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Adaptation of African swine
fever virus to porcine kidney
cells stably expressing CD163
and Siglec1
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Medicine, South China Agricultural University, Guangzhou, China, 2African Swine Fever Regional
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African swine fever virus (ASFV) is a complex large DNA enveloped virus that

causes African swine fever (ASF) with a fatality rate of up to 100%, seriously

threatening the global swine industry. Due to the strict cell tropism of ASFV,

there is no effective in vitro cell line, which hinders its prevention and control.

Herein, we analyzed genome-wide transcriptional profiles of ASFV-susceptible

porcine alveolar macrophages (PAMs) and non-susceptible cell lines PK15 and

3D4-21, an found that PAM surface pattern recognition receptors (PRRs) were

significantly higher and common differential genes were significantly enriched

in phagocytosis compared with that observed in PK15 and 3D4-21 cell lines.

Therefore, endocytosis functions of host cell surface PRRsmay play key roles in

ASFV infection in vitro. ASFV was found to be infective to PK15 and 3D4-21 cell

lines overexpressing CD163 and Siglec1, and to the PK15S1-CD163 cell line stably

expressing CD163 and Siglec1. However, the PK15 and 3D4-21 cell lines

overexpressing CD163 or Siglec1 alone were not infectious. Simultaneous

interference of CD163 and Siglec1 in PAMs with small interfering RNA (siRNA)

significantly reduced the infectivity of ASFV. However, siRNA interference of

CD163 and Siglec1 respectively did not affect ASFV infectivity. ASFV significantly

inhibited IFN expression levels in PAMs and PK15S1-CD163 cells, but had no effect

on PK15 and 3D4-21 cell lines. These results indicate that CD163 and Siglec1

are key receptors for ASFV-infected host cells, and both play a synergistic role

in the process of ASFV infection. ASFV inhibits IFN expression in susceptible

cells, thereby downregulating the host immune response and evading the
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immune mechanism. The discovery of the ASFV receptor provides novel ideas

to study ASFV and host cell interactions, pathogenic mechanisms,

development of receptor blockers, vaccine design, and disease

resistance breeding.
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Introduction

African swine fever (ASF) is an acute, lethal, highly

contagious infectious disease of pigs caused by the African

swine fever virus (ASFV), with a mortality rate of up to 100%

(1, 2). ASF was first reported in Kenya, East Africa in 1921. Until

August 2018, when genotype II ASFV was first introduced to

China, causing huge economic losses to the pig industry, there

was no effective vaccine for ASF prevention and control (3, 4).

ASFV belongs to the Asfivirus genus of the Asfivirus family. It is

a linear double-stranded DNA virus with a genome of 170–193

kb (5). It encodes more than 150 proteins that play important

roles in virus assembly, replication, and immune evasion (6, 7).

There is no effective in vitro subculture cell line for ASFV.

Porcine monocyte-macrophages are the main target cells of

ASFV infection, and it is also the only in vitro system that can

simulate natural ASFV infection. All ASFV isolates are easy to

grow in this system (8). However, since it is a primary cell, the

production procedure is complex and costs are high.

Furthermore, the pig’s internal environment is complex, with

large individual differences, and maternal antibodies in weaned

piglets may interfere with the replication of ASFV. Therefore,

these issues limit the development of ASFV mechanistic

research. In contrast, the in vitro cell infection model does not

have above-mentioned limitations and is more suitable to study

interaction mechanisms between ASFV and host cells.

Moreover, the establishment of a stable and efficient in vitro

cell culture model of ASFV is also helpful for the development of

effective vaccines. Several passaged cell lines supporting ASFV

replication have been reported, such as A4C2/9K, WSL, MA104,

ZMAC-4, IPKM, Vero, MS, CV-1, 3D4-21, and COS-1 (9–13).

These cell lines all meet the scientific purpose of serial passage of

ASFV to a certain extent, but it remains to be determined

whether gene expression is lost or immunogenicity changes

after serial passage of the virus.

Due to the large size of ASFV virions, it is difficult to enter

cells. Therefore, it is easier to enter macrophages via

phagocytosis. ASFV mainly enters host cells through receptor-

mediated endocytosis, classical clathrin-mediated endocytosis,

and actin-mediated endocytosis (14). Viral receptors are

molecular complexes that are located on the surface of host

cells and can be recognized and bound by virus-specific proteins,

thereby causing viral infection (15). Receptors play an extremely

important role in the process of cellular information
02
transmission. Binding of viruses to receptors is the first step of

virus infection. ASFV can infect susceptible cells by binding to

cellular receptors. CD163 is a 130 kDa type-I transmembrane

glycoprotein (16–18), its extracellular domain is composed of

nine scavenger receptor cysteine-rich (SRCR) domains of about

100–110 amino acid residues (19). Current studies have shown

that CD163 is considered one of the most likely receptors for

ASFV. The expression of CD163 increases when porcine

monocytes (PBMCs) differentiate into mature macrophages,

and ASFV infection also increases. More ASFV-infected cells

were found in PBMCs expressing CD163 than ASFV-infected

cells lacking this receptor (20, 21). Moreover, when macrophages

were incubated with anti-CD163-specific antibodies, ASFV

binding to cells was reduced by more than 50%. However, the

role of CD163 in ASFV infection is controversial, and studies

have shown that stable expression of CD163 in non-susceptible

cell lines is not sufficient to increase susceptibility to ASFV (22).

CD163 knockout pigs are resistant to the Georgia07 strain of

ASFV, but can still be infected (23). Siglec1 or Sialodhesin (Sn),

also known as CD169, is a sialic acid-binding immunoglobulin-

like lectin receptor, mainly expressed in macrophages of

different tissues, but not monocytes (24). Siglec1 is produced

by IFN-a-mediated membrane glycoprotein and contains 17 Ig-

like domains extracellularly and the sialic acid-binding domain

located within the distal membrane domain (25). Siglec1 is

reportedly a regulator of inflammation and immune responses

and can phagocytose cells by interacting with other receptors

(26). Siglec1 has been described as a receptor for various viruses,

such as in macrophage-mediated endocytosis of porcine

reproductive and respiratory syndrome virus (PRRSV) (27).

Based on the characteristics of ASFV with monocyte-

macrophage tropism, we performed bioinformatics analysis by

comparing the genome-wide transcriptional profiles of its

susceptible porcine alveolar macrophages (PAMs) and non-

susceptible cell lines PK-15 and 3D4-21. We screened and

verified the function of differential genes. Combined with the

biological function test of the in vitro culture system of the PK-

15 S1-CD163 cell line, potential receptors of ASFV infection and

the main determinants of proliferation were initially revealed in

vitro, which laid a theoretical foundation for the establishment of

a perfect ASFV in vitro cell infection and proliferation system.

We believe that this research will be useful for rapid treatment

and diagnosis of ASFV, as well as providing a platform for

research into developing an in vitro model to further our
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1015224
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Gao et al. 10.3389/fimmu.2022.1015224
understanding regarding ASFV and the underlying mechanisms

of infection.
Materials and methods

Cells and viruses

Porcine kidney 15 (PK15) cells and PK15S1-CD163 were

grown in Dulbecco’s modified Eagle’s medium (DMEM,

Gibco, Waltham, MA, USA) supplemented with 10% fetal

bovine serum (FBS, Gibco, Waltham, MA, USA) at 37°C with

5% CO2. The PK15
S1-CD163 cell line was a gift from Prof. Hans J.

Nauwynck, Department of Virology, Immunology and

Parasitology, Faculty of Veterinary Medicine, Ghent

University, Belgium. The cell line is porcine kidney cells stably

expressing CD163 and Siglec1. Primary porcine alveolar

macrophages (PAMs) were collected from 20-30-day-old

specific pathogen free pigs. We confirm that the ethical

policies of the journal, as noted on the journal’s author

guidelines page, have been adhered to and the appropriate

ethical review committee approval has been received. The US

National Research Council’s guidelines for the Care and Use of

Laboratory Animals were followed. PAM 3D4/21 cells were

maintained in RPMI 1640 medium with l-glutamine (Gibco,

Waltham, MA, USA) supplemented with antibiotics (100 U/mL

of penicillin and 100 mg/mL streptomycin, Gibco, Waltham,

MA, USA) and 5% FBS at 37°C with 5% CO2. The high

virulence, hemadsorbing ASFV isolate GZ201801 (GenBank:

MT496893.1) was isolated in Guangzhou, China, was p72

genotype II, and was preserved in the Infectious Diseases

Laboratory of South China Agricultural University.
Reagents and antibodies

Primers and probes for amplifying genes were synthesized by

Invitrogen (Invitrogen, Waltham, MA, USA), and reagents were

purchased for downstream experiments, including Lipofectamine

2000 (Invitrogen, Waltham, MA, USA), AceQ@ Universal U+

Probe Master Mix V2 (Vazyme, Nanjing, China), and ChamQ

Universal SYBR qPCR Master Mix (Vazyme, Nanjing, China).

The murine monoclonal p30 antibody was prepared by our

laboratory and used in both western blotting and

immunofluorescence assays (IFAs). Several antibodies and stains

were purchased, including a-tubulin rabbit polyclonal antibody

(Beyotime, Shanghai, China), DAPI (Beyotime, Shanghai, China),

anti-CD136 rabbit monoclonal (Abcam, Cambridge, UK), anti-

sialoadhesin/CD169 mouse monoclonal (Abcam, Cambridge,

UK), and goat anti-rabbit IgG Alexa Fluor® 488 (Abcam,

Cambridge, UK). siRNA was synthesized by Guangzhou Ribo

(CD163 siRNA: TAGTTCTCTTGGAGGAAAAGACA, Siglec1

siRNA: AAGCTCAAAGACCAGAAACGTGT). We purchased
Frontiers in Immunology 03
AxyPrep™ Body Fluid viral DNA/RNA Miniprep Kit from

AXYGEN (AXYGEN, Hangzhou, China). Porcine IFN-b ELISA

kit (Solarbio, Beijing, China).
Virus infection

PAMs, PK15, 3D4-21 and PK15S1-CD163 cells in T25 cell

culture flasks were infected with 1 MOI ASFV and incubated

for five days at 37°C with 5% CO2, respectively. Cells and

supernatant were harvested and stored at -80°C. For subsequent

passaging, 1 mL of the previously passaged virus was used to infect

cells in T25 cell culture flasks. Finally, five passages were

successively performed under the same conditions. Following

incubation for 2 h at 37°C with 5% CO2, the culture medium

was discarded, cells were washed twice with phosphate-buffered

saline (PBS), and incubated at 37°C with 5% CO2. The cell-culture

supernatants or cells were collected at 12, 24, 36, 48, and 72 h post-

infection (hpi), stored at -80°C and analyzed to detect extracellular

and intracellular virions. Viral genome copy numbers were

analyzed using Quantitative real-time polymerase chain reaction

(RT-qPCR).
Real-time qPCR analysis

ASFV genomic DNA was extracted from cell supernatants or

cells using an AxyPrep™ Body Fluid viral DNA/RNA Kit. A total

of 2 µL of DNA was used for real-time PCR assay using AceQ

Universal U+ Probe Master Mix V2 (Vazyme, Nanjing, China).

The relative quantity of viral DNA was determined using the

CADC p72 primers and a probe experiment. Total RNA was

isolated by RNAiso Plus (Takara, 9108). RNA was reverse

transcribed into cDNA using the HiScript II 1st Strand cDNA

Synthesis Kit (+gDNA wiper) (Vazyme, China, R212-02). A total

of 1 mL of cDNA was used for real-time PCR assay using ChamQ

Universal SYBR qPCR Master Mix (Vazyme, China, Q711-02).

The relative quantity of cell RNA was determined by performing a

comparative Ct (DDCt) experiment using GAPDH as an

endogenous control. qPCR assays were performed on a Bio-Rad

CFX96 real-time PCR machine (Bio-Rad, Hercules, CA, USA)

according to the manufacturer’s instructions. Gene-specific

primer and probe sequences are listed in Supplementary Table 1.
RNA isolation, cDNA library preparation,
and sequencing

PAMs, PK15, and 3D4-21 cells were harvested from T75. The

total RNA was extracted from the cells using RNAiso Plus

(TAKARA, Kyoto, Japan), according to the manufacturer’s

instructions. RNA quantity and purity were assessed using a

Thermo NanoDrop Lite spectrophotometer (Thermo Fisher
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Scientific, MA, USA). Samples were sent to Novogene (Beijing,

China) for the removal of ribosomal RNA to construct strand-

specific libraries. First, ribosomal RNA was removed from total

RNA, and RNA was fragmented into 250–300 bp sections. The

fragmented RNA was used as a template and a random

oligonucleotide was used as a primer to synthesize the first strand

of cDNA.Thereafter, RNaseHwas used to synthesize thefirst strand

of cDNA. The RNA strand was degraded, and the second strand of

cDNA was synthesized using dNTPs (dUTP, dATP, dGTP and

dCTP) as raw materials under the DNA polymerase I system. The

purified double-stranded cDNA was end-repaired, A-tailed, and

connected to sequencing adapters, and AMPure XP beads were

used to screen cDNAs of approximately 200 bp. The U-containing

cDNA second strand was then degraded using USER enzyme, and

finally PCR amplification was performed to obtain a library.
Data analysis of RNA-Seq

The standard analysis process of RNA-seq mainly includes

quality control, alignment, splicing, screening, quantification,

difference significance analysis, and functional enrichment. The

core of RNA-seq analysis is the significance of gene expression

differences. Statistical methods are used to compare gene

expression differences under two or more conditions, to

identify differential genes associated with certain conditions,

and then to further analyze the biology and significance of

these differentially expressed genes (DEGs). Unigenes with fold

change > 2 and Q value ≤ 0.05 were considered significantly

differentially expressed. Using the Novogene analysis system,

clustering heat map, Venn, gene ontology (GO), and Kyoto

Encyclopedia of Genes and Genome (KEGG) analysis, analysis

of DEGs and proteins were performed. Functional annotation

and pathway analysis of DEGs were performed using the GO

and KEGG databases and the resulting graphs were presented.
Plasmid and siRNA transfection

Firstly, 10 mmol siRNA and 1.5 mL lipo2000 were diluted with
50 mL optim, respectively. These were incubated at 25°C for 5 min.

After incubation, the siRNA diluent was mixed with the lipo2000

diluent (total volume was about 100 mL), gently mixed, and

incubated at 25°C for 20 min. The mixed cultures were added

to the complete medium of the 24-well plate. The plates were

incubated at 37°C with 5% CO2 for 24 h to perform subsequent

virus infection experiments and test the inhibitory effect.
Immunofluorescence assay

Cells infected with ASFV at a multiplicity of infection (MOI)

of 1 were seeded on a 24-well plate and incubated with ASFV
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p30 protein monoclonal antibody, which was previously diluted

with 2% bovine serum albumin (BSA) at a ratio of 1:500. At 24 h

post-infection, the cells were washed five times with PBS (1 mL

each time), fixed in 500 mL 3.7% paraformaldehyde for 30 min at

25°C, permeabilized in 1 mL 0.1% (w/v) Triton X-100 for 20 min

at 25°C, and then incubated in the dark with a secondary

antibody diluted with 2% BSA (1:200) for 1 h at 37°C in a

humid chamber. Thereafter, cell nuclei were stained with 4′,6-
diamino-2-phenylindole (DAPI) at 25°C for 5 min and washed

thrice with PBS. Cell fluorescence was observed using an

immunofluorescence microscope (Nikon, Tokyo, Japan).
Western blot analysis

For western blot analysis, cells were lysed in RIPA buffer

(Beyotime) and denatured by adding 4× Laemmli sodium dodecyl

sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) buffer

(containing DL-dithiothreitol), followed by heating for 15 min at

100°C. The proteins were then separated on SDS-PAGE gels and

transferredontonitrocellulosemembranes using aTrans-BlotTurbo

rapid transfer system (Bio-Rad), according to the manufacturer’s

instructions. The membranes were blocked in 5% defatted milk

(dissolved in Tris-buffered saline (TBS)) for 1 h at 37°C and then

incubatedwith a primary antibody for 1 h at 25°Cor 12 h at 4°C. The

membranes were then washed thrice (5 min per wash) using a wash

buffer (TBS containing 0.1% Tween-20) and incubated with an

IRDye® 800CW secondary antibody for 1 h at 37°C. The

membranes were washed thrice in wash buffer and imaged using

an Odyssey Imaging System (LI-COR, USA) to visualize the protein

bands. a-Tubulin was used as a loading control.
Flow cytometry

Flow cytometry analysis of PAMs treated with CD163 siRNA

(100 nM) and Siglec1 siRNA (100 nM) for 24 h to label sialoadhesin/

CD169 and CD163 was conducted. Goat anti rabbit IgG (Alexa

Fluor®488)wasusedas the secondaryantibody.Cellswerefixedwith

4% paraformaldehyde and permeabilized with 0.1% Tween-20.
ELISA

Cell supernatants were collected and assayed for porcine IFN-b
using a porcine IFN-bELISAkit. Themeasured valuewas compared

with the standard according to the manufacturer’s instructions.
Statistical analysis

Pathway analysis and functional annotation of DEGs and

differentially expressed proteins identified by transcriptomics
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and proteomics were performed using the KEGG, GO, and KOG

databases, respectively. The STRING method was used for

protein network interaction analysis. The SPSS software

package (SPSS for Windows version 13.0, SPSS Inc., Chicago,

IL, USA) was used to perform statistical analysis of data obtained

during the experiment. The difference between the experimental

group and the control group was analyzed using one-way

ANOVA using GraphPad Prism 8 (GraphPad Software, San

Diego, CA, USA). Values are expressed in bar graphs as the

mean ± standard deviation (SD) of at least three independent

experiments. Statistical significance was set at * p < 0.05, *** p <

0.01, and **** p < 0.001.
Biosafety statement and facility

All experiments involving live ASFV were conducted within

the biosafety level 3 (BSL-3) facility at South China Agricultural

University. The viruses were inactivated in a BSL-3 laboratory,

and the inactivated samples were transferred to a BSL-2

laboratory for the extraction and detection of ASFV genomic

DNA\RNA.
Results

Biological properties of ASFV in PAM,
PK15, and 3D4-21 cells

To identify ASFV-susceptible cells, ASFV was serially

passaged in PAM, PK15, and 3D4-21 cells for five passages,

and it was found that ASFV maintained a consistently low virus

titer only in PAMs (Figure 1A). After infecting PAM, PK15, and

3D4-21 cells with 1 MOI of ASFV for 12, 24, 36, 48, and 72 h,

HAD50 results showed that ASFV proliferated efficiently in

PAMs only (Figure 1B). Moreover, IFA results showed that

p30 protein was only detected during ASFV infection of PAMs

(Figure 1C). These results indicate that ASFV can infect PAMs,

but not PK15 and 3D4-21 cells.
Genome-wide transcriptional profiling of
PAMs and PK15 and 3D4-21 cells

To explore the influencing factors that limit the culture of

ASFV in passaged cell lines, we performed transcriptomic

sequencing of ASFV-susceptible PAMs and non-susceptible

cell lines PK15 and 3D4-21 to obtain genome-wide

transcriptional profiles. Bioinformatic clustering analysis of

DEGs revealed that the transcribed genes of PK15 and 3D4-21

produced efficient clusters (Figure 2A). Compared with PAMs,

the DEGs identified in PK15 cells included 4570 upregulated
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genes and 3057 downregulated genes (Figure 2B), while 3D4-21

cells displayed 3802 upregulated genes and 3165 downregulated

genes (Figure 2C). Venn diagram analysis was performed

between the DEGs of PK15 and PAM cells and 3D4-21 and

PAM cells. Results showed that two comparison groups had

7374 common DEGs, including 3786 common upregulated

DEGS and 3588 common downregulated DEGs (Figure 2D).

GO functional enrichment analysis of 3588 commonly

downregulated DEGs revealed that DEGs were significantly

enriched in Endocytosis, Phagocytosis, Endosome, Positive

regulation of phagocytosis, Regulation of endocytosis,

Regulation of phagocytosis, Positive regulation of endocytosis,

Receptor-mediated endocytosis, Endosome membrane,

Phagocytosis, engulfment, Late endosome, Autophagosome,

Early endosome, and other phagocytosis-related functions

(Table 1). KEGG pathway enrichment analysis of 3588

commonly downregulated genes showed that DEGs were

significantly enriched in Phagosome, Phagocytosis, and

Endocytosis pathways (Table 2). Therefore, we compared the

transcript levels of phagocytosis-related pattern recognition

receptors CD163 and Siglec1 in PAM, PK15, and 3D4-21 cells,

and observed higher transcript levels of CD163 and Siglec1 in

PAMs. However, these two genes were not present in PK15 and

3D4-21 cells (Table 3). Using RT-qPCR at 3, 12, 24, and 48 h

post-ASFV infection, we observed significantly increased

transcription levels of CD163 and Siglec1 in PAMs, as ASFV

infection time increased (Figure 3). Our results indicate that

ASFV infection may significantly correlate with the expression

levels of endocytosis-related pattern recognition receptors

CD163 and Siglec1. Therefore, the functions of CD163 and

Siglec1 in ASFV-infected cell lines were investigated.
Effects of CD163 and Siglec1 on
ASFV infection

Plasmids expressing CD163 and Siglec1 were respectively

or co-transfected into PK15 and 3D4-21 cell lines (Figures 4A,

D), and the infectivity of ASFV was detected 48 h after

inoculating cells with 1 MOI of ASFV. HAD50 results showed

that increased virus titer was observed in ASFV-infected PK15

and 3D4-21 cells simultaneously overexpressing CD163 and

Siglec1, compared to PK15 and 3D4-21 cells overexpressing

CD163 and Siglec1, respectively. HAD50 results showed that

ASFV can infect PK15 and 3D4-21 cells overexpressing both

CD163 and Siglec1 (Figures 4B, E). Western blot results

showed that viral p30 protein could be detected after ASFV

infection in PK15 and 3D4-21 cells overexpressing both CD163

and Siglec1 (Figures 4C, F). These findings indicate that CD163

and Siglec1 have a synergistic effect on the ability of ASFV to

infect cells in vitro, and are common coreceptors for ASFV to

infect host cells.
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B

C

A

FIGURE 1

The ability of ASFV to infect PAMs, PK15, and 3D4-21 cells. (A) ASFV was serially passaged five times in PAM, PK15, and 3D4-21 cells. Monolayers of
PAM, PK15, and 3D4/21 cells seeded in T25 cell culture flasks were infected with 1 MOI of ASFV and incubated at 37°C with 5% CO2 for five days.
Cells and supernatants were collected and stored at -80°C. For the next four passages, cells were infected with 1 mL of the virus solution from the
previous passage, and the virus was continuously passaged five times under the same conditions. The HAD50 of the each ASFV generation was
detected. (B) Proliferation curves of ASFV in PAM, PK15, and 3D4-21 cells. After infecting PAM, PK15, and 3D4/21 cells with 1 MOI of ASFV for 12, 24,
36, 48, and 72 (h) The HAD50 of the each ASFV of ASFV in the collected samples were detected. (C) Immunofluorescence assay (IFA) results post-
infection of PAM, PK15, and 3D4/21 cells with ASFV. PAM, PK15, and 3D4/21 cells were infected with 1 MOI of ASFV for 24 h, and viral p30 protein
expression was detected using IFA.
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Infectivity of ASFV in PK15S1-CD163 cells

The expressions of CD163 and Siglec1 in PK15 and PK15S1-

CD163 cell lines were detected by flow cytometry (Figure 5A). The

results showed that CD163 and Siglec1 proteins were stably

expressed in the PK15S1-CD163 cell line. ASFV (1 MOI) was used

to infect PAMs, PK15S1-CD163 and PK15 cells stably expressing

CD163 and Siglec1, respectively. After 24 h, ASFV p30 protein

was detected using IFA. Compared with PAMs, PK15S1-CD163
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and PK15 cells displayed a relatively low level of p30 protein

expression after ASFV infection (Figure 5B). PAMs were serially

passaged for 5 passages using 1MOI of ASFV, and HAD50 assays

were performed on infected cells at each passage. The infectivity

in PK15S1-CD163 cells was lower than that observed in PAMs

(Figure 5C). HAD50 results one two, three, and four days post-

ASFV infection showed that ASFV displayed replication ability

in both cell lines, but this replication was more robust in PAMs

than that in PK15S1-CD163 cells (Figure 5D). Western blot
B

C

D

A

FIGURE 2

Transcriptomic analysis of PAM, PK15, and 3D4-21 cells. (A) Clustering heatmap analysis of PAM, PK15, and 3D4-21 cell transcriptional profiles.
(B) Volcano plot analysis of genes with differential transcriptional profiles between PAM and PK15 cells. Genes downregulated (green) and
upregulated (red) by PAMs were compared with the transcriptional profile of PK15 cells, genes with no significant difference are indicated in
blue. (C) Volcano plot analysis of genes with differential transcriptional profiles between PAMs and 3D4-21 cells. Genes downregulated (green)
and upregulated (red) by PAMs were compared with the transcriptional profile of 3D4-21 cells, genes with no significant difference are indicated
in blue. (D) Venn diagram analysis of differential genes. Venn diagram analysis was performed on the differential genes of PK15 and PAM cells
and 3D4-21 and PAM cells, showing the number of common differential genes and the number of upregulated and downregulated genes.
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experiments were performed on PK15S1-CD163 and PAM cells

one, two, three, and four days post-infection with 1 MOI ASFV,

and showed that p30 protein expression increased as the

infection time increased. Furthermore, p30 protein expression

in ASFV-infected PAMs was significantly higher than that in

PK15S1-CD163 cells (Figure 5E). The above results indicate that

ASFV can infect the PK15S1-CD163 cells stably expressing CD163

and Siglec1 and can replicate and stably passage in this cell line.
Infectivity of ASFV in PAMs with silenced
CD163 and Siglec1

siRNA was used to silence CD163 and Siglec1 in PAMs cells,

which was confirmed using flow cytometry (Figures 6A, B).

Next, CD163 and Siglec1 silenced PAMs were infected with

ASFV and subjected to HAD50. ASFV infectivity was

significantly reduced only when both CD163 and Siglec1 were

silenced (Figure 7A). Using IFA, we observed that p30 protein

expression was significantly decreased only when CD163 and

Siglec1 were silenced simultaneously (Figure 7B). These results

demonstrate that CD163 and Siglec1 act as key membrane

protein receptors during ASFV infection.
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ASFV inhibits type I IFN in PAMs and
PK15S1-CD163 cells

PK15, 3D4-21, PAM and PK15S1-CD163 cells were

inoculated with ASFV (1 MOI) for 24 h to detect the

expression of type I IFN in cells. We observed that ASFV

infection inhibited the transcription level of IFN-b in PAMs

and PK15S1-CD163 cells (Figure 8A), while the transcriptional

levels of ISG15 and ISG56, which regulate IFN-mediated

an t i v i r a l e ff e c t s , were a l so inh ib i t ed . Moreove r ,

transcriptional levels of IFN-b, ISG15, and ISG56 were not

inhibited in PK15 and 3D4-21 cells (Figures 8B, C). The

supernatants were collected, and the amounts of secreted

IFN-b protein were measured using an ELISA kit. ASFV also

inhibited IFN-b protein secretion only in PAMs and PK15S1-

CD163 cells (Figure 8D). The above results indicate that ASFV

significantly inhibits the antiviral effect of the host IFN

pathway after infecting PAMs and PK15S1-CD163 cells.
TABLE 3 CD163 and Siglec1 levels in porcine alveolar macrophages
(PAMs) and PK15 and 3D4-21 cells, respectively, including the FPKM,
fold change and p-value of the content in different cells.

CD163 Siglec1

PAM_FPKM 270.0117887 39.070276

PK15_FPKM 0.011321 0.005022

3D4-21_FPKM 0 0.016200667

PAM vs PK15 log2 Fold Change 19.17263322 13.3386979

PAM vs 3D4-21 log2 Fold Change 22.03440971 11.3778428

PAM vs PK15 p-value 0 4.56E-133

PAM vs 3D4-21 p-value 0 5.67E-146
fro
TABLE 1 Gene Ontology (GO) functional enrichment analysis of common differential genes in PK15 and 3D4-21 cell lines and porcine alveolar
macrophages (PAMs).

GO ID Count p-Value

Endocytosis 0006897 163 2.71E-20

Phagocytosis 0006909 65 1.65E-16

Endosome 0005768 172 2.02E-14

Positive regulation of phagocytosis 0050766 24 3.56E-09

Regulation of endocytosis 0030100 63 1.77E-08

Regulation of phagocytosis 0050764 29 2.49E-08

Positive regulation of endocytosis 0045807 43 5.18E-08

Receptor-mediated endocytosis 0006898 68 5.99E-08

Endosome membrane 0010008 57 3.44E-06

Phagocytosis, engulfment 0006911 17 7.51E-06

Late endosome 0005770 45 9.06E-06

Autophagosome 0005776 30 1.10E-05

Early endosome 0005769 56 0.00016796
n

TABLE 2 Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway enrichment analysis of common differential genes in PK15
and 3D4-21 cell lines and porcine alveolar macrophages (PAMs).

KEGG PATHWAY ID Count p-Value

Phagosome ssc04145 82 1.80E-06

Phagocytosis ssc04666 53 4.49E-06

Endocytosis ssc04144 74 0.053331676
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Discussion

Since the susceptible cells of the wild ASFV strain are

primary porcine mononuclear macrophages, which are

generally not suitable for propagation in in vitro passaged cell

lines, this limits the study of ASFV virus-host interactions,

pathogenicity research, and vaccine development and

production. In recent years, researchers have established and

transformed porcine mononuclear cell lines for detection,

growth, and titer studies of isolated strains, but stable cell lines

infected with ASFV in vitro have not been established. In this

study, by comparing the genome-wide transcriptional profiles of

ASFV-susceptible PAMs and non-susceptible cell lines, PK15

and 3D4-21, we observed that endocytosis of CD163 and Siglec1

by host cell surface PRRs plays a key role in ASFV infection in

vitro. CD163 is a cell surface glycoprotein receptor expressed in

peripheral blood monocytes and macrophages in most tissues

(28), a target for pathogen entry into cells and a receptor that

mediates endocytosis (29). Studies have shown that CD163 can

activate inflammatory pathways and stimulate the host to

produce pro-inflammatory factors (16). In the process of

porcine reproductive and respiratory syndrome virus (PRRSV)

invasion of host target cells, CD163 plays an important role, and

was identified as a receptor for PRRSV (30). CD163 is also

considered as an ASFV receptor. When porcine monocytes

(PBMCs) differentiate into mature macrophages, CD163

expression increases, and ASFV infection also increases (20,

21). CD163 gene knockout pigs display resistance to infection by

the Georgia07 strain. In addition, studies have shown that anti-

CD163-specific antibodies reduce ASFV infection after
Frontiers in Immunology 09
incubation with macrophages (22). However, the role of

CD163 in ASFV infection is also controversial, and studies

have shown that stable expression of CD163 in less susceptible

cell lines does not increase the infectivity of ASFV (23). Here, we

overexpressed CD163 in 3D4-21 and PK15 cell lines, determined

ASFV infection, and found that ASFV was not infective to

CD163-overexpressing 3D4-21 and PK15 cells. We used

CD163 siRNA in PAMs, and found that silencing CD163

expression did not produce a significant effect on ASFV

infection. Therefore, it is speculated that CD163 is not the

only receptor for ASFV-infected hosts. Sialadhesin (Siglec1) is

an adhesion molecule of the immunoglobulin superfamily

expressed on macrophages. Siglec1 regulates the secretion of

cytokines and promotes pro-inflammatory responses. Siglec1, as

a marker of macrophage activation, has also been further studied

for its role in inflammatory response and immune regulation.

Siglec1 promotes viral infection and phagocytosis by mediating

the combination of pathogens and macrophages. Siglec1 also

inhibits the overexpression of IFN during the immune response,

thereby inhibiting the host’s innate immunity and adaptive

immunity. During SARS-CoV-2 infection, Siglec1 reportedly

acts as an adsorption receptor to enhance the ability of ACE2

to attach to the infected host (31). Macrophages can rely on

Siglec1-mediated phagocytosis for Neisseria meningitidis

infection (24–26). Viruses, such as HSV, increase Siglec1

expression in macrophages through the IFN-JAK-STAT1

pathway, which negatively regulates the overexpression of IFN,

thereby inhibiting the innate immune response and enhancing

immune escape by the virus (32). PRRSV can bind to Siglec1 via

sialylated viral glycoproteins (33), and Siglec1 can promote
BA

FIGURE 3

Regulation of CD163 and Siglec1 by ASFV-infected PAMs. Transcript levels of CD163 and Siglec1 were detected using RT-qPCR at 3, 12, 24, and
48 h post-infection of PAMs with ASFV (A, B). Each datum represents results of three independent experiments (means ± SD). Significant
differences compared with the control group are denoted by *p < 0.05, **p < 0.01, and ***p < 0.001.
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FIGURE 4

Effects of CD163 and Siglec1 on ASFV-infected cell lines in vitro. CD163 and Siglec1 were transfected into PK15 and 3D4-21 cells separately or
together, and the expression of mCherry-tagged red fluorescent protein CD163 and eGFP-tagged green fluorescent protein Siglec1 was
observed using a fluorescence microscope (A–D). After CD163 and Siglec1 were transfected into PK15 and 3D4-21 cells, the cells were infected
with ASFV, the HAD50 of ASFV was detected (B–E), and the expression level of ASFV p30 protein was detected using western blot (C–F) . Each
datum represents results of three independent experiments (means ± SD).
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FIGURE 5

ASFV is infectious to PK15S1-CD163 cells stably expressing CD163 and Siglec1. (A) The expressions of CD163 and Siglec1 in PK15 and PK15S1-CD163

cell lines were detected by flow cytometry. (B) ASFV (1 MOI) infected PAM, PK15S1-CD163 and PK15 cells, and the expression of ASFV p30 protein
was detected using IFA. (C) ASFV was blindly passaged in PAM, PK15S1-CD163 and PK15 cells five times, and the HAD50 of ASFV in the five
passages were detected. (D) The HAD50 of ASFV in the cells was detected after PAM and PK15S1-CD163 cells were infected with ASFV for one,
two, three, and four days. (E) Western blot was used to detect the protein expression of ASFV p30 after PAM and PK15S1-CD163 cells were
infected with ASFV for one, two, three, and four days.
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FIGURE 6

The CD163 and Siglec1 levels in PAMs were silenced by siRNA, which was detected using flow cytometry. (A) The PAMs were silenced by CD163
siRNA and Siglec1 siRNA, respectively, and the expression of CD163 and Siglec1 was detected. (B) Simultaneously, CD163 siRNA and Siglec1
siRNA were used to silence PAMs, and the expressions of CD163 and Siglec1 were detected.
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FIGURE 7

Infectious capacity of ASFV in PAMs with silenced CD163 and Siglec1. (A) CD163 and Siglec1 were silenced in PAMs using siRNA, and the HAD50

of ASFV-infected PAMs was detected. (B) CD163 and Siglec1 were silenced in PAMs and p30 protein expression levels in ASFV-infected PAMs
were detected using IFA. Each datum represents results of three independent experiments (means ± SD). Significant differences compared with
the control group are denoted by *p < 0.05, and **p < 0.01.
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PRRSV infection by inhibiting the production of IFN-1 (34).

Therefore, macrophages expressing Siglec1 can exert

phagocytosis to facilitate viral infection.

We found that ASFV was not infective to PK15 and 3D4-21

cells overexpressing Siglec1, and silencing Siglec1 in PAMs had

no significant effect on ASFV infection. In contrast, ASFV

showed obvious infectivity to PK15 and 3D4-21 cells

overexpressing both CD163 and Siglec1, or the PK15 cell line

stably expressing CD163 and Siglec1. Silencing CD163 and

Siglec1 in PAMs significantly inhibited ASFV infection. These

results are consistent with reports that Siglec1 and CD163 are

key receptors involved in viral attachment, internalization, and

uncoating (27, 35–37). This experiment also found that ASFV

infection of PAMs and PK15S1-CD163 cells significantly inhibits

the production of type I IFN. This agrees with previously

reported results indicating that ASFV inhibits type I IFN in

infected cells. According to reports that Sialec-1 inhibits

overexpression of IFN during immune regulation, thereby
Frontiers in Immunology 14
suppressing the innate and adaptive immune responses and

promoting viral infection (38, 39). Therefore, we speculate that

Siglec1 has an important regulatory role in promoting ASFV

infection. The above results revealed the synergistic effect of

CD163 and Siglec1 in ASFV infection and improve our

understanding of the pathogenic mechanism underlying ASFV

infection. However, the ASFV genome is long and complex in

structure. Most of the encoded proteins have unknown

functions, and their related host receptors are also rarely

studied, how CD163 and Siglec1 act as ASFV receptors to

facilitate viral invasion is currently unknown. Therefore, the

pathway through which CD163 and Siglec1 induce ASFV

invasion of host cells requires further study. Next, our

laboratory will further study the roles of CD163 and Siglec1 in

ASFV invasion to establish a more complete in vitro cell line that

can be infected with ASFV, and provides theoretical support for

the mechanism underlying ASFV infection and the development

of vaccines.
B

C D

A

FIGURE 8

The regulatory effect of ASFV on host type I IFN. PK15, 3D4-21, PAM, and PK15S1-CD163 cells were infected with 1 MOI of ASFV, respectively, and
levels of IFN-b (A), ISG15 (B), and ISG56 (C) genes were detected in the cells 24 h later using qPCR. (D) The supernatants were collected, and
the amounts of secreted IFN-b protein were measured using an ELISA kit. Each datum represents results of three independent experiments
(means ± SD). Significant differences compared with the control group are denoted by *p < 0.05, **p < 0.01, and ***p < 0.001. No Significance
(NS) indicates that there is No statistical difference between data.
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