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Analysis of m7G methylation
modification patterns and
pulmonary vascular immune
microenvironment in pulmonary
arterial hypertension

Desheng Wang1†, Yanfei Mo1†, Dongfang Zhang2*

and Yang Bai1*

1Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang,
Liaoning, China, 2Department of Pharmacognosy, School of Pharmacy, China Medical University,
Shenyang, Liaoning, China
Background: M7G methylation modification plays an important role in

cardiovascular disease development. Dysregulation of the immune

microenvironment is closely related to the pathogenesis of PAH. However, it

is unclear whether m7G methylation is involved in the progress of PAH by

affecting the immune microenvironment.

Methods: The gene expression profile of PAH was obtained from the GEO

database, and the m7G regulatory factors were analyzed for differences.

Machine learning algorithms were used to screen characteristic genes,

including the least absolute shrinkage and selection operator, random forest,

and support vectormachine recursive feature elimination analysis. Constructed

a nomogrammodel, and receiver operating characteristic was used to evaluate

the diagnosis of disease characteristic genes value. Next, we used an

unsupervised clustering method to perform consistent clustering analysis on

m7G differential genes. Used the ssGSEA algorithm to estimate the relationship

between the m7G regulator in PAH and immune cell infiltration and analyze the

correlation with disease-characteristic genes. Finally, the listed drugs were

evaluated through the screened signature genes.

Results: We identified 15 kinds of m7G differential genes. CYFIP1, EIF4E, and

IFIT5 were identified as signature genes by the machine learning algorithm.

Meanwhile, two m7G molecular subtypes were identified by consensus

clustering (cluster A/B). In addition, immune cell infiltration analysis showed

that activated CD4 T cells, regulatory T cells, and type 2 T helper cells were

upregulated in m7G cluster B, CD56 dim natural killer cells, MDSC, and

monocyte were upregulated in the m7G cluster A. It might be helpful to

select Calpain inhibitor I and Everolimus for the treatment of PAH.
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Conclusion: Our study identified CYFIP1, EIF4E, and IFIT5 as novel diagnostic

biomarkers in PAH. Furthermore, their association with immune cell infiltration

may facilitate the development of immune therapy in PAH.
KEYWORDS

pulmonary arterial hypertension, machine learning, immunity, microenvironment,
methylation, m7G
GRAPHICAL ABSTRACT
Introduction

Pulmonary arterial hypertension (PAH) is defined as mean

pulmonary arterial pressure ≥ 25 mmHg, pulmonary artery

wedge pressure ≤ 15 mmHg, and pulmonary vascular

resistance (PVR) > 3 Wood units (1). Patients develop PAH

for a variety of reasons, with the right heart and lung disease

being the most common cause of pulmonary hypertension (PH)

in nearly all regions of the world (2). The pathogenesis of PAH is

referred to as a complex interaction between immune cells and
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ng noncoding RNAs;
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vascular stromal cells. Tanby et al. have found the presence of

anti-endothelial cell antibodies in idiopathic pulmonary arterial

hypertension (IPAH), which seems to suggest that the humoral

immune system can influence endothelial cell proliferation in

PAH (3). B lymphocytes, the cellular basis of the humoral

immune response, are less sensitive to monocrotaline (MCT)

or hypoxia-induced PAH (HPH) in rats (4). Macrophages are

increased in PAH patients and animal models (5). There is an

increase in the number of lymphocytes, macrophages, mast cells,

and dendritic cells around the pulmonary artery vasculature of

PAH patients (5). These suggest that immune dysfunction may

play an important role in pulmonary perivascular inflammation

and the pathological progression of PAH (6, 7).
RNA methylation is a common epigenetic modification in

eukaryotes, including N6-methyladeno-sine (m6A), 5-

methylcytosine (m5C), and 7-methylguanosine (m7G). M7G acts

as a positively charged mRNA 5’ cap modification (8, 9) which is

involved in the progress of mRNA transcription (10), mRNA

splicing (11) and mRNA translation (12). M7G modifications are

widespread in tRNA and rRNA (13). It has been implicated in

certain diseases, for example, the RNA methyltransferase like 1

(METTL1) catalyzes m7G modification of tRNA to drive

oncogenic transformation by remodeling the mRNA

“Transcriptome” (14). Zhang et al. have shown the distribution
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signature of the internal mRNAm7Gmethylome in human HeLa,

HepG2, and HEK293T cell lines (9). M7G modifications are also

present in internal mRNAs (15), and these internal m7G

methylations affect RNA function and are implicated in human

diseases, such as tumors and immune diseases (16, 17).

Recent studies have shown that m7G-related microRNAs have

regulatory roles in the tumor micro-environment of clear cell

renal cell carcinoma (18). Meanwhile, METTL1 promotes

vascular endothelial growth factor A mRNA translation in an

m7G methylation-dependent manner, and m7G in mRNA has

been shown to be associated with vascular diseases (19). In

addition, m7G-related long noncoding RNAs (lncRNAs) may be

involved in tumor immunity, such as lung adenocarcinoma (20),

skin melanoma (21) and colon cancer (22). Interestingly, m7G

methylation of lncRNAs has recently been reported to be

associated with hypoxic PH (23). The cancer model of “primary

pulmonary hypertension” was first proposed by Voelkel et al. (24).

PAH has many cancer-like pathogenic features and signaling

pathways (25, 26). A hallmark of cancer is the infiltration of

immune cells (27), which play a key role in tumor progression by

creating an inflammatory microenvironment that promotes

tumor growth (28). Studies have found that 45-50% of lung

cancer patients have elevated pulmonary systolic blood pressure,

and pulmonary artery enlargement (29). Similarly, PAH is

characterized by perivascular infiltration of innate and adaptive

immune cells, including mast cells, macrophages, B cells, and T

cells (4, 30). The above suggests that both cancer and PAH appear

to actively suppress immune defense mechanisms. Therefore, we

have reason to believe that the regulatory effect of m7G on tumor

immune cells may also occur in PAH. Current research regarding

RNA methylation regulation is mostly associated with tumor

diseases. Little is known about whether RNA methylation

signatures are applicable to PAH and how m7G is involved in

PAH progression is currently unclear. Therefore, we hypothesized

that m7G may participate in the process of pulmonary vascular

remodeling in PAH by regulating the immunemicroenvironment.

The purpose of this study is to explore the role of m7G

methylation modification in the immune microenvironment of

PAH through bioinformatics technology and machine learning

methods, to further clarify the role of m7G regulators in the

progression of PAH, and to provide new ideas for

PAH treatment.
Materials and methods

Workflow overview

First, we downloaded the GSE15197 dataset (31) and the

GSE113439 dataset (32) from the Gene Expression Omnibus

database (GEO, http://www.ncbi.nlm.nih.gov/geo/). The dataset

was batch corrected by the limma package, and the differential
Frontiers in Immunology 03
analysis of m7G regulators was performed. At the same time, the

intersection of least absolute shrinkage and selection operator

(LASSO) regression curve, random forest (RF) and support

vector machine model (SVM-RFE) algorithms were used to

screen disease characteristic genes. Then, a nomogram model

was constructed and the area under the receiver operating

characteristic (ROC) curve was calculated to evaluate the

model, performance, and validated on the GSE113439 dataset.

In addition, we used the single sample gene set enrichment

analysis (ssGSEA) algorithm to quantify the relative abundance

of immune cells in PAH, by consensus clustering to classify m7G

regulators and differential genes of the and m7G regulatory

factors were analyzed based on subtypes. Finally, we evaluated

the marketed drugs through the screened disease signature genes

in PAH. See graphical abstract for details.
Datasets used in this study

Download the GSE15197 and GSE113439 datasets from the

GEO database. GSE15197 included lung tissue samples from 26

patients with PAH and 13 Normal, including PAH subjects

(n=18), IPF subjects with secondary PH (n=8), and Normal

(n=13). The GSE113439 dataset included lung tissue from 15

patients with PAH and 11 Normal, of which the PAH group

includes 6 patients with idiopathic PAH, 4 patients with PAH

secondary to connective tissue disease (CTD), and 4 patients

with congenital PAH. PAH patients with chronic heart disease

(CHD) and one patient with chronic thromboembolic

pulmonary hypertension (CTEPH).
Identification of differential genes

We searched and identified m7G-related genes from

published literature (33, 34), and then extracted and analyzed

using the “limma” package in R statistical software (35)

GSE15197 data, and screened for differentially expressed m7G

regulators between PAH patients and Normal.
Screening of disease signature genes

We used LASSO, RF and SVM-RFE three machine

learning algorithms to screen disease characteristic genes.

LASSO regression was performed using the “glmnet” R

package (36), and 10-fold cross-validation was used to

analyze PAH samples and normal samples. Random forest

model building using the “random forest” R package (37). In

addi t ion , the SVM-RFE mode l was genera ted by

the“e1071”SVM function, which could be used to determine

the number of best-ranked genes (38).
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Construction of the diagnostic model

To predict the incidence of the disease, we built a predictive

model by using the “rms” R package. The corresponding genes

were scored individually by “Points”, and total genes scores

were summarized “Total Points”. The predictive power of the

nomogram model was assessed by calibration curves, and the

clinical value of the model was evaluated using decision curve

analysis (DCA) and clinical impact curve analyses.

Furthermore, to further estimate the predictive value of PAH

diagnosis, we performed calculations with “pROC package”

(39). The larger the value of AUC, the higher the accuracy of

the prediction model, which was further validated in the

GSE113439 dataset.
Consensus clustering

Using an unsupervised clustering algorithm, implemented in

the “Consensus Cluster Plus” software package (40), the

differential genes and 15 kinds of m7G regulators of the

GSE15197 gene set were clustered to determine their optimal

clustering and classes.
SsGSEA immunoassay

SsGSEA was performed to use the “GSVA” package in

Reversion 4.2.1, and the selection of immune cell types were

derived from a recent publication by Charoentong et al., which

stocked various human immune cell subtypes, including

activated CD8 T cells, activated dendrites cells, macrophages,

natural killer T cells, and regulatory T cells, etc. (41).
Marketed drug evaluation

It was one of the important contents of this study to evaluate

the marketed drugs through the screened disease characteristics.

The drug molecules were identified by using the Drug Signatures

database (DSigDB) in the Enrichr database (https://maayanlab.

cloud/Enrichr/).
Statistical analysis

All data processing was done in R 4.2.1 software. T-test and

Wilcox Test were used in this study, depending on the type of

data. The error bars in the figures represented the standard error

of the standard deviation (S.D.). Spearman correlation analysis

was used to assess the relationship between diagnostic gene
Frontiers in Immunology 04
expression and infiltrating immune cells. P<0.05 was considered

statistically significant.
Results

Differential analysis of m7G regulators in
PAH patients

The dataset GSE15197 was normalized (Figures 1A, B), and

m7G regulators were differentially analyzed in lung tissue

samples from PAH patients and normal using the limma

package, as shown in Figure 1C, 15 kinds of m7G regulators

(NSUN2, DCP2, DCPS, NUDT11, NUDT16, NUDT3, CYFIP1,

EIF4E, EIF4E2, NCBP1, EIF3D, EIF4A1, EIF4G3, IFIT5, and

SNUPN) showed significant differences between PAH patients

and Normal. Next, the “Performance Analytics” R software

package was used to perform correlation analysis on 15 kinds

of m7G regulators with significant differences, and it was found

that there were different degrees of correlation between the 15

kinds of m7G regulators, blue represents positive correlation, red

represents negative correlation, the darker the color, the stronger

the correlation (Figure 1D). The above analysis showed that m7G

regulators are highly different and correlated between normal

and PAH patients, indicating that the expression imbalance of

m7G regulators played a crucial role in the occurrence and

development of PAH.
Screening of disease characteristic genes

To screen for disease-characteristic genes, we used three

different machine learning algorithms to analyze 15 kinds of

m7G regulators with significant differences. First, the 15 kinds of

m7G regulators were filtered through LASSO regression analysis,

as shown in Figure 2A, when the best Log (ʎ) in the figure is equal

to 5, the corresponding cross-validation error rate is the smallest,

thus determining NSUN2, CYFIP1, EIF4E, NCBP1, and IFIT5 as

signature genes of PAH. Next, the eight genes of the disease were

screened by the RF method, and about 120 trees were selected as

the parameters of the final model, which showed stable errors in

the model (Figure 2B), and then, we selected genes with scores

greater than 2 (EIF4E, CYFIP1, and IFIT5) for subsequent analysis

(Figure 2C); The characteristic genes of the disease were

determined by the SVM-RFE algorithm, as shown in the

Figure 2D, which represented the change curve of the cross-

validation error of each gene. Therefore, we selected the top four

genes with the smallest cross-validation error (EIF4E, CYFIP1,

IFIT5, and NUDT3); finally, we took the intersection of the three

machine learning algorithms and finally obtained 3 over- lapping

genes (CYFIP1, EIF4E, and IFIT5) between the three arithmetic

methods (Figure 2E).
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Construction and evaluation of PAH
diagnostic nomogram model

To predict the incidence of the disease, we constructed a

nomogram model for the three (CYFIP1, EIF4E, and IFIT5)

disease characteristic genes according to the “Rms” software

package (Figure 3A). The predictive ability of the nomogram

model was evaluated using the calibration curve, and as shown,

the nomogram model had high accuracy in predicting PAH

(Figure 3B). Meanwhile, DCA showed that the “nomogram”

curve was above the gray line, indicating that patients could

benefit from the nomogram model at a high-risk threshold of 0

to 1 (Figure 3C). To evaluate more intuitively the clinical effect of

the nomogram model, we drew the clinical impact curve based

on the DCA curve, as shown in Figure 3D: The “high-risk

number” curve and the “high-risk event number” curve are very

close to the high-risk threshold curve, which demonstrated the

extraordinary predictive power of the nomogram model. These

results also suggested that these three genes may play a key role

in the process of PAH. Finally, we further determined the

diagnostic values of CYFIP1, EIF4E, and IFIT5 in the

GSE15197 dataset by the area under the ROC curve and
Frontiers in Immunology 05
Nomo score (AUC=0.956) (Figure 3E). Meanwhile, to generate

more accurate and reliable results, the GSE113439 dataset was

adopted to verify the expression levels of 3 features, as shown in

Figure 3F: CYFIP1 204 (AUC=0.630), EIF4E (AUC=0.824),

IFIT5 (AUC=0.630) and Nomo score (AUC=0.721).
Consensus clustering of m7G genes
in PAH

To classify m7G methylation modification patterns. We

performed a consensus unsupervised cluster analysis of these

15 kinds of m7G regulators with significant differences using the

“Consensus Cluster Plus” R software package, and the consistent

cluster analysis showed that when the number of clusters K=2,

PAH patients can be divided into two groups. Subgroups, which

we termed m7G cluster A and m7G cluster B (Figure 4A). At the

same time, the consensus clustering cumulative distribution

function (CDF) results showed that when K=2, the grouping

was the best (Figure 4B). Furthermore, by principal component

analysis (PCA), it was observed that m7G cluster A and m7G

cluster B were well differentiated (Figure 4C). Next, the
A B

DC

FIGURE 1

Gene differential expression analysis. (A) GSE15197 data before normalization. (B) GSE15197 normalized data. (C) Differential expression of m7G-
regulated genes in PAH patients and normal controls. (D) Heat map of the correlation of m7G genes. Both horizontal and vertical coordinates
represent genes, and different colors represent correlation coefficients (blue represents positive correlation and red represents negative
correlation in the diagram). *P < 0.05, **P < 0.01 and ***P < 0.001. asterisks (*) stand for significance levels.
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correlations between the two subtypes determined by consensus

clustering and m7G regulators were shown in the figure, NSUN2,

DCP2, DCPS, NUDT16, NUDT3, EIF4E, EIF4E2, IFIT5, and

SNUPN regulators were in m7G cluster A and m7G cluster B.

There were significant differences between the two types, while

NSUN2, DCP2, EIF4E, and IFIT5 were regulated in type B, and

DCPS, NUDT16, NUDT3, EIF4E2, and SNUPN were down

regulated in type A (Figure 4D).
Correlation of biomarkers and immune
cells in PAH

To further explore immune differences between PAH

patients and normal, we used the ssGSEA algorithm to

evaluate the expression of 28 immune cells in GSE15197

samples, and the results were shown in Figure 5A. Based on

the two typing patterns of m7G cluster A and m7G cluster B, we

performed a differential analysis of immune cells between the

two clusters. The results showed that MDSC, monocyte,

activated CD4 T cell, CD56 dim natural killer cell, regulatory

T cell, and type 2 T helper cell were different in the two types.

Among them, activated CD4 T cell, regulatory T cell, and type 2

T helper cell were upregulated in m7G cluster B, CD56 dim

natural killer cell, MDSC, and monocyte were upregulated in

m7G cluster A (Figure 5B). Next, we performed a correlation
Frontiers in Immunology 06
analysis on immune cells and m7G regulators, the results were

shown in Figure 5C, red represents positive correlation, blue

represents negative correlation, and the darker the color, the

stronger the correlation. In addition, we also explored the

correlation between biomarkers and the content of different

immune cells. As shown in Figures 5D–F, CYFIP1 was positively

correlated with central memory CD4 T cell, immature dendritic

cell, regulatory T cell, activated CD4 T cell natural killer T cell,

gamma delta T cell, and type 17 T helper cell, CD56 dim natural

killer cell was negatively correlated; EIF4E was negatively

correlated with immature dendritic cell, type 2 T helper cell,

central memory CD4 T cell, regulatory T cell, plasmacytoid

dendritic cell, activated CD4 T cell, gamma delta T cell,

eosinophil was positively correlated, and negatively correlated

with CD56 dim natural killer cell; IFIT5 was correlated with type

2 T helper cell, natural killer T cell, central memory CD8 T cell,

regulatory T cell, mast cell, eosinophil, central memory CD4 T

cell, activated CD4 T cell, effectors memory CD8 T cell, Type1 T

helper cell, activated dendritic cell, T follicular helper cell were

positively correlated.
Consensus clustering of genes in PAH

To study the clinical significance of the m7G cluster, we

screened out 2148 genes related to m7G phenotype in the gene
A B

D E

C

FIGURE 2

Screening of disease signature genes. (A) Selection of the best Log (ʎ) value for LASSO regression. The x-axis represents the Log (ʎ) value, and
the y-axis represents the error rate of cross-validation errors. (B) The influence of the number of decision trees on the error rate. The x-axis
repre- sents the number of decision trees, and they-axis indicates the error rate. (C) Results of the Ginico efficient method in random forest
classifier. The x-axis indicates the genetic variable, and the y-axis represents the importance index. (D) Variation curve of gene cross-validation
error in SVM-RFE algorithm. (E) Venn diagram showing 3 disease signature genes shared by LASSO, SVM-RFE and RF arithmetic methods.
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A

B D

E

C

F

E

FIGURE 3

Construction and evaluation of a nomogram model for PAH diagnosis. (A) Nomogram model used to predict the incidence of PAH. (B) The
calibration curve was used to assess the ability of the Nomo score model to predict. (C) The clinical value of the Nomo score model assessed
by the decision curve. (D) Evaluation of the clinical impact curve of the Nomo score model based on the decision curve. (E) ROC curves of
CYFIP1, EIF4E, IFIT5 and Nomo score in the GSE15197 dataset. (F) CYFIP1, EIF4E, IFIT5 and Nomo score ROC curve validation results in the
GSE113439 validation set, AUC value is the area under the ROC curve.
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set by limma package and performed unsupervised clustering

analysis to divide patients into different genotypes. Consistent

clustering analysis showed that when the number of clusters

K=2, which the differential genes could be divided into two

subgroups, which we called gene cluster A and gene cluster B

(Figure 6A). Consensus clustering CDF results showed that

grouping was optimal when K=2 (Figure 6B). Next, we

performed a differential analysis of m7G and immune cells in

both gene cluster A and gene cluster B. The results were shown

in Figures 6C, D, NSUN2, DCP2, DCPS, NUDT1 6, EIF4E,

IFIT5, and SNUPN regulators in these two genes Cluster.

There were significant differences in the gene cluster, while

NSUN2, DCP2, EIF4E, and IFIT5 were upregulated in gene

Cluster A, and DCPS, NUDT16, and SNUPN were upregulated

in gene Cluster B. Activated dendritic cell, CD56 bright natural

killer cell, eosinophil, gamma delta T cell, monocyte, natural

killer cell, plasmacytoid dendritic cell, type 1 T helper cell, and

type 17 T helper cell immune cells were different between gene

cluster A and gene cluster B, Activated dendritic cell, gamma

delta T cell, monocyte, natural killer cell, plasmacytoid,
Frontiers in Immunology 08
dendritic cell, type1 T helper cell, and type 17 T helper cell

immune cells were downregulated in gene cluster B, CD56

bright natural killer cell and eosinophil were down regulated in

gene cluster A.
Construction of m7G score

Next, due to the individual differences and complexity of

m7G methylation modifications, we scored the expression

levels of m7G-related genes by the PCA method. This scoring

system was named the m7G score. As shown in the figure, the

score of m7G cluster A was significantly higher than that of

m7G cluster B (Figure 7A), and the score of gene cluster A was

significantly higher than that of gene cluster B (Figure 7B),

indicating that m7G scores were different in different types. To

observe the correspondence between the samples, we used the

Alluvial diagram for visual analysis, and the results were shown

in the figure. There was a high similarity between the results of

the m7G cluster and the results of the gene Cluster (Figure 7C).
A B

DC

FIGURE 4

Consistent clustering of m7G genes. (A) Consistency of clustering results heatmap (k = 2). (B) Consensus cluster cumulative distribution function
curve(k=2). (C) PCA analysis. Different colors represent different groups. As shown in the diagram, groups A and B are separated without any
intersection. (D) Expression of 15 kinds of m7G regulators in Cluster. The abscissa represents m7G differential gene, and the ordinate represents
the expression distribution of this related gene. *P < 0.05, **P < 0.01, and ***P < 0.001.
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Evaluation of marketed drugs

It was of great significance to evaluate the marketed drugs

and provided new ideas for the treatment of PAH. Table 1

demonstrated the effective drugs associated with m7G regulators

in the DSigDB database. The top 10 drug were extracted based

on p-values.
Discussions

In this study, we performed differential analysis by

comparing lung tissue from PAH patients and normal as a
Frontiers in Immunology 09
result, 15 kinds of m7G differential molecules were screened, and

3 important diseases characteristics genes CYFIP1, EIF4E, and

IFIT5 were screened by machine learning method. To predict

the incidence of the disease, we constructed a nomogram model

and used the ROC curve to further evaluate the accuracy of the

prediction model, and the model had also been validated in the

GSE113439 dataset. Furthermore, we applied the ssGSEA

algorithm to detect immune cell infiltration in PAH, and the

results showed that immune cell infiltration in PAH patients was

significantly different from that in Normal. Next, we performed

consensus clustering analysis based on 15 kinds of m7G

differential molecules and found that there was a strong

correlation between the two clusters and a variety of immune
A B

D

E F

C

FIGURE 5

Correlation of disease characteristic genes and immune cells in PAH. (A) Differential analysis of immune cells. (B) Difference analysis of immune cells in
m7G cluster. (C) Correlation analysis of immune cells and m7G regulators. (D) Correlation analysis of CYFIP1 gene and immune cells. (E) Correlation
analysis between EIF4E gene and immune cells. (F) Correlation analysis between IFIT5 gene and immune cells. Spearman correlation analysis was used
between genes and gene expression. The abscissa in the figure represents the correlation coefficient, the ordinate represents the immune cell, and the
rightmost value represents the correlation p value, the correlation coefficient. *P < 0.05, **P < 0.01, and ***P < 0.001.
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cells (activated CD4 T cell, CD56 dim natural killer cells, MDSC,

monocyte, regulatory T cell, and type 2 T helper cell). We also

conducted a differential analysis of the target genes CYFIP1,

EIF4E, and IFIT5 in immune cells, and found that CYFIP1,

EIF4E, and IFIT5 were significantly different in various immune

cells. In conclusion, we investigate that CYFIP1, EIF4E, and

IFIT5 may involve in the pathological progress in PAH for the

first time. PAH is defined as a chronic progressive malignant

pulmonary vascular disease with pathological features like
Frontiers in Immunology 10
cancer, such as cell proliferation, altered mitochondrial

metabolism, overexpression of growth factors, etc. (42). M7G

is associated with cardiovascular disease (19). In recent years, it

has been increasingly recognized that the immune system plays

an important role in the progression of PAH (43). Our study

demonstrates that m7G regulators are closely related to a variety

of immune cells.

Growing evidence suggests that T lymphocytes, dendritic

cells, macrophages, monocytes, and NK cells play an important
A B

DC

FIGURE 6

Consensus clustering of genes in PAH. (A) Consistency of clustering results heatmap (k=2). (B) Consensus cluster cumulative distribution
function curve (k=2). (C) Expression of 15 kinds of m7G regulators in the gene Cluster. (D) Expression of immune cells in the gene Cluster. *P <
0.05, **P < 0.01, and ***P < 0.001.
A B C

FIGURE 7

Construction of m7G score. (A) Score of m7G in gene Cluster. The abscissa represents different gene cluster, and the ordinate represents the
score of this gene. (B) Score of m7G in m7G cluster. (C) Alluvial diagram of show gene cluster in relation to m7G cluster and m7G score.
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role in the immune defense of PAH (44, 45). T lymphocytes are a

major component of the adaptive immune response and can be

divided into helper T cells (Th cells), cytotoxic T cells (Tc cells),

and regulatory T cells (Treg cells) (46). Clinical evidence

suggests that Treg function is reduced in patients with IPAH

(47). This study shows that activated CD4 T cell, type 2 T helper

cell and regulatory T cell exhibited higher immune filtration in

m7G cluster B, suggesting that they play an important role in the

PAH process. As a key part of the innate immune system, NK

cells play an important role in promoting anti-tumor immuno-

therapy and controlling inflammatory and autoimmune diseases

(48). Ormiston et al. have demonstrated through clinical

evidence and experiments that NK cells play an important role

in PAH angiogenesis and remodeling (49). NK cells have a

protective effect on the right ventricle in rats with severe PH

(48). In this study, we find a higher infiltration of CD56 dim

natural killer cell in m7G cluster A. In addition, we demonstrate

that the infiltration of MDSC and monocyte in m7G cluster A is

higher. Evidence suggests that MDSCs and monocyte may be

involved in the process of vascular remodeling and play a crucial

role in the development of PAH (50). Therefore, we speculate

that there may be some regulatory mode between m7G and the

PAH immune microenvironment. At present, there is no report

on the relationship between m7G and the PAH immune

microenvironment. Our study will provide preliminary

insights into the immune infiltration pattern of PAH and its

underlying immune modulator mechanisms. Simultaneously, we

also analyzed the correlation between disease signature genes

and immune cells. We identify CYFIP1, EIF4E, and IFIT5 as key

genes of PAH by machine learning method. Among these genes,

the researchers have found that CYFIP1 plays an important role

in brain functional connectivity and corpus callous function,

suggesting that copy number variation in the human CYFIP1

gene is associated with autism spectrum disorder and

schizophrenia (51, 52). Meanwhile, because CYFIP1 expression

decreases during epithelial tumor invasion, CYFIP1 has been

proposed as an invasion suppressor in epithelial cancers (53). At

present, there is no report on CYFIP1 and the immune
Frontiers in Immunology 11
microenvironment of PAH. This study shows that CYFIP1 is

found in central memory CD4 T cell, immature dendritic cell,

regulatory T cell, activated CD4 T cell, natural killer T cell, and

gamma delta T cell. There are significant differences in 17 T

helper cell, and CD56 dim natural killer cell. Therefore, our

study is the first time to link CYFIP1 with the immune

microenvironment of PAH, which may provide a new way for

CYFIP1 function research. Substantial evidence suggests that

dysregulated expression of EIF4E is associated with 30% of

human tumors, including head and neck cancer (54),

endometrial cancer (55) and prostate cancer (56). This

improves understanding of the role of EIF4E in cancer

biology. Our research has shown that EIF4E is in an immature

dendritic cell, type 2 T helper cell, central memory CD4 T cell,

regulatory T cell, plasmacytoid dendritic cell, activated CD4 T

cell, gamma delta T cell, eosinophil CD56 dim natural killer cells

have significant differences. Therefore, we speculate that EIF4E

plays an important role in the immune microenvironment of

PAH. IFIT5 is a member of the interferon-induced tetrapeptide

repeat family (57). Its expression is positively correlated with

pathological features of bladder cancer and predicts poor

prognosis in BCA patients (58). At the same time, IFIT5

mRNA levels are significantly elevated in high-grade prostate

cancer (59). This study has investigated that IFIT5 can be found

in type 2 T helper cell, natural killer T cell, central memory CD4

T cell, regulatory T cell, mast cell, eosinophil, and central

memory CD8 T cell. There are significant differences in CD4

T cell, CD8 T cell, type 1 T helper cell, activated dendritic cell,

and T follicular helper cell, which provide evidence for the

involvement of m7G in the regulation of the PAH immune

microenvironment. However, the correlation between m7G and

immune cells still requires further study. At present, the

regulation of RNA methylation in diseases has been studied

with m6A and m5C. M5C methylation can regulate tumor

microenvironment infiltration characterization of lung

adenocarcinoma and immune microenvironment of multiple

myeloma (60, 61). Interestingly, the m6A modulator may be a

promising biomarker for the diagnosis and treatment of PAH in
TABLE 1 Evaluation of marketed drugs.

Index Name P-value Odds Ratio Combined Score

1 Calpain inhibitor I CTD 00002578 0.002548 624.41 3729.25

2 Selenium (6+) CTD 00002696 0.002698 587.65 3476.15

3 KU-55933 CTD 00004399 0.002847 554.97 3252.89

4 Everolimus CTD 00003479 0.003596 434.22 2443.77

5 S-1,2-Dichlorovinyl-N-acetylcysteine CTD 00002159 0.003596 434.22 2443.77

6 Perhexiline CTD 00006493 0.003745 416.1 2324.86

7 Niclosamide PC3 DOWN 0.004344 356.59 1939.49

8 Zimeldine PC3 DOWN 0.004942 311.95 1656.47

9 Alexidine PC3 DOWN 0.005092 302.48 1597.17

10 Luronit CTD 00006106 0.00539 285.17 1489.48
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the monocrotaline-induced pulmonary hypertension model of

rats (62–64). Currently, there is very little research on the effect

of m7G methylation on PAH. Previous studies have shown that

lncRNAs are significantly upregulated compared with non-m7G

lncRNAs in HPH rats (23). The clinical significance of the results

of this study is to find that further intervention of m7G may be of

great significance as a new strategy to combat the occurrence and

development of PAH. These findings are helpful to further

understand the pathogenesis of PAH and provide a new target

for the treatment of PH.

Overall, this study constructs a model that can predict the

incidence of PAH disease from the perspective of m7G

methylation. And the underlying mechanism of m7G

methylation modification in PAH is related to the immune

microenvironment. Meanwhile, our study has some

limitations, considering the individual heterogeneity of

PAH. Our findings should be further validated using more

multicenter clinical data. In the future, it will be necessary to

collect in-house clinical data to experimentally validate some

of the findings in this study. For example, whether m7G

regulates inflammatory factors and thus, participates in the

progression of PAH.
Conclusions

In conclusion, this study provides more information

toward understanding the pathophysiological mechanism of

PAH by starting from the broad regulatory mechanism of

m7G methylation modification on the PAH immune

microenvironment. Our study has identified CYFIP1, EIF4E,

and IFIT5 as potential novel pharmacology biomarkers in PAH.

Furthermore, their association with immune cell infiltration may

facilitate the development of immune therapy in PAH.
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