, about 12-17% of autoimmune hepatitis

cases were believed to be induced by clinical drugs (4). The

incidence and complexity of drug-induced autoimmune diseases

have been on the rise in recent years. Since sulfadiazine was first

reported to cause lupus-like symptoms in 1945, more than 100

drugs have been found to cause drug-induced autoimmune

diseases (DIAD). As a special type B drug reaction, DIAD is

unpredictable, with an incubation period of months or even

years, sometimes leading to serious or fatal consequences.

Compared with primary autoimmune diseases, DIAD has

more complex clinical manifestations, with significant

differences in epidemiology and pathology (7).
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The mechanisms of DIAD have not been fully clarified. Most

DIAD chemicals are small molecules and have no

immunogenicity by themselves, but these small molecule

substances or their metabolites are able bind to carrier

proteins and become immunogens (8). These hemicantized

drugs become target antigens and induce an immune response

to themselves, leading to the production of autoantibodies.

However, recent studies have found that most DIAD drugs do

not induce specific T cell production, but induce autoimmune

response, so there may be other mechanisms for this process.

The neutrophil extracellular traps (NETs) (9, 10) induced by

drugs may cause or promote the occurrence of some

autoimmune diseases. Therefore, the formation of NETs may

also be an important cause of drug-induced autoimmune disease

(11). More recently, Li, et al. reported that ferroptosis is a major

factor in neutropenia and systemic autoimmune disease (12).

Hence, drug-induced ferroptosis may be another possible

pathway for DIAD. Many of the DIAD drugs are used for

autoimmune diseases treatment themselves. These drugs may

be immunostimulatory, and can act in an immunomodulatory

manner under different genetic and environmental

conditions (8).

Until now, there is few effective approach to estimate the

DIAD potential of drugs and other chemicals (4).

Computational toxicology is a structure-based, application-

related management and analysis of experimental data from

toxicological tests that can provide viable mechanistic

explanations for the toxicity of compounds (13). This tool is

particularly important in designing safe drugs and assessing

environmental risks (14–24). Using computational toxicology

tools to develop in silico models for chemical DIAD toxicity and

analyze the structural characteristics of DIAD drugs not only

helps to estimate the potential DIAD toxicity of compounds, but

also helps to explore the structural basis of chemical

DIAD toxicity.

In the present study, we aim to develop the machine learning

models for chemical DIAD toxicity and investigate the structural

characteristics of DIAD chemicals.
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Materials and methods

Collection and preparation of DIAD and
non-DIAD drugs

Only approved small molecule drugs data related to DIAD

toxicity were included in this study. The DIAD drugs were

extracted from two different sources: (1) the drugs with

autoimmune diseases associated side effects extracted from

the Side Effect Resource (SIDER) database (25); (2) positive

drugs for DIAD reported in the literature (4). SIDER is a

resource of adverse drug reaction (ADR), which contains the

information on marketed medicines and their recorded ADRs

on human. We retrieved the entire SIDER database, and

extracted the ADRs related to autoimmune diseases with

frequency ≥ 0.1%. The corresponding structures were

obtained from the PubChem compound database (26). The

negative drugs for DIAD were all extracted from Wu’s work

(4). The structures were prepared by: (1) only keeping the main

ingredients in mixtures; (2) excluding the inorganic and

organometallic compounds; (3) converting the salts into the

parent forms; (4) removing the duplicate substances. The data

standardization was performed on Online Chemical Database

and Modeling Environment (OCHEM) platform (27), which is

a user friendly web-based platform for data exploring and

modeling. The details for structure preparation can be seen in

supporting information.
Model building for chemical
DIAD toxicity

As a specific artificial intelligence method, machine learning

was always used for the model building which can access data

and use data for automated learning (28). In this study, five

commonly used machine learning methods were used for the

model development, including Support Vector Machines (SVM)

(29), Naive Bayes (NB) (30), K-nearest Neighbor (kNN) (31),

Decision Tree (DT) (32) and Random Forest (RF) (33). These

methods have been extensively used in computational toxicity

studies due to the high effective and robust. The detailed

descriptions for the algorithms can be learned in the

corresponding literature. Herein, the SVM algorithm was

performed with the LIBSVM (LIBSVM 3.16 package) (34), and

the parameters for Gaussian radial basis function (RBF) kernel

were optimized with a grid search method based on 5-fold cross-

validation. The other algorisms were implemented in the data

mining tool Orange (version 2.7, freely available at https://

orange.biolab.si/orange2/). For kNN, the parameter k was also

optimized based on 5-fold cross-validation. The parameters for

C4.5 DT, RF and NB algorithms were optimized with the default

setting in the Orange toolbox.
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The molecular description was implemented with several

different molecular fingerprints packages, which have been

widely used in toxicity prediction of drugs and environmental

chemicals. In this study, we used seven common fingerprints

packages, including the Estate fingerprint (Estate, 79 bits), CDK

fingerprint (FP, 1024 bits), CDK extended fingerprint

(ExtendFP, 1024 bits), Klekota-Roth fingerprint (KRFP, 4860

bits), MACCS keys (MACCS, 166 bits), PubChem fingerprint

(PubChem, 881 bits), and Substructure fingerprint (SubFP, 307

bits). All the fingerprints were calculated with PaDEL

Descriptor (35).
Assessment of model performance

The models were both validated with 5-fold cross validation

and a validation set. Several statistical parameters were

calculated for the assessment of model performance, including

prediction accuracy (ACC), sensitivity (SE), specificity (SP) and

the Matthew’s correlation coefficient (MCC) (36), as shown with

Eqs (1-4).

ACC =
TP + TN

TP + FN + TN + FP
(1)

SE =
TP

TP + FN
(2)

SP =
TN

TN + FP
(3)

MCC =
TP*TN − FP*FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TP + FPð Þ TP + FNð Þ TN + FPð Þ TN + FNð Þp (4)

Where TP represented true positives, FP represented false

positives, TN represented true negatives, and TN represented

false negatives.

In addition, the receiver operating characteristic (ROC)

curve was plotted, and the values of the area under the ROC

curves (AUC) were also computed.
Analysis of molecular properties for the
DIAD and non-DIAD drugs

The molecular properties of compounds can play key roles

in biological and toxicological activities. Eight important

molecular properties were calculated with PaDEL-Descriptor

package. These properties were molecular weight (MW),

molecular polar surface area (MPSA), AlogP, molecular

solubility (LogS), the number of hydrogen bond acceptors

(nHAcc) and donors (nHDon), the number of rotatable bonds

(nRotB) and the number of aromatic rings (nAR). The MW and

MPSA values can reflect the size and complexity of molecules to
frontiersin.org
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a certain extent. AlogP and LogS are usually used to represent

the chemical lipophilicity and solubility in water. The nHAcc

and nHDon values represent the hydrogen bonding ability of

compounds, which also can play an important role for

chemical activities.

Because of disobeying the normal distribution, the data were

expressed by the median and interquartile spacing and the

comparison between groups adopted Wilcoxon rank sum test

in this study. The p value < 0.05 was considered with

statistical significance.
Analysis of structural alerts for chemical
DIAD toxicity

Structural alert (SA) was the toxophore (usually a specific

substructure or fragment) which can lead to a particular toxicity

endpoint. It has been widely used for toxicity research for many

different toxicity endpoints (37–44). In this study, the SAs for

DIAD toxicity were detected by calculating the f-score (45) and

frequency ratio of each fragment from KRFP fingerprint. The f-

score is a simple feature selection technique, which can measure

the discrimination of two sets. The larger f-score always

suggested the feature is more discriminative (45, 46). The

positive rate (PR) of a substructure was defined as below:

PR =
Nfragment _ positive

Nfragment
(5)

Where Nfragment_positive was the number of DIAD compounds

containing the substructure, and Nfragment was the total number

of all the compounds containing the substructure.
Results and discussion

Data set analysis

After filtering and preparation, there were 598 organic

compounds, including 148 DIAD drugs and 450 non-DIAD

drugs, extracted from the SIDER database and literature. The

DIAD compounds were randomly divided into a training set

and a validation set with 80%:20%. Since the non-DIAD drugs

are much more than the DIAD drugs in number, and the

imbalance may cause bias in model development, the non-

DIAD were randomly divided into training and validation set

with 25%:75%. As shown in Table 1, the training set contained

240 structures (115 DIAD drugs and 125 non-DIAD drugs)

and the validation set contained 358 structures (33 DIAD drugs

and 325 non-DIAD drugs). The structure information of the

drugs can be seen in Table S1. The structural diversity of

chemical compounds is important for the global models (47).

The principal component analysis (PCA) (48) was performed

based on the eight physical-chemical properties to generate the
Frontiers in Immunology 04
chemical space. PCA can transform data into lower dimensions

from high-dimensional data, and meanwhile the trends and

patterns can be retained as possible (49). Herein, the first two

principal components (PC) with cumulative proportion

79.08% were kept to represent the chemical space. As shown

in Figure 1, the results suggested that the chemical spaces of

training and validation sets were similar.
Machine learning models

There were 35 different classification models developed

using the different machine learning algorithms combined

with fingerprint packages. The optimized parameters for SVM

and kNN models can be seen in Table S2. Considering the large

difference in the number of DIAD and non-DIAD drugs in this

study, the ACC and MCC values were paid special attention

when evaluating the performance of the models, since MCC can

be influenced much less by imbalanced data. Most of the models

showed good performance on the 5-fold cross validation, as

shown in Table 2. The ACC values ranged from 60.42% to

77.50%, and the MCC values ranged from 0.21 to 0.55. The

model developed with SVM method and MACCS keys provided

the best performance with the total accuracy 77.50%, SE value

76.52%, SP value 78.40%, AUC value 0.86 and MCC value 0.55.

Besides, five models (ExtendFP_SVM, KRFP_SVM,

SubFP_SVM, MACCS_kNN, and ExtendFP_kNN) also

showed good predictive results on 5-fold cross validation with

ACC > 75.00% and MCC > 0.50.

Furthermore, the validation set was used to assess the

generalization and robustness of the six models with top

performance on internal cross validation. Since the validation

set was completely independent from the training set, it can be

used to validate the predictive ability of models objectively. The

performances of models on validation set were shown in Table 3

and the ROC curves were shown in Figure 2. Most of the models,

except MACCS_kNN, performed well with the ACC values

higher than 75% and the MCC values over 0.25. The

MACCS_SVM model also achieved good prediction accuracy

of 75.98% on validation set and best AUC value of 0.84, the value

of MCC was 0.33, and the values of SE and SP were 75.76% and

76.00%, respectively. In Wu’s work, the machine learning model

based on structural alerts and daily dose as input features

showed a balanced accuracy of 69%, MCC of 0.47, and AUC
TABLE 1 Detailed statistical number of drugs in the data set.

DIAD structures Non-DIAD structures Total

Training set 115 125 240

Validation set 33 325 358

Total 148 450 598
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of 70% on the test set. Our model covered more compounds and

showed better predictive ability.
The comparisons of molecular properties
between DIAD and non-DIAD chemicals

In this study, we compared the distributions of several

important molecular properties between DIAD and non-DIAD

structures, as shown in Figure 3 and Table 4. The results

indicated that several properties were significantly different

between DIAD and non-DIAD groups, including AlogP,

nHDon, and MPSA. The lipophilicity of compounds is always

represented with AlogP property. The median AlogP of DIAD

group was 1.92 (-0.25, 3.75), which was significantly lower than

that of non-DIAD group with 2.60 (0.89, 3.99), with p = 0.03. It

indicated that lipophilicity should be a molecular property

associated with chemical DIAD toxicity. Meanwhile, there may

be no association between the molecular solubility in water with

the DIAD toxicity, since there was no significant difference in

logS between DIAD and non-DIAD groups (p = 0.44).

The median MPSA of DIAD group (95.08 (58.29, 120.70))

was larger than that of non-DIAD group (78.29 (49.77, 110.51)),

with p = 0.02, while the median MW was not significantly

different between DIAD and non-DIAD groups (p = 0.71). The

results suggested that DIAD chemicals may have larger polar
Frontiers in Immunology 05
surface area, and there may be no significant correlation between

the chemical DIAD toxicity and structure size.

The analysis for chemical hydrogen bonding ability (nHAcc

and nHDon) suggested that nHDon may be obviously associated

with DIAD toxicity, but the nHAcc was not. The median nHDon

of DIAD group was 2 (1, 3), and that of non-DIAD group was 1

(1, 2), with p < 0.01. The difference is not significant (p=0.09) in

nHAcc between the groups.

The DIAD toxicity was also not obviously associated with

nRotB and nAR, since the differences between DIAD and non-

DIAD structures were not significant (p = 0.53 for nRotB, p =

0.10 for nAR).

In fact, the individual chemical descriptors are not sufficient

to fully explain the mechanism of DIAD toxicity, since DIAD

toxicity is a very complex endpoint. But we think the results of

the study could provide useful information for a further

understanding of DIAD toxicity.
Structural alerts responsible for
DIAD toxicity

In this study, only the fragments existed in ≥ 6 structures

were kept for the structural alert detection. We identified the

privileged substructures which presented much more frequently

in DIAD structures than in non-DIAD structures, with f-score ≥

0.018 and positive rate (PR) ≥ 0.75. Finally, we obtained 14
FIGURE 1

Chemical space defined by the first two principal components of physical-chemical descriptors. Red squares stand for the training set, blue
circles stand for the validation set.
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TABLE 3 Performances of best performed models on validation set.

Model ACC (%) SE (%) SP (%) MCC AUC

MACCS_SVM 76.26 75.76 76.31 0.33 0.84

ExtendFP_SVM 79.05 57.58 81.23 0.27 0.78

KRFP_SVM 78.77 72.73 79.38 0.35 0.80

SubFP_SVM 76.54 66.67 77.54 0.29 0.81

MACCS_kNN 68.16 84.85 66.46 0.31 0.76

ExtendFP_ kNN 76.26 60.61 77.85 0.25 0.78
Frontiers in Immunology
 06
 frontiers
TABLE 2 Performances of models on 5-fold cross-validation.

Model ACC (%) SE (%) SP (%) MCC AUC

Estate_kNN 70.83 77.39 64.80 0.42 0.77

Estate_SVM 72.08 67.83 76.00 0.44 0.79

Estate_RF 67.08 52.17 80.80 0.35 0.76

Estate_NB 65.42 66.09 64.80 0.31 0.65

Estate_CT 67.92 69.57 66.40 0.36 0.74

ExtendFP_kNN 75.42 72.17 78.40 0.51 0.82

ExtendFP_SVM 75.83 70.43 80.80 0.52 0.82

ExtendFP_RF 69.17 58.26 79.20 0.38 0.76

ExtendFP_NB 66.67 62.61 70.40 0.33 0.70

ExtendFP_CT 60.42 65.22 56.00 0.21 0.61

FP_kNN 72.92 71.3 74.40 0.46 0.81

FP_SVM 72.08 70.43 73.60 0.44 0.77

FP_RF 66.25 59.13 72.80 0.32 0.75

FP_NB 64.58 62.61 66.40 0.29 0.68

FP_CT 60.42 62.61 58.40 0.21 0.62

MACCS_kNN 77.50 80.87 74.40 0.55 0.78

MACCS_SVM 77.50 76.52 78.40 0.55 0.86

MACCS_RF 70.83 61.74 79.20 0.42 0.78

MACCS_NB 63.33 66.96 60.00 0.27 0.71

MACCS_CT 66.25 71.3 61.60 0.33 0.65

Pubchem_kNN 70.83 75.65 66.40 0.42 0.75

Pubchem_SVM 74.58 73.91 75.20 0.49 0.80

Pubchem_RF 65.42 59.13 71.20 0.31 0.75

Pubchem_NB 64.58 65.22 64.00 0.29 0.69

Pubchem_CT 67.08 66.09 68.00 0.34 0.68

SubFP_kNN 69.58 77.39 62.40 0.40 0.77

SubFP_SVM 75.42 70.43 80.00 0.51 0.78

SubFP_RF 62.08 50.43 72.80 0.24 0.71

SubFP_NB 63.75 67.83 60.00 0.28 0.69

SubFP_CT 68.75 71.3 66.40 0.38 0.69

KRFP_kNN 73.75 71.3 76.00 0.47 0.85

KRFP_SVM 77.50 73.04 81.60 0.55 0.85

KRFP_RF 62.50 25.22 96.80 0.32 0.77

KRFP_NB 67.08 65.22 68.80 0.34 0.70

KRFP_CT 70.83 73.91 68.00 0.42 0.71
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representative fragments for DIAD toxicity. More structural

alerts responsible for DIAD were proposed in this study than

Wu’s work. Six substructures appeared in DIAD chemicals only,

which covered 32 DIAD drugs. All the privileged substructures

were listed in Table 5.

Oxidative stress is common in many autoimmune diseases

and is accompanied by overproduction of reactive oxygen species

(ROS) and reactive nitrogen (RNS). The role of oxidative stress in

autoimmune diseases is complex and unclear. Smallwood, et al.

provided insights on the pathophysiological events of oxidative

stress in autoimmune rheumatic diseases (50). The role of ROS

and RNS in the occurrence, detection and treatment of

autoimmune diseases was summarized. In the present study,

most of the structural alerts (No.1, No.2, No.4, No.5, No.6,

No.7, No.9, No.10, No.11, No.12, and No.14) have the potential

to produce ROS or RNS (51–56), which we infer may be related to

their role in inducing autoimmune diseases. Among them, the

No.1 fragments has also been identified as an alert for

nephrotoxicity in our previous study. Interestingly, Hultqvist,

et al. reported the protective role of ROS in autoimmune disease

(57), just as many of the DIAD drugs we collected are themselves

used to treat autoimmune diseases. Phenothiazine was

demonstrated can induce the increase in thyroid autoantigens

and costimulatory molecules on thyroid cells, which may be a

pathophysiological mechanism for drug-induced autoimmunity

(58). In our study, we found phenothiazine (No.3) only presented

in DIAD positive structures (8 drugs).
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The chemical structures used in this study only contained

clinical drugs already approved on the market, and the limitation

of chemical space may hinder the generalization ability of the

structural alerts. Nevertheless, these privileged substructures

found in this study can provide the alert help, to a certain

extent, for the early assessment and mechanism of action of

DIAD toxicity.
Availability of machine learning models
and structural alerts

We made the best performed model developed with SVM

method and MACCS keys available at a webserver named

DIADpredictor, which can be freely accessed via http://diad.

sapredictor.cn/. As shown in Figure 4, users can upload a.smi file

or print the SMILES formula to predict whether the chemicals

have DIAD toxicity freely.

The structural alerts responsible for DIAD toxicity have been

integrated into SApredictor (http://www.sapredictor.cn/) (42),

which is an expert system for screening chemicals against

structural alerts. Users can evaluate the DIAD potential for

query structures, and find the specific structural alerts which

leading to DIAD toxicity intuitively. It should be noted

that the web servers are not suitable for inorganics and

organometallic compounds, since they were excluded from the

modeling dataset.
FIGURE 2

ROC curve of models on validation set. Each color line represents a model.
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Conclusions

In summary, we developed the machine learning models for

DIAD toxicity based on the DIAD data of clinical medications.
Frontiers in Immunology 08
The model developed with SVM method and MACCS keys

performed best on validations. We made it available freely at

http://diad.sapredictor.cn. The analysis of molecular properties for

DIAD and non-DIAD compounds indicated that AlogP,
FIGURE 3

Distributions of the molecular properties for DIAD and non-DIAD chemicals.
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TABLE 4 Distributions of the molecular properties for DIAD and non-DIAD chemicals.

Molecular properties M (P25, P75) p values

DIAD chemicals non-DIAD chemicals

ALogP 1.92 (-0.25, 3.75) 2.60 (0.89, 3.99) 0.03

logS -4.15 (-5.37, -2.86) -4.36 (-5.98, -2.74) 0.44

MW 354.92 (259.60, 429.03) 353.37 (272.14, 441.53) 0.71

MPSA 95.08 (58.29, 120.70) 78.29 (49.77, 110.51) 0.02

nHAcc 5 (3, 7) 4 (3, 6) 0.09

nHDon 2 (1, 3) 1 (1, 2) <0.01

nRotB 5 (2, 8) 5 (3, 8) 0.53

nAR 1 (1, 2) 1 (0, 2) 0.10
Frontiers in Immunology
 fron09
TABLE 5 Structural alerts responsible for chemical DIAD toxicity detected from KRFP fragments.

No. General structure Num _P Num _N f-score PR

1 14 0 0.065 1.00

2 8 0 0.036 1.00

3 8 0 0.036 1.00

4 6 0 0.026 1.00

5 12 1 0.051 0.92

6 17 2 0.072 0.89

7 6 1 0.022 0.86

8 20 5 0.075 0.80

(Continued)
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TABLE 5 Continued

No. General structure Num _P Num _N f-score PR

9 15 4 0.053 0.79

10 7 2 0.023 0.78

11 7 2 0.023 0.78

12 9 3 0.029 0.75

13 6 2 0.019 0.75

14 6 2 0.019 0.75
Frontiers in Immuno
logy
 10
 frontiersin
FIGURE 4

Main page of DIAD predictor web server. From this page, users can submit the query structures.
.org
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molecular polar surface area (MPSA), and the number of

hydrogen bond donors (nHDon) may be obviously associated

with chemical DIAD toxicity. In addition, the structural alerts

responsible for chemical DIAD toxicity were detected from

defined fragments, and made available on SApredictor (www.

sapredictor.cn). The computational models and the structural

features could provide useful information and understanding for

DIAD toxicity in drug and chemical hazard assessment.
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