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Exploring biomarkers for
prognosis and neoadjuvant
chemosensitivity in rectal
cancer: Multi-omics and ctDNA
sequencing collaboration
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Jun-Nan Guo1, Dan Wang2, Yi-En Li1, Shen-Hui Deng3,
Bin-Bin Cui1* and Yan-Long Liu1*

1Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China,
2Department of Neurology, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, China,
3Department of Anesthesiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
Introduction: This study aimed to identified the key genes and sequencing

metrics for predicting prognosis and efficacy of neoadjuvant chemotherapy

(nCT) in rectal cancer (RC) based on genomic DNA sequencing in samples with

different origin and multi-omics association database.

Methods: We collected 16 RC patients and obtained DNA sequencing data

from cancer tissues and plasma cell-free DNA before and after nCT. Various

gene variations were analyzed, including single nucleotide variants (SNV), copy

number variation (CNV), tumor mutation burden (TMB), copy number instability

(CNI) and mutant-allele tumor heterogeneity (MATH). We also identified genes

by which CNV level can differentiate the response to nCT. The Cancer Genome

Atlas database and the Clinical Proteomic Tumor Analysis Consortium database

were used to further evaluate the specific role of therapeutic relevant genes

and screen out the key genes in multi-omics levels. After the intersection of the

screened genes from differential expression analysis, survival analysis and

principal components analysis dimensionality reduction cluster analysis, the

key genes were finally identified.

Results: The genes CNV level of principal component genes in baseline blood

and cancer tissues could significantly distinguish the two groups of patients.

The CNV of HSP90AA1, EGFR, SRC, MTOR, etc. were relatively gained in the

better group compared with the poor group in baseline blood. The CNI and

TMB was significantly different between the two groups. The increased

expression of HSP90AA1, EGFR, and SRC was associated with increased

sensitivity to multiple chemotherapeutic drugs. The nCT predictive score

obtained by therapeutic relevant genes could be a potential prognostic

indicator, and the combination with TMB could further refine prognostic

prediction for patients. After a series of analysis in multi-omics association

database, EGFR and HSP90AA1 with significant differences in multiple aspects
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were identified as the key predictive genes related to prognosis and the

sensitivity of nCT.

Discussion: This work revealed that effective combined application and

analysis in multi-omics data are critical to search for predictive biomarkers.

The key genes EGFR and HSP90AA1 could serve as an effective biomarker to

predict prognose and neoadjuvant chemosensitivity.
KEYWORDS

rectal cancer, cell-free DNA, genomic sequencing, multi-omics, prognosis,
neoadjuvant chemotherapy
Introduction

The high incidence and poor prognosis of colorectal cancer

(CRC) significantly impact the quality of life and economy of

patients worldwide. It has also become the third leading cause of

cancer death. Rectal cancer (RC) accounts for approximately

one-third of all CRC cases (1). Multimodality therapies have

been widely used in the clinical treatment of locally advanced

patients due to advancements in pathology, imaging, genome

sequencing technology, surgical technology, and instruments.

Significant progress has been made in the last 30 years (2).

Preoperative neoadjuvant radiotherapy and chemotherapy, total

mesorectal excision, and postoperative adjuvant chemotherapy

are the primary treatment methods that significantly reduce the

local recurrence rate and improve the prognosis of patients.

However, that strategy comes at the cost of quality of life (3).

Despite this, only about 20% of RC patients treated with

neoadjuvant chemotherapy (nCT) will have a complete

response (CR) or partial response (PR) during preoperative

evaluation or surgery (4). Most of the other patients benefited

little from nCT after experiencing a series of toxic side effects. So

far, the most significant clinical diagnosis and treatment

challenge has been determining the best treatment strategy for

each patient, enabling the individualized treatment, reducing

side effects, and optimizing the quality of life. In addition, no

biomarkers have been identified that can accurately predict the

benefits of preoperative neoadjuvant therapy.

Recently, the rapid development of high-throughput

sequencing technology has enabled next-generation sequencing

(NGS) to detect various gene variants in cancer tissues based on

DNA and RNA (5). In clinical applications, NGS-based DNA

testing has demonstrated significant advantages in identifying

clinically treatable genetic variants to guide patient treatment

and prognostic-relevant adverse genomic variants before

treatment (6). It also has clinical implications for predicting

the outcome of chemotherapy. “Liquid Biopsy” has recently

emerged as an accessible, convenient, and reproducible
02
technique for real-time monitoring tumor patients by

searching for circulating molecular markers in peripheral

blood (7). In different types of cancer, biomarkers such as

circulating tumor cells, microRNAs, and DNA have been

investigated as potential diagnostic and prognostic markers for

personalized therapies (8). This non-invasive blood-based test

combined with NGS has significant advantages in patients who

require preoperative nCT but cannot access fresh tumor tissue

before surgery (9). It can investigate the changes and specific

characteristics of the genome in patients at both the baseline and

post-treatment level of neoadjuvant therapy, including single

nucleotide variants (SNV), copy number variation (CNV) and

tumor mutation burden (TMB).

Furthermore, The Cancer Genome Atlas (TCGA), a large

genomic database, provides RNA-sequencing data from many

RC patients before treatment. Numerous studies have

demonstrated that genotyping based on RNA signatures in

cancer tissues can accurately predict patient prognosis,

chemosensitivity, and immunotherapy sensitivity, with high

accuracy across multiple independent cohorts (10, 11).

However, TCGA does not provide RNA-sequencing data of

RC after treatment, and the genomes of untreated and treated

tumors may differ significantly, limiting the analysis and

prediction accuracy of neoadjuvant chemosensitivity for RC at

the RNA level. A strong association between these two assays

that target different genomic levels, such as the CNV level, will

affect the RNA expression (12, 13). Meanwhile, increasing the

copy number of a gene could be a mechanism for increasing

protein expression (14). Therefore, effective combined

application and analysis of them in multi-omics data are

critical in the future search for predictive biomarkers for

neoadjuvant chemosensitivity and to develop multimodality

and individualized precision treatment.

In this study, we collected cancer tissues, adjacent tissues,

and peripheral blood samples from 16 RC patients before and

after nCT. Cell-free DNA (cfDNA) was isolated from the

peripheral blood of patients, and the targeted gene capture
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panel sequencing was performed. The various gene variations in

patients were examined, including SNV, CNV, TMB, copy

number instability (CNI), and mutant-allele tumor

heterogeneity (MATH). We also identified genes from the

blood and tissue by which CNV levels can differentiate the

response to nCT. The TCGA database was used to further

evaluate the specific role of these genes and screen out the

genes with significant differences in CNV in normal and cancer

tissues. Then, we identified the genes whose expression levels

were significantly correlated with CNV levels. The Clinical

Proteomic Tumor Analysis Consortium (CPTAC) database

was used for screening after the intersection of the screened

genes from the above processes, and the key genes for predicting

the prognosis and efficacy of nCT were finally obtained.
Methods

Sample collection

All patients received preoperative nCT, with capecitabine

(950–1000 mg/m2) administered twice daily by oral gavage for

14 days and oxaliplatin (130 mg/m2) administered intravenously

on the first day. Peripheral blood samples before and after nCT

and surgically resected tumor tissue were collected from all

patients. Following a quality control assessment, 16 patient

samples met the criteria and were subjected to further analysis.

There were seven patients in the CR group, one in the PR group,

seven in the stable disease (SD) group, and one in the progressive

disease (PD) group. The study was approved by the Ethics

Committee of the Harbin Cancer Hospital Medical University,

and all patients signed an informed consent document.
CfDNA extraction and sequencing

Centrifugation at 1600 × g for 10 min separated the

peripheral blood lymphocytes and plasma. The supernatant

plasma was then transferred to a new 2 mL centrifuge tube

and centrifuged at 16,000 × g for 10 min. MagMAXTM cfDNA

isolation kit (Life Technologies, California, USA) was used to

extract cfDNA in the plasma. Tiangen whole blood DNA kit

(Tiangen, Beijing, PRC) was used to extract DNA from

peripheral blood lymphocytes according to the manufacturer’s

instructions. The DNA concentration was determined using

either the Qubit dsDNA HS Assay kit or the Qubit dsDNA BR

Assay kit (Life Technologies, California, USA).

Genomic DNA was sheared into 150–200 bp fragments with

Covaris M220 Focused-ultrasonicatorTM Instrument (Covaris,

Massachusetts, USA). Fragmented DNA and cfDNA libraries

were constructed by KAPA HTP Library Preparation Kit

(Illumina platforms) (KAPA Biosystems, Massachusetts, USA)
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as per the manufacturer’s instruction. A designed Genescope

panel of 1086 genes (Genecast, Beijing, China) was used to

capture the DNA libraries that included significant tumor-

related genes. The captured samples were paired on an end

sequencing Illumina HiSeq X-Ten.
Basic analysis

Following quality control, clean data were aligned to the

hg19 human genome using BWA 0.7.17 (15), and duplications

were masked by Picard (v2.23.0) (16). Variants were called using

VarScan (v2.4.2) (17) and annotated by ANNOVAR software

(18). Somatic mutations were eliminated using the following

steps: (i) Exclude the mutations annotated as synonymous SNVs

or located in intergenic or intronic regions; (ii) Exclude

mutations annotated with allele frequency ≥ 0.002 in the

Exome Aggregation Consortium (ExAC) database (19) and the

Genome Aggregation Database (20); (iii) Exclude mutations

with strand bias, support reads < 5, and allele frequency < 0.05

in the tumor sample and allele frequency < 0.01 in the plasma

sample. CNVs were called via cnvkit (v0.9.2) software using

paired mode (21).

We used the principal components analysis (PCA)

algorithm to perform dimensionality reduction and cluster

analysis based on treatment efficacy information to screen for

the potential genes that can predict nCT efficacy. The R package

Complex heatmap (22) was performed to draw the landscape of

genomic alterations in samples from different sources (patient’s

baseline blood, post-chemotherapy blood, and CR tissue). The

chromosomal locations of the genes identified by the above

analyses were visualized by the R package “RCircos” (23).

Furthermore, we also analyzed the differences in CNI, MATH,

and TMB in baseline blood. CNI, TMB, and MATH differences

were compared using the Mann–Whitney U test.
CNI score calculation

The CNI score is a general measure of chromosomal

instability (CIN) and is directly related to the regional

chromosomal DNA ploidy (24, 25). To assess the extent of

CIN, we quantified it using the CNI score. After GC content

correction and normalization of target region length, read

counts were transformed into log2 ratios (26). The log2 ratios

were then converted into Z-score using Gauss ian

transformations versus a baseline group. The regions with Z-

scores greater than the 95th percentile plus twice the absolute

standard deviation were defined as unstable regions. The CNI

score was calculated by adding the Z-scores of unstable

regions (25).
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1013828
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Jiang et al. 10.3389/fimmu.2022.1013828
MATH calculation

Somatic mutations with variant allele frequency (VAF)

between 2% to 100% were included for MATH analysis.

MATH was calculated by the following formula: Median

absolute deviation of included somatic mutations/median

VAF (27).
TMB calculation

Absolute mutation counts were defined as the number of

somatic mutations, and TMB was calculated with the formula:

Absolute mutation counts * 1000000/Panel exonic base

number (28).
Preprocessing and analysisof TCGA
RC samples

We included 165 RC patients in the TCGA database (Data

Release 34.0, Release Date: July 27, 2022, https://tcga-data.nci.

nih.gov/tcga/). The downloaded information included RNA

expression data and CNV information. To search for genes

with different CNV levels in normal and cancer tissues, we

utilized a chi-square test to evaluate statistical significance.

To evaluate the specific role of therapeutic relevant genes

identified by the RC blood samples sequencing results. We

performed PCA analysis to extract the main components of

those therapeutic relevant genes and then constructed a gene

signature in TCGA cohort. Both principal components 1 and 2

were selected as signature scores. A method similar to the gene

expression rank index was performed to define the nCT predictive

score (nCTPS) of each patient: nCTPS = ∑PCA1i+∑PCA2i (i is the

expression of therapeutic relevant genes). To identify the relative

enrichment degree in biological processes of different groups, R

packages “GSVA” (29) was used to perform enrichment analysis.
Correlation analysis of genes at CNV and
transcriptional levels

To investigate genes associated with CNV and transcript

levels, we extracted the RNA expression matrix of the above

genes with significantly different CNVs. We divided all samples

into four groups: single deletion, normal, single gain, and

amplification groups. The R software (version 4.0.5) was then

used for statistical analysis. Differences between the two groups

were compared using the Wilcoxon test, while comparisons

between more than two groups were performed using the

Kruskal-Wallis test. In all results, p < 0.05 was considered

statistically significant.
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Identification of potential genes
for predicting efficacy of
neoadjuvant chemotherapy

After obtaining the genes whose transcriptional levels were

associated with CNVs, we intersected these genes with the genes

obtained from PCA and cluster analysis that might predict the

efficacy of nCT. These genes in the intersection have great

potential and value for predicting the efficacy of nCT. Then, to

verify the effect of these intersecting genes on chemosensitivity,

we performed a drug sensitivity prediction analysis. Gene

expression data and chemotherapeutic drug response data

were downloaded from CellMiner™ (https://discover.nci.nih.

gov/cellminer/), these data were from the same batch. We

deleted drugs that without FDA-approval or clinical trials, and

selected chemotherapy drugs for RC. Then we extracted the

genes expression data, and analyzed the correlation between

their expression and drug sensitivity.

To further screen and validate the key genes at the protein

level, we downloaded the proteomic cohort of RC from the

CPTAC database. Meanwhile, a web tool, the University of

ALabama at Birmingham CANcer data analysis Portal

(UALCAN) (http://ualcan.path.uab.edu/), was chosen to be

used, which integrates the proteomic data of all tumor samples

f rom the CPTAC da tabase . We downloaded the

immunohistochemical staining images from The Human

Protein Atlas project (https://www.proteinatlas.org/). Each

sample is represented by 1 mm tissue cores (30). In colon

cancer (CC) and RC samples, we analyzed the differential

expression of the screened genes in normal and cancer issues,

their impact on prognosis, and the correlation between their

transcriptional levels and protein levels, respectively. To

distinguish the high and low expression groups associated to

prognosis, the best cut-off value was estimated by R package

“maxstat” (31). Genes with significantly different results in

multiple aspects were finally identified as the key genes.

Finally, DisNor database (32) (https://disnor.uniroma2.it/) was

used to analyze the up- and downstream binding sites and causal

interaction of the key genes.
Results

Cluster analysis of SNV and CNV in three
types of samples

First, we used the heatmap to present the genes with SNV

detected in the baseline blood in order of frequency of occurrence

from high to low, which were PTEN, ARID1A, SMARCA4, NPM1,

MSH3, SEC16A, AGXT, ACE, KSR2, ERBB2, PTCH1, RB1,

FBXW7, APC, DLG5, TP53, MCL1, SETD2, JAK1, NF1,

SULT1A1, KDM4D, PIK3CB, SMARCA1, BRAF, CD3EAP,
frontiersin.org
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SERPING1, PDGFRA, COL1A1, HDAC2, EPHX1, MAPK11, and

KRAS. The nonsynonymous SNV was the most commonmutation

typeamong thegenes in theheatmap, occurringalmost in everygene,

followed by frameshift deletion, non-frameshift deletion, and

frameshift insertion (Figure 1A). We found that the SNP level of

the principal component genes in baseline bloodwas less effective for

distinguishing the two groups by PCA dimensionality reduction

cluster analysis (Figures 1B, C), with an area under the receiver

operating characteristic curve (AUC) of only 0.48 (Figure 1D). In

addition, after chemotherapy, the SNP level of the principal

component genes in blood was less effective in distinguishing the

two groups (Figures 1E, F), with an AUC of only 0.62 (Figure 1G).

In theCNVanalysis, the geneswithCNV in descending order of

occurrence frequency are: HDAC2, FAM131B, GAPDH, SLC19A1,

GGH, REV1, COL1A1, AKR1C3, AREG, HMGB1, HSPA8,

CYP2D6, SLC31A1, TGFB1, RNF43, APOA4, KLC3, SPG7,

SULT2B1, USP6, ABCC5, AGO2, ARID5B, CAT, CCND2,

CDKN1B, CYP24A1, CYP2A6, DHFR, DRD2, GALE, GLP1R,

GSTP1, HNF4A, IFNL3, PCK1, PDCD1, TLR2, TPMT, WARS,

XRCC1 (Figure 2A).Most of the top 40 genes with CNV occurrence

have copy number deletion (32/41), with a small number of genes

having copy number gain (13/41). Meanwhile, in the poor group,

most patients’ genes with CNVs exhibited copy number deletion

(Figure 2A). We identified that the CNV level of principal

component genes in baseline blood could significantly distinguish

the two groups of patients using PCA dimensionality reduction

cluster analysis (Figure 2B). The CNVs of DPYP, IL7R, MTRR,
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HSP90AA1, MAP3K7, VHL, EGFR, ETV4, FLT4, CREBBP,

CHEK2, NSD1, PPARG, DDR2, MUTYH, KDR, NCOA1,

GNAQ, PTGS2, ETV1, PAX5, AR, BTK, XPC, MPL, GNA11,

SRC, FGGR3, NOTCH1, FANCA, JAK3, ITGB2, mTOR, and

ARNT were relatively gained in the better group compared with

the poor group. In contrast, the CNVs of ABL1, ARID1A, CCND2,

TSC1, SYK, ERBB3, SMO, NOTCH2, SETD2, IGF1R, AURKA,

PDGFRA, IDH1, PALB2, BRAF, PIK3CB, ERCC4, NRAS, MDM4,

NF1,APC,FBXW7,ESR1,MITF,CCND1,CDH1, andPTCH1were

relatively gained in the poor group compared with the better

group (Figure 2C).

However, after clustering by PCA dimensionality reduction in

the blood samples after nCT (Figure 2D), the CNV level of the

principal component genes could not significantly differentiate the

two groups (Figure 2E). The PCA analysis of cancer tissues obtained

from surgery (Figure 2F) revealed that the CNV levels of EGFR,

GNAS, AURKA, BCL2L1, SRC,MET, FLT1, FLT3, EML4, PIK3CB,

RRM1, TOP1, RAF1, PPARG, CCND2, CDKN2A, PIK3R1, APC,

DPYD,AR,BTK,MALT1, andBCL2could significantly differentiate

the two groups of patients (Figure 2G).
Analysis of chemotherapy-related loci,
CNI, MATH, and TMB in baseline blood

In addition to baseline blood samples, we examined other

relevant indicators. The findings revealed that the commonly
B C D

E F G

A

FIGURE 1

Analysis of SNV in blood samples before and after nCT on therapeutic response. (A) The heatmap showed genes with SNV detected in the
baseline blood according to the frequency of occurrence from high to low. The columns represent the RC patients and the rows represent the
genes. The colors on the right represent the efficacy groups and mutation type. (B) The PCA dimensionality reduction and cluster analysis for
SNP level in baseline blood. (C) The heatmap demonstrated the SNP level of the principal component genes in baseline blood. (D) The receiver
operating characteristic curve for distinguishing the efficacy groups in baseline blood (AUC = 0.48). (E) The PCA dimensionality reduction and
cluster analysis for SNP level in the blood after nCT. (F) The heatmap demonstrated the SNP level of the principal component genes in the
blood after nCT. (G) The receiver operating characteristic curve for distinguishing the efficacy groups in blood after nCT (AUC = 0.62).
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used chemotherapy target genotypes, including RCC1, ERCC2,

MTHFR, XPC, and XRCC1, were not significantly different

between the two groups of patients (all p > 0.05) (Figure 3A).

CNI measures genomic instability related to regional

chromosomal DNA ploidy (24). The calculation of the CNI

value by bioinformatics analysis demonstrated that these values

were significantly higher in the better group than in the poor

group (p = 0.0014) (Figure 3B). The MATH value is a scoring

method used to estimate tumor heterogeneity, and its higher

value indicates more heterogeneity (33). MATH value

calculation illustrates no significant difference between the two

groups (p = 0.23) (Figure 3C). However, in the case of TMB, it

was identified that TMB was significantly higher in the poor

group than in the better group (p = 0.013) (Figure 3D).
Evaluation of the specific role of
therapeutic relevant genes in the
TCGA cohort

Given the purpose of our study was to identify the biomarkers

andpredict therapeutic responsebeforenCTandsurgery,we selected

the results from the samples available before treatment, that is, the

therapeutic relevant genes identified in the baseline blood for

subsequent analysis.
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To evaluate the specific role of these genes, we used PCA to

constructed a gene signature inTCGAcohort, anddefined the results

as nCTPS. Next, we evaluated the value of the nCTPS in predicting

prognosis. After obtaining the best cut-off value through R package

“maxstat” (31), we distributed the patients fromcohort into high and

lownCTPSgroups.WeusedPCAscatterplot to showthedistribution

of two groups of patients. It can be seen from the figure that the two

groups of patients can be also separated by the PCA clustering

(Figure 4A). We performed Gene Set Variation Analysis (GSVA)

between the two groups. The results showed that enrichment of

pathways varied significantly between the two groups, including

ErbB signaling pathway, GnRH signaling pathway, mTOR signaling

pathway, Wnt signaling pathway, etc. (all q-values < 0.05)

(Figure 4B). There was a significant difference in prognosis

between the two groups (p < 0.001) (Figure 4C). Furthermore, we

calculated the MATH and TMB values in TCGA rectal cancer

patients. We found that there was no significant difference in

MATH and TMB between the high and low score groups

(Figures 4D, E). There was a significant difference in the prognosis

of patients in the high and low TMB groups (p = 0.009) (Figure 4F).

Taking the synergistic effectof theTMBandnCTPSontheprognosis,

we performed a stratified prognostic analysis. The results indicated

that the nCTPS could be a potential prognostic indicator, and the

combination with TMB could further refine prognostic prediction

for patients (p = 0.003) (Figure 4G).
B C

D E F G

A

FIGURE 2

Analysis of CNV in 3 types of samples on therapeutic response. (A) The heatmap showed genes with CNV in descending order of occurrence
frequency. The columns represent the RC patients and the rows represent the genes. The colors on the right represent the efficacy groups and
CNV type. (B) The PCA dimensionality reduction and cluster analysis for CNV level in baseline blood. (C) The heatmap demonstrated the CNV
level of the principal component genes in baseline blood could significantly distinguish the two groups of patients. (D) The PCA dimensionality
reduction and cluster analysis for CNV level in the blood after nCT. (E) The heatmap demonstrated the CNV level of the principal component
genes in the blood after nCT. (F) The PCA dimensionality reduction and cluster analysis for CNV level in cancer tissues obtained from surgery.
(G) The heatmap demonstrated the CNV level of the principal component genes in cancer tissues could significantly distinguish the two groups
of patients.
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Transcript level combined with CNV
to further identify genes associated
with chemosensitivity

We first identified 5410 genes in the RC data from TCGA,

whose CNVs differ significantly between cancer and normal

tissues (all adjust p < 0.05). Fifteen of them overlapped with the

genes that can differentiate sensitivity to nCT identified using the

RC baseline blood sample sequencing results. Figure 5A depicts

the chromosomal locations of these genes and CNV alterations,

with most of these genes located in Chromosomes 1 and 7.

The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) enrichment analysis of these genes

demonstrated that they were significantly enriched in many

energy metabolism pathways and classic cancer-related

signaling pathways, including regulation of reactive oxygen

species biosynthetic process, protein autophosphorylation,

EGFR tyrosine kinase inhibitor resistance, ErbB signaling

pathway, P53 signaling pathway, and mTOR signaling

pathway (Figures 5B, C). The overlapped enriched pathways

among GSVA analysis, GO and KEGG enrichment analysis

include ErbB signaling pathway, GnRH signaling pathway,

mTOR signaling pathway, pancreatic cancer, colorectal cancer,

endometrial cancer, adherens junction signaling pathway, etc.
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These overlapped signaling pathways are closely related to both

tumor progression and drug resistance (34, 35). Therefore, we

performed a chemosensitivity analysis on these genes. The findings

revealed that the increased expression of genes with CNV levels

relatively gained in the poor group was associated with decreased

sensitivity to multiple chemotherapeutic drugs, including AURKA

and BRAF (Supplementary Figure 1A). However, in the better

group, the increased expression of genes with CNV relatively gained

was associated with increased sensitivity to multiple

chemotherapeutic drugs, including EGFR, SRC, and HSP90AA1

(Supplementary Figure 1B).

Subsequently, we extracted the expression of RNAs with

significantly different CNVs in normal and cancer tissues,

analyzed the data, and obtained 2643 genes with significant

differences in expression levels at different CNV levels. Then,

using the sequencing results of RC blood samples, we intersected

these genes with the genes that can distinguish the sensitivity to

nCT and obtained eight intersecting genes (Figure 5D). The CNV

levels of HSP90AA1, EGFR, SRC, and mTOR were higher in the

better group compared to the poor group. In contrast, the CNV

levels of ARID1A, AURKA, BRAF, andMDM4were higher in the

poor group compared to the better group. The Supplementary

Figures 2A–H represents the changes in RNA expression of these

eight genes at different CNV levels (all p < 0.05).
B

C D

A

FIGURE 3

Analysis of chemotherapy-related loci, CNI, MATH, and TMB in different therapeutic response groups. (A) The commonly used target genotypes
of chemotherapy in 16 RC patients. (B) The CNI value in the better group was significantly higher than that in the poor group (p = 0.0014) (C)
There was no significant difference in the MATH value between the two groups (p = 0.23). (D) The TMB in the poor group was significantly
higher than that in the better group (p = 0.013).
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Transcript level combined with protein
level to finalize the key genes

A publicly proteomic database was used to analyze expression

differences, prognosis, and protein-transcript level correlations for

identifying and validating key genes. Because of the scarcity of

publicly available RC proteomic data and lack of data on normal

tissues, colon cancer (CC) and RC are inseparable from

gastrointestinal cancers, with close correlations in various

aspects (36). Therefore, we included CC proteomic data in our

analysis. At the transcriptional level of CC, EGFR (Figure 6A),

HSP90AA1 (Figure 6B), and SRC (Figure 6D) expression levels

were significantly different between normal and cancer tissues

(all p < 0.05). However, there was no significant difference

between normal and cancer tissues in MTOR (p = 0.493)

(Figure 6C). At the protein level, the expression levels of EGFR

(Figure 6E, Supplementary Figures 3A–F), HSP90AA1 (Figure 6F,

Supplementary Figures 3G–L), and mTOR (Figure 6G) were

significantly different between normal and cancer tissues (all p <

0.05). There was no significant difference between normal and

cancer tissues in SRC (p = 0.344) (Figure 6H). The expression

levels of EGFR (Figure 6I), HSP90AA1 (Figure 6J), and SRC
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(Figure 6L) at the transcriptional level of RC were significantly

different between normal and cancer tissues (all p < 0.05).

However, there was no significant difference between normal

and cancer tissues in MTOR (p = 0.599) (Figure 6K).

Furthermore, the RNA expression of SRC was positively

correlated with the protein expression (r = 0.67, p < 0.001)

(Figure 6P), and the RNA expression of HSP90AA1 was

positively correlated with the protein expression, and the

statistical significance approached significant (r = 0.35, p = 0.06)

(Figure 6N). Nevertheless, there was no significant correlations

between RNA and protein level in EGFR (Figure 6M) and MTOR

(Figure 6O).

In terms of prognosis, at the transcriptional level of RC, the

high expression group of EGFR (Figure 7A) and SRC

(Figure 7D) had a significantly better prognosis than the low

expression group (all p < 0.05). The patients with high

HSP90AA1 expression seem to have a better prognosis than

those with low HSP90AA1 expression, this difference

approached statistical significance (p = 0.051) (Figure 7B). In

contrast to the above results, the high expression group of

MTOR had a significantly poor prognosis than the low

expression group (p = 0.001) (Figure 7C). However, there was
B

C

D

E

F

G

A

FIGURE 4

Evaluation of the specific role of therapeutic relevant genes in the TCGA cohort. (A) Kaplan-Meier curves showed the overall survival difference
between high and low nTCPS groups (p < 0.001). (B) The GSVA analysis between high and low nTCPS groups. Red and blue represented relative
enrichment degree of activated and inhibited pathways, respectively. (C, D) There were no significant differences in TMB (p = 0.9) (C) and MATH
(p = 0.75) (D) between high and low nTCPS groups. (E) PCA scatter plot showed that two groups of patients can be separated by the PCA
clustering analysis. (F) Kaplan-Meier curves showed the overall survival difference between high and low TMB groups (p = 0.009). (G) The
stratified prognostic analysis showed that the synergistic effect of the TMB and nTCPS on the prognosis (p = 0.003).
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no significant difference in prognosis between the high and low

expression groups of these four genes at the protein level (all p >

0.05) (Figures 7E–7H). The lack of positive results could be

attributed to the small sample size. The prognosis of the high

expression group of EGFR (Figure 7I), HSP90AA1 (Figure 7J),

and mTOR (Figure 7K) at the protein level of CC was

significantly better than that of the low expression group (all

p < 0.05). However, there were no significant difference in

survival between high and low SRC expression group (p =

0.16) (Figure 7L).

Altogether, the genes with significant differences in multi-

omics and multiple aspects were EGFR and HSP90AA1.

Therefore, they were identified as the key predictive genes

related to prognosis and the sensitivity of nCT. DisNor

database (32) revealed the EGFR and HSP90AA1 up and

downstream binding sites and their causal interaction

(Figure 8). The up-regulated binding sites of EGFR included

PI3K, PI3K3R1, TGFA, SHC1, and SHC3. In contrast, LRIG1
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and ERRFI1 were the EGFR down-regulated binding sites.

AHSA1 and PTGES3 were the up-regulated, while STIP1 and

FNIP1 were the down-regulated binding sites of HSP90AA1,

respectively. These findings are critical for understanding the

mechanisms and signaling pathways of the key genes involved in

drug resistance and identifying potential therapeutic targets.
Discussion

Researchers and clinicians extensively investigate locally

advanced RC (LARC) because of its high morbidity and distant

metastasis rate (37). Researchers have proposed a new treatment,

nCT, to improve the prognosis of such patients. CAO/ARO/AIO-

94, CAO/ARO/AIO-04, MRC CR07, and NCIC-CTG C016 all

confirmed that nCT could significantly improve the surgical

resection rate of LACR, decrease the local recurrence rate, and

reduce the occurrence of adverse reactions (38–40). However,
B

C D

A

FIGURE 5

Combining with TCGA cohort to further identify the genes associated with chemosensitivity. (A) The chromosomal locations of 15 overlapped
genes and CNV alterations. (B, C) The KEGG (B) and GO (C) enrichment analysis of 15 overlapped genes showed that they are significantly
enriched in many energy metabolism pathways and classic cancer-related signaling pathways. (D) The Venn diagram showed the gene sets
screened from different analyses.
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numerous studies have found significant differences in patients’

ability to respond to nCT. Approximately 50% of patients had a

PR, 8–20% achieved pathological CR, and about 20%

demonstrated resistance to nCT (41–45).

The response heterogeneity to nCT has resulted in

overtreatment, increased cytotoxicity, or economic pressure

and may even result in disease progression due to delayed

radical surgery. Finding high-performance markers to

distinguish which patients can benefit from nCT is thus an

important means of promoting the standardization of LACR

treatment. Recent studies have identified potential markers, such

as DNA mutation, DNA methylation, circulating tumor cells,

tumor immune microenvironment, and microRNA (46).

However, these markers cannot be widely used due to

sensitivity and specificity issues. Therefore, presently there is a

need to identify new markers. We identified markers in blood

samples that could predict patients’ response to nCT and proved

that these markers could be used at DNA, transcription and

protein levels. This multi-omics-validated marker has high

reliability and stability, convenient sampling, and is not
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constrained by detection technology. They are highly reliable

biomarkers that need further thorough investigations.

At the DNA level, we identified not only the genes associated

with nCT response rates but also that CNV, CNI score, and TMB

were potential markers, whereas SNP and MATH were not.

These findings implied that CNV, CNI, and TMB can be used to

predict the patient’s ability to respond to nCT (4, 47, 48). In this

study, CNI score was used to assess the extent of CIN. Although

CIN is ubiquitous in human cancers, its role in tumor evolution

is complex and contradictory (49). On the one hand, CIN and

complex aneuploidy are associated with resistance to anticancer

drugs, such as paclitaxel, in tumor-derived cell lines and clinical

settings (50, 51). Conversely, high CIN levels indicate enhanced

sensitivity to cytotoxic therapies such as 5-fluorouracil and

cisplatin in rectal (52), breast (53) and ovarian cancers (51).

Induction of whole chromosome missegregation makes

transplanted glioblastoma tumor sensitive to radiotherapy

(54). In our analysis, the CNI value was significantly higher in

the better group than in the poor group (p = 0.0014), which was

consistent with previous research. This drastically different effect
B C D
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FIGURE 6

Analysis of the expression and correlation of key genes at the protein and transcript levels (A–D) The transcriptional expression of EGFR (A),
HSP90AA1 (B), MTOR (C) and SRC (D) in normal and CC tissues. (E–H) The protein level of EGFR (E), HSP90AA1 (F), MTOR (G) and SRC (H) in
normal and CC tissues. (I–L) The transcriptional expression of EGFR (I), HSP90AA1 (J), MTOR (K) and SRC (L) in normal and RC tissues. (M–P)
The correlation analyses between RNA expression and protein level of EGFR (M), HSP90AA1 (N), MTOR (O) and SRC (P) in RC patients.
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stems from the complex phenotypes conferred by CIN on cancer

cells and the tumor microenvironment (49). CIN can serve as a

genomic source of innate immune activation. For example,

chromosome segregation errors can directly lead to the

activation of immune signaling pathways (55). In addition,

CIN can also act as a trigger of tumor immune editing.
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Chromosomal segregation errors caused by CIN at the early

stages of tumorigenesis activate the cGAS-STING pathway,

which functions as an innate cellular defense against viral

infection (56).

We then perform further analysis at transcript and protein

levels. We confirmed that EGFR and HSP90AA1 were the genes

with significant differences in multi-omics and multiple aspects.

SRC and mTOR did not have this relationship and only differed

in a single omics. This demonstrated that EGFR and HSP90AA1

are multi-omics-validated markers that can predict patient

response to nCT and require further investigation.

HSP90AA1 is a stress-inducible member of the HSP90

family. It can regulate the tumor-promoting process of many

proto-oncogenes, including c-Myc, and is also associated with

the malignant tumor phenotype, tumor growth, proliferation,

invasion, and chemotherapy resistance (57–59). However, no

studies have suggested that HSP90AA1 can be used as a

prognostic or predictive marker for nCT. The present study is

the first to describe the potential of this molecule as a predictive

marker for nCT, which requires further research. EGFR is an

important member of the erbB family that significantly regulate

cell proliferation, differentiation, division, survival, and

cancer development.
B C D
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FIGURE 7

Kaplan–Meier survival analysis in different expression groups of key genes at the protein and transcript levels. (A–D) At transcriptional level of
RC, Kaplan-Meier curves showed the overall survival difference between high and expression group of EGFR (p = 0.018) (A), HSP90AA1 (p =
0.051) (B), MTOR (p = 0.001) (C) and SRC (p = 0.032) (D). (E–H) At protein level of RC, Kaplan-Meier curves showed the overall survival
difference between high and low expression group of EGFR (p = 0.118) (E), HSP90AA1 (p = 0.256) (F), MTOR (p = 0.530) (G) and SRC (p = 0.540)
(H).
(I–L) At protein level of CC, Kaplan-Meier curves showed the overall survival difference between high and expression group of EGFR (p = 0.011)
(I), HSP90AA1 (p = 0.029) (J), MTOR (p = 0.011) (K) and SRC (p = 0.160) (L).
FIGURE 8

The up- and downstream binding sites and causal interaction of
the key genes’ analysis in DisNor.
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Therefore, EGFR is an important target for targeted therapy

(60). Recent studies established that EGFR can be used as a

prognostic and predictive molecular marker for nCT in various

cancers (61–63). A study about RC demonstrated that

circulating EGFR could be used as a potential biomarker for

predicting pCR (61). These findings are consistent with our

results, which indicated that EGFR could be used as an

important target and a sensitive marker to guide RC

treatment. SRC and SRC-family protein kinases are proto-

oncogenes involved in cell morphology, motility, proliferation,

and survival (64). SRC has recently been associated with the

prognosis and recurrence of various tumors (65–67). Our

findings demonstrated that SRC is not only associated with

tumor prognosis but can be used to predict the patient’s ability

to respond to nCT. mTOR is a serine/threonine kinase

regulating various cellular metabolic processes such as protein

synthesis and inactivation. mTOR can activate somatic

mutations during tumorigenesis, making it an important

therapeutic target (68). Some studies have illustrated that

components of mTOR-related pathways can be used to predict

tumor response to nCT (69, 70). Zhu et al. described in RC that

GOLPH3 could predict patient sensitivity to nCT, which plays

an important role in mTOR-related pathways (69). However,

these studies have not directly demonstrated that mTOR could

predict patient sensitivity to nCT. It is worth noting that the

present study shows this for the first time.

To pave the way for future studies, we conducted a survival

analysis. We described that the above markers could be used as

prognostic markers for nCT in CRC, confirming the significance

of these markers. We also investigated the signaling pathways of

the above markers and found that they can function in multiple

signaling pathways. EGFR was enriched in CRC, EGFR tyrosine

kinase inhibitor resistance, the FoxO signaling pathway, the

Oxytocin signaling pathway, the JAK-STAT signaling pathway,

the Pl3K-Akt signaling pathway, and hedgehog signaling

pathway. These pathways are of significant value in the

occurrence and development of tumors, cancer stem cells,

immune response, drug sensitivity, and drug resistance (71–

75). Therefore, in-depth research on the markers mentioned

above will help explain tumor pathogenesis further and improve

patients’ prognosis.

However, several limitations remain as follows: Due to the

small sample size of proteomic sequencing for RC in TCGA and

some missing expression data of individual proteins, fewer

analysis can be done and reliable prognostic analysis could not

be performed. So, we only use proteomic data to further screen

and validate the key genes.

In conclusion, the biomarkers we identified in multi-omics

analysis were associated with sensitivity of nCT and prognosis.

They require further prospective investigation and are expected

to promote nCT standardization and personalization.
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SUPPLEMENTARY FIGURE 1

Correlation analysis in the expression of therapeutic relevant genes with
sensitivity of chemotherapy drugs. (A) The increased expression of genes

with CNV relatively gained in the poor group was associated with
decreased sensitivity to multiple chemotherapeutic drugs, including

AURKA and BRAF. (B) In the better group, increased expression of genes
with CNV relatively gained was associated with increased sensitivity to

multiple chemotherapeutic drugs, including EGFR, SRC, and HSP90AA1.
SUPPLEMENTARY FIGURE 2

The changes of RNA expression of the 8 genes identified from the Venn

diagram at different CNV levels, including HSP90AA1 (A), MDM4 (B),
MTOR (C), SRC (D), ARID1A (E), AURKA (F), BRAF (G) and EGFR (H).

SUPPLEMENTARY FIGURE 3

Immunohistochemical staining for the key genes EGFR and HSP90AA1in

normal tissues, READ tissues and COAD tissues. (Image credit: Human
Protein Atlas, images available from v20.1.proteinatlas.org).
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