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treatment response of
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and Junxin Wu1*
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Background: Transient receptor potential channels (TRPC) play critical

regulatory functions in cancer occurrence and progression. However,

knowledge on its role in colorectal cancer (CRC) is limited. In addition,

neoadjuvant treatment and immune checkpoint inhibitors (ICIs) have

increasing roles in CRC management, but not all patients benefit from them.

In this study, a TRPC related signature (TRPCRS) was constructed for prognosis,

tumor immune microenvironment (TIME), and treatment response of CRC.

Methods: Data on CRC gene expression and clinical features were

retrospectively collected from TCGA and GEO databases. Twenty-eight

TRPC regulators (TRPCR) were retrieved using gene set enrichment analysis.

Different TRPCR expression patterns were identified using non-negative matrix

factorization for consensus clustering, and a TRPCRS was established using

LASSO. The potential value of TRPCRS was assessed using functional

enrichment analysis, tumor immune analysis, tumor somatic mutation

analysis, and response to preoperative chemoradiotherapy or ICIs. Moreover,

an external validation was conducted using rectal cancer samples that received

preoperative chemoradiotherapy at Fujian Cancer Hospital (FJCH) via qRT-

PCR.

Results: Among 834 CRC samples in the TCGA and meta-GEO cohorts, two

TRPCR expression patterns were identified, which were associated with various

immune infiltrations. In addition, 266 intersected genes from 5564 differentially

expressed genes (DEGs) between two TRPC subtypes, 4605 DEGs between

tumor tissue and adjacent non-tumor tissue (all FDR< 0.05, adjusted P< 0.001),
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and 1329 prognostic related genes (P< 0.05) were identified to establish the

TRPCRS, which was confirmed in the TCGA cohort, two cohorts fromGEO, and

one qRT-PCR cohort from FJCH. According to the current signature, the high-

TRPC score group had higher expressions of PD-1, PD-L1, and CTLA4, lower

TIDE score, and improved response to anti-PD-1 treatment with better

predictive ability. Compared to the high-TRPC score group, the low-TRPC

score group comprised an immunosuppressive phenotype with increased

infiltration of neutrophils and activated MAPK signaling pathway, but was

more sensitive to preoperative chemoradiotherapy and associated with

improved prognosis

Conclusions: The current TRPCRS predicted the prognosis of CRC, evaluated

the TIME in CRC, and anticipated the response to immune therapy and

neoadjuvant treatment.
KEYWORDS

transient receptor potential channels, colorectal cancer, prognosis, immune
checkpoint inhibitor, neoadjuvant treatment
Introduction

Colorectal cancer (CRC) is one of the most common cancers

worldwide (1), with 151,030 cases diagnosed annually in the

United States (2). Currently, its incidence is increasing

worldwide (1). Moreover, CRC is the third leading cause of

cancer mortality worldwide (1), with 0.9 million deaths in the

United States yearly. Current plights of the CRC are as followed:

1) lack of specific markers of early screening, regardless of

promotion of colonoscopy (3); 2) inaccuracy of the current

staging systems on prognosis and management (4, 5), and 3)

short of biomarkers for both local and systematic treatment in

the era of precision medicine and individualized therapy (4, 5).

Hence, early diagnosis biomarkers, accurate prognosis

prediction, and precise direct management for CRC are

urgently required (3).

Transient receptor potential channels (TRPC) was first

reported in 1969 (6). Numerous homologous TRPC family

genes are identified as TRPC regulators (TRPCR) (7, 8). In

2021, Ardem Patapoutian and David Julius were awarded the

Nobel Prize in Physiology or Medicine for the discovery of

TRPC (9), which are multifunctional signaling molecules

investigated in channelopathy-related diseases including

neurodegenerative (10), cardiovascular (11), and metabolic

diseases (12). However, increasing reports support their roles

in carcinogenesis, tumor invasion, migration, angiogenesis, and

prognosis (13–15). There were differences in expression of

several TRPCR, such as TRPV1, TRPV6, TRPM4, and TRPC6

between CRC and normal tissues (16, 17). Some TRPCR, such as
02
TRPM6 and TRPC1, are associated with the prognosis of

patients with CRC (16, 17). However, a comprehensive

analysis of TRPCR on CRC prognosis and management

is inadequate.

Although neoadjuvant treatment and immune checkpoint

inhibitors (ICIs) play an increasing role in CRC management,

not all patients benefit from them (18, 19). In addition, no

biomarkers exist to screen their potential benefit (18). Evidence

showed that tumor immune microenvironment (TIME) (20),

which is associated with TRPC via polarization of macrophages,

recruitment of chemokines, and activation of effector cells,

strongly influences cancer treatment response (20, 21). In the

present study, non-negative matrix factorization (NMF)

clustering was adopted to identify the correlations between

TRPCR and immune infiltration, and a TRPC-related

signature (TRPCRS) was established to predict the prognosis

of CRC, and explore the intrinsic connections between TRPCRS

and TIME. Furthermore, correlations between TRPCRS and

response to neoadjuvant treatment or ICIs were conducted to

determine the potential value of the current signature.
Methods

Patients and data source

The analytical process of the study is provided in Figure 1.

Data on CRC gene expression and clinical features were

retrospectively collected from The Cancer Genome Atlas
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(TCGA, https://cancergenome.nih.gov/) and Gene Expression

Omnibus (GEO) databases (https://www.ncbi.nlm.nih.gov/geo/).

TCGA RNA sequencing data were converted from fragments per

kilobase of exon model per million mapped fragments (FPKM)

format to millions of transcripts per kilobase (TPM). Batch effects

among TCGA-COAD, TCGA-READ, and GEO datasets were

eliminated using “ComBat” method in “sva” R package, and

TCGA-COAD-READ and meta-GEO (GSE38832 (22) and

GSE17536 (23)) datasets were constructed. Genomic mutation

data of TCGA-COAD-READ, including somatic mutations and
Frontiers in Immunology 03
copy number variations, were obtained from UCSC’s Xena

database. Copy number changes of 28 TRPCR in human

chromosomes were mapped using the R package “rcircos”. The

corresponding TRPCR were extracted from the Gene Set

Enrichment Analysis (GSEA) website (https://www.gsea-msigdb.

org/GSEA/index.jsp, Table S1). Moreover, 85 frozen rectal cancer

samples that received both, neoadjuvant treatment and radical

surgery, at Fujian Cancer Hospital (FJCH) between March 2016 -

March 2021 were added to conduct external validation. This study

was approved by the Ethics Committee of FJCH (K2021-03-017).
FIGURE 1

The flow-chart of this study.
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The baseline characteristics of patients in the cohort are presented

in Table 1.
Consensus molecular clustering
of 28 TRPCR

Different TRPCR expression patterns were identified using

NMF based on the expressions of 28 TRPCR using the R package

“NMF” (version 0.22.0) (24). The expressions of 28 TRPCR

(matrix A) were decomposed into two non-negative matrices, W

and H (i.e., A≈WH). Matrix A was repeatedly decomposed, and

its output was aggregated to obtain a consistent cluster of CRC

samples (TCGA-COAD-READ and meta-GEO). The optimal k

of clusters was selected according to apparent, discrete, and

silhouette coefficients. Brunet algorithm and 200 nrun were used

for consensus clustering.
Identification of differentially expressed
genes and enriched pathways

Differentially expressed genes (DEGs) among TRPC

subtypes (DEGa, false discovery rate< 0.05, adjusted P< 0.001)

were obtained using the “limma” R package. The pathway

activity of “REACTINE_TRP_CHANNELS” in each sample

was calculated using “GSVA” packages, and the differences

among various TRPC subtypes were analyzed.
Construction of TRPCRS

DEGs between tumor tissues and adjacent non-tumor

tissues (DEGb, FDR< 0.05, adjusted P< 0.001) were

determined using the “limma” R package. Prognostic genes

were screened using the “survival” R package via univariate

Cox regression analysis (P< 0.05). The overlapped genes among

DEGa, DEGb, and prognostic genes were identified as candidate

TRPC-related genes (TRPCGs). These candidate genes were

screened again based on the least absolute shrinkage and

selection operator (LASSO) (25) estimation to avoid over-

fitting the model. The optimal value of the penalty coefficient

lambda was selected after running the cross-validation

probability 1000 times through the “glmnet” software package.

Considering that the genes included in the gene signature were

derived from DEGa between two clusters with significantly

different TRPC, the resulting gene signature was called

TRPCRS. Thus, the equation was established as follows:

TRPC score =on
i=1Coef (i)� x(i)
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According to the corresponding median of TRPCRS in each

dataset, patients were divided into low TRPC score and high

TRPC score groups.
Validation of TRPC score model

The TRPC score was validated in TCGA-COAD-READ,

meta-GEO, and an external validation set of GSE17537 (26).

The survival difference between the two groups was visually

displayed using the receiver operator characteristic (ROC)

curves and “survival” R package. The significance of the TRPC

score was further analyzed using the multivariate Cox regression

model, and the relationships between the TRPC score and

clinical features were evaluated using the Wilcox test.
Function analysis

The Gene Ontology (GO) and Kyoto Encyclopedia of Genes

and Genomes (KEGG) enrichment analyses were conducted on

DEGa using the “clusterProfiler” R package (27). Stromal and

immune cells infiltrated in malignant tumors were estimated

using the ESTIMATE algorithm, utilizing the unique properties

of transcription profiles to infer tumor cell count and

tumor purity.
Immune-related analysis

The relative abundance of 28 immune cells in TIME was

evaluated using the “GSVA” package (28). Differences in the

immune cells and immune checkpoint genes were compared

between high- and low-TRPC scores. Scores of tumor immune

dysfunction and exclusion (TIDE), microsatellite instability

(MSI) expression, dysfunction, and rejection were calculated

using http://tide.harvard.edu, and the differences were compared

between the two groups. In addition, the prediction value of the

TRPC score for immunotherapy was estimated using the

“IMvigor 210” dataset package (29).
Somatic mutation analysis

Quantity and quality of mutations in high- and low- TRPC

scores were calculated using the “Maftools” R package. Missense,

nonsense, continuous and silent, and frameshift/in-box insertion

and deletion mutations were counted after excluding germline

mutations without somatic mutations. Tumor mutation burden

(TMB) is defined as the total number of somatic mutations.
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Development of risk prediction model

In addition to TRPC scores and clinical features, a

nomogram predicting 1-year, 3-year, and 5-year overall

survival (OS) of patients with CRC was established using the

“RMS” R package. The nomogram prediction was evaluated

using the calibration curve, restricted mean survival (RMS), C

index, ROC curve, and decision curve analysis (DCA).
Response prediction of neoadjuvant
therapy

GSE45404 (30) and GSE87211 (31) were administrated

to conduct external validation, among which patients with

rectal cancer received neoadjuvant treatment. GSE45404

contained data on response to neoadjuvant treatment and was

graded using the Mandard tumor regression grade (TRG),

while GSE87211 contained data on clinicopathological

characteristics and survival. ”REACTINE_TRP_CHANNELS”,

“KEGG_MISMATCH_REPAIR”, “KEGG_MAPK_SIGNA

LING_PATHWAY”, and “KEGG_B_CELL_SIGNALING_

PATHWAY” of each sample were calculated using “GSVA” R

package, and the infiltration situation of 28 immune cells in the

TIME were plotted using “ggplot2” and “corrplot” R

packages, respectively.
Quantitative real time polymerase
chain reaction

Quantitative real time polymerase chain reaction (qRT-

PCR) was performed on 85 samples by the Department of

Pathology Department of FJCH. RNA was extracted using

TRIzol (Takara, Kusatsu, Shiga, Japan), and random primers

were reverse transcribed using a cDNA synthesis kit (Thermo

Fisher Scientific, Waltham, MA, USA). In addition, mRNA

expression levels were detected using Roche LightCycler 480

(Basel, Switzerland) and FastStart Essential DNA Green Master

Mix (Thermo Fisher Scientific). The mRNA expressions of each

hub gene were normalized to that of b-actin. All qRT-PCR
analyses were conducted in triplicates, and the average value was

calculated using the Livak method. The primers used in this

study were synthesized using Sunya Biotech (Fuzhou, China)

and are listed in Supplementary Table 2.
Statistical analyses

All analyses in this study were performed using R-3.6.1.

Normally distributed variables were compared using Student’s t-
Frontiers in Immunology 05
test, while non-normally distributed variables were compared

using the Wilcoxon rank sum test. All tests were two-sided, and

P< 0.05 was considered to be statistically significant.
Results

Genetic alteration landscape of TRPCR
in CRC

In the present study, TRPCR were widely located in almost

all human chromosomes (Supplementary Figure 1A).

Supplementary Figure 1B depicts interactions of 28 TRPCR

expressions, and TRPC1, TRPA1, and RIPK as the top three

TRPCR. Furthermore, analysis of 28 TRPCR revealed that copy

number variations (CNV) mutations were prevalent. TRPC4AP,

TRPC4, TRPA1, TRPV6, TRPC1, TRPC5, TRPV3, TRPV1, and

TRPM6 showed widespread CNV amplification. In contrast,

TRPV5, MCOLN3, TRPM8, RIPK3, TRPM2, RIPK1, TRPC6,

TRPM1, MCOLN1, TRPC3, TRPC7, TRPV4, TRPM7, TRPM4,

TRPM3, MLKL, and TRPV2 showed prevalent CNV deletions

(Supplementary Figure 1C). TRPCR mutations were detected in

137 (34.34%) patients from 399 samples. Supplementary

Figure 1D exhibited the landscape of the mutations, with

TRPM5, TRPC3, and TRPC7 as the top three mutations.

Almost all TRPCR were downregulated, while MLKL,

TRPC4AP, TRPM2, and TRPV4 were upregulated in the CRC

tissues compared with normal tissues (P< 0.05, Supplementary

Figure 1E). No significant differences were observed in

MCOLN3, TRPC4, TRPM1, TRPM8, TRPV1, and TRPV5

(P > 0.05, Supplementary Figure 1E). Unfortunately, only two

TRPCR, including TRPM5 and TRPV4 (HR > 1, P< 0.01),

were associated with the OS of patients with CRC

(Supplementary Figure 1F).
Unsupervised clustering of 28 TRPCR
and differences between two clusters

As shown in Supplementary Figure 2, the highest intra-

group correlations and lowest inter-group correlations were

observed when k = 2 in the TCGA and meta-GEO cohorts,

indicating that patients can be divided into cluster A and cluster

B based on 28 TRPC-associated DEGs (DEGa). Figure 2A

exhibited two distinct patterns of CRC samples, which had

two apparently different Kaplan–Meier survival curves (P<

0.05, Figure 2B). The silhouette plot of the two clusters is

shown in Figure 2C. Interestingly, TRPC was more enriched

in cluster A compared with cluster B (P< 0.05, Figure 2D). The

single sample gene set enrichment analysis (ssGSEA) scores of
frontiersin.or
g
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D E

F G

C

FIGURE 2

Unsupervised clustering of 28 TRPCR and differences between two clusters. (A) Heatmap representation of NMF clustering for TRPCR. (B)
Kaplan-Meier curves of OS with two TRPC clusters. (C) Silhouette plot of the two clusters. (D) The TRPC activity between two clusters. (E) The
ssGSEA scores of immune cells and immune-related functions with two clusters. (F, G) Functional annotation for TRPC clusters using GO and
KEGG enrichment analysis. GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; OS, overall survival; ssGSEA, single sample
gene set enrichment analysis; TRPC, transient receptor potential channels; TRPCR, transient receptor potential channels regulators; ns, not
significant; *P< 0.05; **P< 0.01; ***P< 0.001.
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aDCS, antigen-presenting cells (APC) co-inhibition, APC co-

stimulation, chemokine receptor (CCR), CD8+ T-cells, immune

checkpoint, cytolytic activity, dendritic cells (DCs), human

leukocyte antigen (HLA), inflammation-promoting,

macrophages, major histocompatibility complex (MHC) class

I, neutrophils, parainflammation, plasmacytoid dendritic cell

(pDCs), T cell co-inhibition, T cell co-stimulation, T helper

(Th) cells, follicular helper T cell (Tfh), Th2 cells, tumor

infiltrating lymphocyte (TIL), and Type I interferon (INF)

response were significantly higher in cluster A than that in

cluster B; while it was on the contrary in terms of iDCs (P< 0.05,

Figure 2E). GO membrane-related pathways were enriched in

cellular components (CC) (Figure 2F), and KEGG enrichment

analysis showed that MAPK ranked first among the enriched

signaling pathways (Figure 2G).
Frontiers in Immunology 07
Screening of characteristic predictors
and prognostic value of TRPCRS

A total of 5564 genes were identified as DEGa (Table S3), 4605 as

DEGb (Table S4), and 1329 as prognostic-related genes (Table S5).

Among these, 266 intersected genes were selected as candidate genes.

Supplementary Figure 3A shows the coefficients of all 266 intersected

genes TRPCG according to lambda.min criteria. Using the LASSO

regression analysis, 8 gene signatures (UCN, FJX1, TIPM1,

PCOLCE2, CD177, PPARGC1A, CLDN23, and MTOR4) were

optimal with a minimum lambda (Supplementary Figure 3B).

Among these 8 genes, 4 were risk factors (UCN, FJX1, TIPM1, and

PCOLCE2), and 4 were protective factors (CD177, PPARGC1A,

CLDN23, and MTOR4) (Figure 3A). The correlations between

8 TRPCG and 28 TRPCR are shown in Figure 3B. The
A B

D E F

G H I J

C

FIGURE 3

Screening of characteristic predictors and prognostic value of TRPCRS. (A) The coefficient value of the 8 TRPCGs associated with the TRPC
score in CRC. (B) The correlation between 8 TRPCGs and 28 TRPCR. (C-J) Survival curve analysis of CRC patients based on the expression
status of UCN, FJX1, TIMP1, PCOLCE2, CD177, PPARGC1A, CLDN23, MRTO4 genes. CRC, colorectal cancer; TRPCGs, transient receptor
potential channels-related genes; TRPCR, transient receptor potential channels regulators; TRPCRS, transient receptor potential channels
related signature; ns, not significant; *P< 0.05; **P< 0.01; ***P< 0.001.
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apparent Kaplan–Meier survival curves between different groups

stratified by the expression of 8 genes are shown in Figures 3C–J

(P< 0.05). TRPC scores were calculated according to the

following formula: TRPC score = [UCN expression×(0.4591)] +

[FJX1 expression×(0.3770)] + [TIMP1 expression×(0.3425)] +

[PCOLCE2 expression×(0.2178)] + [CD177 expression×(−0.1330)]

+ [PPARGC1A expression×(−0.3223)] + [CLDN23

expression×(−0.4393)] + [MRTO4 expression×(−0.8897)].

Interestingly, Gene set variation analysis (GSVA) showed that

TRPC activity was positively correlated with the TRPC score

(Supplementary Figure 3C).
Prognostic analysis of TRPC scores

Considering the median score as the cut-off value, patients in

the TCGA cohort were divided into low- and high-TRPC score

subgroups. The Kaplan–Meier survival curve showed that the

median OS was significantly shorter in the high-TRPC score

subgroup than in the low-TRPC score subgroup (high vs. low,

HR = 2.33, 95% confidence interval: 1.64–3.31, P< 0.001,

Figure 4A). The area under the curve (AUC) at 1-year, 3-year,

and 5-year were 0.713, 0.700, and 0.801, respectively

(Figure 4D). The distinct distribution status of patients

between the high- and low-TRPC score subgroups is shown in

Figure 4G. Univariate Cox regression analysis showed that

TRPC score was negatively associated with OS of patients with

CRC. Additionally, multivariate Cox regression analysis showed

that TRPC score was an independent risk factor for OS (both P<

0.05, Figure 4J). Similar findings were observed in the meta-GEO

(Figure 4B, E, H, K) and GSE17537 cohorts (Figures 4C, F, I, L).

Subgroup analyses stratified by different characteristics

were conducted to evaluate the correlations between the

current TRPC score and other cl inicopathological

characteristics (Supplementary Figure 4A). No significant

differences were observed in TRPC scores stratified by sex

(female vs. male, P > 0.05, Supplementary Figure 4B) and age

(≤65 vs. >65, P > 0.05, Supplementary Figure 4C). No

significant differences were observed among all subgroups

stratified by stage (P > 0.05). However, patients in stage IV

had higher TRPC scores than those in other stage groups (all

P< 0.05, Supplementary Figure 4D). Interestingly, patients with

microsatellite stability (MSS) had lower TRPC scores than

those with microsatellite instability-low (MSI-L) and

microsatellite instability-high (MSI-H), but no differences

were observed between MSI-L and MSI-H (P > 0.05,

Supplementary Figure 4E).
GO and KEGG analyses

GO analysis showed that replication-related biological

processes (BP), mitochondria-related CC, and division-related
Frontiers in Immunology 08
molecular functions (MF) were enriched in the TCGA cohort

(Supplementary Figure 5A). Enriched signaling pathways

associated with CRC and mismatch repair were identified

us ing KEGG analys i s (Supplementary Figure 5B) .

Furthermore, membrane-related CC was enriched in the meta-

GEO cohort (Supplementary Figure 5C), and PI3K-AKT and

PPAR signaling pathways were identified using KEGG analysis

(Supplementary Figure 5D).
Immune landscapes and prediction of
immunotherapeutic benefits

The association between TRPC and estimation of stromal

and immune cells in malignant tumour tissues using expression

data (ESTIMATE) scores was investigated using the ESTIMATE

algorithm, which showed that stromal, immune, and

ESTIMATE scores were positively correlated with TRPC score

(P< 0.05, Figures 5A–C). Further, neutrophils, and regulatory T

cells (Treg) were negatively associated with TRPC score (P<

0.05, Figure 5D). However, immune checkpoint, HLA,

macrophages, pDCs, and T helper_cells were positively

associated with the TRPC score (P< 0.05, Figure 5D).

In addition, significant differences were detected between the

low- and high-TRPC score subgroups in most immune

checkpoints (P< 0.05, Figure 5E). Compared with the low-

TRPC score group, the high-TRPC score group had lower

TIDE, dysfunction, and exclusion scores, while higher MSI

expression score (P< 0.05; Figure 5F).

The IMvigor 210 dataset (29), including clinical information

and RNA-seq data of patients with metastatic uroepithelial

carcinoma treated with atezolizumab (a PD-L1 inhibitor), was

used as an external cohort to test the predictive value of TRPC

score for immunotherapy efficacy. The results showed that

TRPC score was significantly higher in the response group

than that in the non-response group (P< 0.001, Figure 5G).

According to the current TRPC score, the response rate in the

low-TRPC score group was significantly lower than that in

the high-TRPC score group (P< 0.05, Figure 5H). The AUC of

the current TRPC score to predict the response of atezolizimab

was 0.632, which was higher than that of PDCD1 (PD-1), CD274

(PD-L1), and CTLA4 (Figure 5I).
Summary of CRC mutation of TRPC
score groups

As shown in Supplementary Figure 6A, somatic mutations

occurred in 160 (96.39%) of 166 samples with high TRPC score.

The detailed mutations, including variant classification, single-

nucleotide polymorphism (SNP) type, and single-nucleotide

variant (SNV) class, were depicted in Supplementary
frontiersin.org
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Figure 7A. Further, somatic mutations occurred in 143 (97.28%)

of 147 samples with low TRPC score (Supplementary Figure 6B),

and the corresponding mutations were summarized in

Supplementary Figure 7B. TMB was positively associated with

TRPC score (R = 0.14, P< 0.05, Supplementary Figure 6C), and

Kaplan–Meier survival curve showed that patients with low

TMB had a worse OS than those with high TMB (P< 0.05,

Supplementary Figure 6D). Significant survival differences were

observed between patients with high and low TMB stratified by

TRPC score (P< 0.05, Supplementary Figures 6E, F).
Frontiers in Immunology 09
Development of a nomogram

A nomogram including age, stage, and TRPC score was

developed to predict the OS of patients with CRC in the TCGA

cohort (Figure 6A). Good calibrations were observed in the 1-year,

3-year, and 5-year predicted vs. observed survival rates

(Figure 6B). The RMS of the TRPC nomogram was higher than

that of the TRPC score and published models of Yang (32), Liu

(33), and Cao (34) (P< 0.05, Figure 6C). The C-index of the TRPC

nomogram was 0.779, which was higher than that of the TRPC
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C

FIGURE 4

Prognostic analysis of TRPC scores. Kaplan–Meier curves (A-C), time-dependent ROC curves (D-F), risk plot distribution and survival status (G-I),
univariate and multivariate Cox regression analysis (J-L) of the TCGA cohort, the meta-GEO cohort, and the GSE17537 cohort. ROC, receiver
operator characteristic; TRPC, transient receptor potential channels.
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FIGURE 5

Immune landscapes and prediction of immunotherapeutic benefits. Scatter plot showed the association between TRPC score and stromal score
(A), immune score (B) and ESTIMATE score (C, D) Heat map of correlation between TRPC score and immune infiltration. (E) The association of
the immune check-points between low-and high-TRPC score groups. (F) The differences of TIDE score, MSI expression signature score,
dysfunction score and immune exclusion score between low- and high-TRPC score groups. The scatter diagram of the TRPC score between
response and non-response group (G), and fourfold table between TRPC score and immunotherapy response (H) in the IMvigor dataset. (I) ROC
curves to predict the response of atezolizumab in IMvigor dataset by TRPC score, PDCD1, CD274, and CTLA4. ESTIMATE: estimation of stromal
and immune cells in malignant tumour tissues using expression data; MSI, microsatellite instability; ROC, receiver operator characteristic; TIDE,
tumor immune dysfunction and exclusion; TRPC, transient receptor potential channels; ns, not significant; *P< 0.05; **P< 0.01; ***P< 0.001.
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FIGURE 6

Development of a nomogram. (A) Nomogram to predict the survival of CRC patients based on the TRPC score. (B) Calibration plots of the
nomogram for predicting the probability of OS in the 1-year, 3-year, and 5-years. Comparison of RMS (C) and C-index (D) among the TRPC
nomogram, TRPC score, and published models of Yang, Liu, and Cao. The ROC curves (E-G) and decision curve analysis (H-J) at 1-, 3-, and 5-
year OS for TRPC nomogram, TRPC score, and published models of Yang, Liu, and Cao. CRC, colorectal cancer; OS, overall survival; RMS,
restricted mean survival; ROC, receiver operator characteristic; TRPC, transient receptor potential channels; ***P< 0.001.
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score and published models of Yang (32), Liu (33), and Cao (34)

(Figure 6D). ROC curves revealed that the TRPC nomogram

predicted the 1-year, 3-year, and 5-year OS more efficiently than

the TRPC score and published models of Yang (32), Liu (33), and

Cao (34) (Figures 6E–G). As shown in Figures 6H–J, DCA curves

showed that the TRPC nomogram had better 1-year, 3-year, and

5-year OS net benefit than the TRPC score and published models

of Yang (32), Liu (33), and Cao (34).
Correlation between TRPC score and
response to neoadjuvant
chemoradiotherapy in the GSE45404
cohort

Figure 7A shows that TRPC score was significantly lower in

the response group than that in the non-response group (P<

0.05). According to the current TRPC score, the response rate in

the low-TRPC score group was significantly higher than that in

the high-TRPC score group (P< 0.05, Figure 7B). Further

analysis showed that the current TRPC score had a promising

predictive power of neoadjuvant chemoradiotherapy (NCRT)

response (Figure 7C). GSVA showed that TRPC activity was

significantly lower in the response group than that in the non-

response group (P< 0.05, Figure 7D), and positively correlated

with the TRPC score (P< 0.05, Figure 7E). B-cells, CD8+ T-cells,

mast cells, and Tfh were negatively correlated, whereas immune

checkpoint and neutrophils were positively correlated with

TRPC activity (Figure 7F). Significantly increased proportions

of B-cells, CD8+ T-cells, cytolytic activity, HLA, inflammation-

promoting, mast cells, Th1 cells, and Th2 cells were detected in

the response group. While, immune checkpoint and neutrophils

were significantly increased in the non-response group (P<

0.001, Figure 7G). Further analysis showed that immune

checkpoints, including PDCD1 (PD-1), CD274 (PD-L1), and

CTLA4, and signaling pathway activities, including mismatch

repair, MAPK, and B-cell receptors, were associated with TRPC

activity (P< 0.05, Figures 7H–M).
Correlation between TRPC score and
prognosis of patients who received
NCRT in the GSE87211 cohort

The GSE87211 cohort tested the prognosis prediction capacity

of TRPC score in patients who received NCRT. Results of this

cohort showed that patients with low-TRPC scores had a longer

OS and disease-free survival (DFS) than those with high-TRPC

scores (P< 0.05, Figures 8A, B). Significant survival benefits in OS

were observed in almost all subgroups (age≤65, Figure 8C; female,

Figure 8G; male, Figure 8H; stage II, Figure 8K; stage III,

Figure 8L; mutation, Figure 8O; wild type, Figure 8P; P< 0.05).

However, there was no significant difference in age> 65 subgroup
Frontiers in Immunology 12
(Figure 8D, P>0.05). Similar findings were observed in DFS (age,

Figures 8E, F; gender, Figures 8I, J; stage, Figures 8M, N; KRAS

status, Figures 8Q, R).
Validation of TRPC score in the Fujian
Cancer Hospital cohort

A total of 85 samples were used from FJCH to verify the

clinical value of the current TRPC score. Kaplan–Meier survival

curve showed distinct survival differences between groups of

high- and low-TRPC scores, according to the current TRPC

scores (P< 0.05, Figure 9A). It also exhibited excellent prognosis

prediction with a 5-year AUC of 0.782 (Figure 9B). Multivariate

regression analysis showed that TRPC score was the only

independent risk factor of OS (P< 0.05, Figure 9C).

Furthermore, the TRPC score was significantly lower in the

response group to neoadjuvant treatment than that in the non-

response group (P< 0.05, Figure 9D). The response rate in the

low-TRPC score group was significantly higher than that in the

high-TRPC score group (P< 0.05, Figure 9E). The current TRPC

score had inspiring predictive ability of response to neoadjuvant

treatment with AUC of 0.709 (Figure 9F).
Discussion

Ion channels, particularly TRPC, are crucial in cancer

pathophysiology (7). TRPC are often dysregulated in CRC,

resulting in alterations in cancer hallmark functions (16, 17).

To the best of our knowledge, the present study is the first to

systematically evaluate TRPC in CRC. A risk score incorporating

8 TRPCG was established to predict the OS of patients with CRC

using the TCGA cohort, and was validated using the GSE38832,

GSE17536, and GSE17537 datasets. Furthermore, the TRPC

score was associated with other clinicopathological

characteristics of patients with CRC and tumor immunity.

Since 1969, many TRPC family members have been

identified, regulating numerous cellular, physiological, and

pathophysiological functions in tumors (6–8, 13). Previous

studies revealed that TRPC1 (35), TRPV6 (36, 37), and

TRPM8 (38) were upregulated in CRC tissues compared with

normal mucosa, whereas TRPV3 (39), TRPV4 (40), TRPV5 (39),

TRPM6 (41), and TRPC6 (39) were downregulated in CRC

tissues. However, no systematic study on the role of TRPC in the

prognosis of CRC has been reported yet. In the current study, 28

TRPCR were identified from TCGA, showing that almost all 28

TRPCR were dysregulated in CRC tissues than that in normal

tissues. However, TRPM5, TRPV4, and TRPC1 were associated

with OS of patients with CRC (P< 0.05). Two clusters with

distinct prognoses were identified using NMF (P< 0.05), and

TRPC were enriched between clusters A and B. Further,
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FIGURE 7

Correlation between TRPC score and response to NCRT in the GSE45404 cohort. The scatter diagram of the TRPC score between response
and non-response group (A), and fourfold table between TRPC score and NCRT response (B). (C) ROC curve of TRPC score to predict NCRT
response. (D) The distribution of the TRPC activity between response and non-response group. (E) Scatter plot showed the association between
the TRPC activity and TRPC score. (F) Heat map of correlation between the TRPC activity and immune infiltration. (G) ssGSEA scores of immune
cells and immune-related functions between response and non-response group. (H-J) Scatter plot showed the association between immune
checkpoints (e.g., PD-1, PD-L1, and CTLA4) and the TRPC activity. (K-M) Scatter plot showed the association between signaling pathway (e.g.,
mismatch repair, MAPK signaling pathway, and B cell receptor signaling pathway) and the TRPC activity. NCRT, neoadjuvant chemoradiotherapy;
ROC, receiver operator characteristic; ssGSEA, single sample gene set enrichment analysis; TRPC, transient receptor potential channels; ns, not
significant; *P< 0.05; **P< 0.01.
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FIGURE 8

Correlation between TRPC score and prognosis of patients who received NCRT in the GSE87211 cohort. (A) The Kaplan-Meier curves of OS for
patients in the high- and low-TRPC score groups. The Kaplan-Meier curves of OS for supplement clinicopathological characteristics, including
age (C, D), gender (G, H), stage (K, L), and KRAS mutation status (O, P) in the high- and low-TRPC score groups. (B) The Kaplan-Meier curves of
DFS for patients in the high- and low-TRPC score groups. The Kaplan-Meier curves of DFS for supplement clinicopathological characteristics,
including age (E, F), gender (I, J), stage (M, N), and KRAS mutation status (Q, R) in the high- and low-TRPC score groups. NCRT, neoadjuvant
chemoradiotherapy; OS, overall survival; TRPC, transient receptor potential channels.
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immunophenotypes differed significantly between the two

clusters, indicating that TRPC might regulate the immune

system as reported previously (20, 41).

Considering that studies on TRPCR are scarce, we identified

TRPCG, which were not only DEGs between two clusters, but also

between tumor and normal samples. In addition, TRPCR were

associated with prognosis, and all candidate genes strongly

associated with TRPCR. The current TRPC score exhibited

excellent prognosis predictive ability in the TCGA, meta-GEO,

GSE17537, GSE87211, and FJCH cohorts, and was identified as an

independent risk factor of OS (P< 0.05). Furthermore, a

nomogram based on the current TRPC score showed higher C-

index and AUC of prognosis prediction compared with published

risk scores of previous studies by Yang et al. (32), Liu et al. (33),

and Cao et al. (34), and improved net benefits. Moreover, the

current TRPC score correlated with clinicopathological

characteristics, including TNM stages and microsatellite status.

Among the 8 TRPCG, UCN, FJX1, TIPM1, and PCOLCE2

were negatively associated with OS of CRC patients (HR > 1),

while CD177, PPARGC1A, CLDN23, and MTOR4 were

positively associated with OS of CRC patients (HR< 1). Song

et al. (42) reported that TIMP1 expression was significantly

associated with regional lymph node and distant metastasis, and

was an independent prognostic indicator of colon cancer
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progression and metastasis through FAk-PI3K/AKT and MAPK

signaling pathways (42, 43). FJX1 was reportedly upregulated in

the epithelium of CRC, and contributed to poor prognosis in

patients with CRC via angiogenesis (44). CLDN23 and

PPARGC1A were significantly downregulated in CRC tissues,

and their reduced levels were associated with shorter OS in

patients with CRC (45–47). PPARGC1A reduced the risk of

CRC disease and progression through mitochondrial biogenesis,

antioxidant system, reactive oxygen species, lipid synthesis, and

glycolysis pathway (46). CD177 is mainly expressed by

neutrophils, and CRC patients with high density CD177+

neutrophils showed longer OS and DFS (48). Although UCN,

PCOLCE2, andMRTO4 are potential prognostic markers of CRC,

their action mechanisms remain unclear. In summary, several

candidate genes were first considered as prognostic biomarkers for

CRC, however, they require further validation.

With promising results of clinical trial of pembrolizumab (49),

ICI monotherapy or combination therapy has been well examined

in CRC management (50, 51). In recent years, deficient mismatch

repair (dMMR) showed the objective response rate of 20–40%,

regardless of stages (50, 51). However, the incidence of patients

with dMMR account for approximately 15% of CRC (52), and

selected patients with proficient mismatch repair MSS precisely

could benefit from ICIs (50, 53, 54). In the present study, TRPCR-
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FIGURE 9

Validation of TRPC score in the Fujian Cancer Hospital cohort. Kaplan-Meier curve (A), 1-year, 2-year, and 3-year ROC curves (B) and univariate
and multivariate Cox regression analysis (C) according to the TRPC score. The scatter diagram of the TRPC score between response and non-
response group (D), and fourfold table between TRPC score and NCRT response (E). (F) ROC curve of TRPC score to predict NCRT response.
NCRT, neoadjuvant chemoradiotherapy; ROC, receiver operator characteristic; TRPC, transient receptor potential channels; ***P< 0.001.
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based clusters were highly correlated with TIME. In addition, the

current TRPCRS was correlated with immune checkpoints,

including PD-1, PD-L1, and CTLA4. Additionally, the results

showed that patients with high-TRPC scores had lower TIDE but

higher MSI expression than those with low-TRPC scores (P<

0.05), suggesting that the former could benefit from ICIs. These

findings were validated by an external IMvigor 210 cohort (29), in

which all patients received atezolizumab. These findings

demonstrated that the novel TRPC score was considered as a

promising biomarker for TIME and an alternative index for ICIs.

Nonetheless, the correlation between TRPC and immunotherapy
Frontiers in Immunology 16
is still inclusive, which needs further validation, and the

underlying mechanism needs to be further explored.

Although neoadjuvant treatment followed by radical surgery

is the standard treatment for locally advanced rectal cancer

(LARC) (18), the pathological complete response rate and

survival benefit remain unsatisfactory and questionable (5).

Hence, a widely recognized biomarker is the key to selecting a

potential beneficiary. In the present study, the current TRPCRS

was associated with neoadjuvant treatment response in the

GSE45404 cohort, and patients with low-TRPC scores were

more sensitive to neoadjuvant treatment than those with high-
TABLE 1 Clinical characteristics of the CRC patients used in this study.

TCGA-COAD-READ
cohort

Meta-GEO cohort GSE17537
cohort

GSE45404
cohort

GSE87211
cohort

FJCH
cohort

GSE38832
cohort

GSE17536
cohort

No. of patients 535 122 177 55 80 203 85

Age

≤65 297 (55.5%) NA 83 (46.9%) 33 (60.0%) 49 (61.3%) 128 (63.1%) 65 (76.5%)

>65 236 (44.1%) NA 94 (53.1%) 22 (40.0%) 31 (38.7%) 74 (36.4.0%) 20 (23.5%)

unknown 2 (0.4%) NA 0 (0.0%) 0 (0.0%) 0 (0.0%) 1 (0.5%) 0 (0.0%)

Gender

Female 259 (48.4%) NA 81 (45.8%) 29 (52.7%) 31 (38.7%) 61 (30.0%) 30 (35.3%)

Male 265 (49.5%) NA 96 (54.2%) 26 (47.3%) 49 (61.3%) 142 (70.0%) 55 (64.7%)

unknown 11 (2.1%) NA 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

Stage

I 96 (18.0%) 18 (14.7%) 24 (13.6%) 4 (7.3%) NA 0 (0.0%) 0 (0.0%)

II 191 (35.7%) 35 (28.7%) 57 (32.2%) 15 (27.3%) NA 63 (31.0%) 43 (50.6%)

III 150 (28.0%) 39 (32.0%) 57 (32.2%) 19 (34.5%) NA 125 (61.6%) 42 (49.4%)

IV 76 (14.2%) 30 (24.6%) 39 (22.0%) 17 (30.9%) NA 12 (5.9%) 0 (0.0%)

unknown 22 (4.1%) 0 (0.0%) 0 (0.0%) 0 (0.0%) NA 3 (1.5%) 0 (0.0%)

Grade

Grade 1 NA NA 16 (9.0%) NA NA NA 2 (9.4%)

Grade 2 NA NA 134 (75.7%) NA NA NA 74 (87.1%)

Grade 3 NA NA 27 (15.3%) NA NA NA 2 (9.3%)

Grade 4 NA NA 0 (0.0%) NA NA NA 3 (3.5%)

unknown NA NA NA NA NA NA 4 (4.7%)

MSI

MSI-H 60 (11.2%) NA NA NA NA NA 0 (0.0%)

MSI-L 72 (13.5%) NA NA NA NA NA 0 (0.0%)

MSS 287 (53.6%) NA NA NA NA NA 49 (57.6%)

unknown 116 (21.7%) NA NA NA NA NA 36 (42.4%)

KRAS status

Mutation NA NA NA NA NA 84 (41.4%) 8 (9.4%)

WT NA NA NA NA NA 109 (53.7%) 17 (20.0%)

unknown NA NA NA NA NA 10 (4.9%) 60 (70.6%)

Response to neoadjuvant chemoradiotherapy

Response NA NA NA NA 35 (43.8%) NA 45 (52.9%)

Non-response NA NA NA NA 45 (56.2%) NA 40 (47.1%)
fr
NA, Not available.
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TRPC scores and higher TRPC activity. In addition, the novel

TRPCRS was associated with DFS in the GSE87211 cohort.

Consequently, the current TRPCRS could be considered as an

index of response to neoadjuvant treatment for patients with

LARC, and neoadjuvant chemoradiotherapy should be strongly

recommended for patients with low-TRPC scores.

More findings were recorded for patients with high-TRPC

scores but tolerant to conventional NCRT in the present study.

Initially, neutrophils were significantly enriched in the non-

response group than in the response group (P< 0.05). Evidence

showed that enrichment of neutrophils is one of the important

characteristics of neutrophil extracellular trap (NET) (55),

which might be a partial reason for chemoradiotherapy

resistance, as previously reported (56–58). Previous studies

showed that NET formation was positively regulated by

MAPK signaling pathway (59, 60); however, the related

mechanism remains unclear. In the present study, MAPK

signaling pathway was positively correlated with TRPC

activity (P< 0.05), which was positively correlated with TRPC

score (P< 0.05). Hence, neutrophil enrichment mediated by

activation of MAPK signaling pathway might be a potential

mechanism for NCRT resistance, in which TRPC might play an

important role. In future, it is a big “if” that combination with

MAPK inhibitor and conventional chemoradiotherapy could

improve the treatment response. Moreover, considering that

patients with high-TRPC scores were more sensitive to ICIs

than those with low-TRPC scores, neoadjuvant ICIs might be

an alternative for those with high-TRPC scores and resistant to

conventional chemoradiotherapy.

The current TRPCRS has several limitations. (1) Data from

TCGA training cohort, meta-GEO, and FJCH validation

cohorts were retrospectively collected. Therefore, the TRPC

score should be validated by prospective cohorts. (2) A model

consisting of TRPC score to predict the prognosis might have an

intrinsic disadvantage, regardless of the importance of TRPCGs.

(3) All eight genes were TRPC-related genes but not TRPCR. (4)

Since all patients from FJCH had dMMR, corresponding

analysis could not be conducted. (5) Mechanisms, such as

MAPK signaling pathway, require in vitro and in vivo

validation. (6) The clinical value of the current TRPCRS in

ICIs and neoadjuvant treatment management needs

further validation.
Conclusion

In conclusion, a novel risk score was developed using eight

TRPCG with excellent discrimination and calibration for CRC

prognosis. The current TRPCRS could be considered as a
Frontiers in Immunology 17
promising biomarker for ICIs and neoadjuvant treatment in

CRC management. NCRT is recommended for patients with

LARC with low-TRPC scores. In addition, combination of

MAPK inhibitors and neoadjuvant immunotherapy could be

an alternative treatment for patients with high-TRPC scores.

Hence, TRPC might participate in the treatment response and

TIME remodeling in CRC management, but it requires further

in vitro and in vivo validation.
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