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and drug response: A pan-
cancer perspective
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Xiaoting Sun1,2, Qi Li1,2 and Yan Wang1,2*

1Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese
Medicine, Shanghai, China, 2Academy of Integrative Medicine, Shanghai University of Traditional
Chinese Medicine, Shanghai, China
Introduction: Dysregulation of the Hippo signaling pathway has been

implicated in multiple pathologies, including cancer, and YAP1 is the major

effector of the pathway. In this study, we assessed the role of YAP1 in

prognostic value, immunomodulation, and drug response from a pan-cancer

perspective.

Methods: We compared YAP1 expression between normal and cancerous

tissues and among different pathologic stages survival analysis and gene set

enrichment analysis were performed. Additionally, we performed correlation

analyses of YAP1 expression with RNA modification-related gene expression,

tumor mutation burden (TMB), microsatellite instability (MSI), immune

checkpoint regulator expression, and infiltration of immune cells.

Correlations between YAP1 expression and IC50s (half-maximal inhibitory

concentrations) of drugs in the CellMiner database were calculated.

Results: We found that YAP1 was aberrantly expressed in various cancer types

and regulated by its DNA methylation and post-transcriptional modifications,

particularly m6A methylation. High expression of YAP1 was associated with

poor survival outcomes in ACC, BLCA, LGG, LUAD, and PAAD. YAP1 expression

was negatively correlated with the infiltration of CD8+ T lymphocytes, CD4+

Th1 cells, T follicular helper cells, NKT cells, and activated NK cells, and

positively correlated with the infiltration of myeloid-derived suppressor cells

(MDSCs) and cancer-associated fibroblasts (CAFs) in pan-cancer. Higher YAP1

expression showed upregulation of TGF-b signaling, Hedgehog signaling, and

KRAS signaling. IC50s of FDA-approved chemotherapeutic drugs capable of

inhibiting DNA synthesis, including teniposide, dacarbazine, and doxorubicin,

as well as inhibitors of hypoxia-inducible factor, MCL-1, ribonucleotide

reductase, and FASN in clinical trials were negatively correlated with YAP1

expression.

Discussion: In conclusion, YAP1 is aberrantly expressed in various cancer types

and regulated by its DNA methylation and post-transcriptional modifications.

High expression of YAP1 is associated with poor survival outcomes in certain

cancer types . YAP1 may promote tumor progress ion through
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immunosuppression, particularly by suppressing the infiltration of CD8+ T

lymphocytes, CD4+ Th1 cells, T follicular helper cells, NKT cells, and

activated NK cells, as well as recruiting MDSCs and CAFs in pan-cancer. The

tumor-promoting activity of YAP1 is attributed to the activation of TGF-b,
Hedgehog, and KRAS signaling pathways. AZD2858 and varlitinib might be

effective in cancer patients with high YAP1 expression.
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Introduction

The Hippo signaling pathway is an evolutionarily conserved

pathway with a biological role in cell fate determination, organ

size control, and tissue regeneration in most tissues and organs

(1–4). Dysregulation of this pathway has been implicated in a

variety of pathologies and has received extensive attention over

the past two decades (5). In cancer research, the activated Hippo

pathway is considered a tumor suppressor pathway due to its role

in inhibiting cell proliferation and promoting apoptosis (6–8).

Growth factors, glucose, hypoxia, cell polarity, and

mechanical cues from cell–cell or cell–extracellular matrix

attachment regulate the Hippo pathway (9). The core

components of the Hippo pathway in mammals consist of a

kinase cascade, MST1/2 and LATS1/2, and the main effector

YAP1/TAZ, a transcriptional coactivator without DNA-binding

domains. The major binding partners of YAP1/TAZ are

TEAD1–4. Other transcriptional factors, including AP1,

PITX2, ZEB1, MYC, E2F, and SMADs, have also been

reported to cooperate with the YAP1/TAZ–TEAD complex

(10–15). In addition, RUNX2, TP73, and FOXO1 also directly

bind to YAP1/TAZ (16). YAP1 overexpression has been reported

to be oncogenic in bile duct, breast, colon, lung, and liver cancers

(17–23). Inhibition of the Hippo pathway or overexpression of

YAP1may lead to the nuclear translocation of YAP1, which then

binds to transcription factors to promote the expression of

tumor-promoting genes. Of note, YAP1 also functions as a

tumor corepressor to repress the expression of downstream

genes, including the cell-cycle kinase inhibitor p27, by

recruiting the NuRD (nucleosome remodeling deacetylase)

complex, YY1, or EZH2, a polycomb repressive complex

member (24, 25). Thus, the role of transcriptional cofactor or

transcriptional corepressor of YAP1 is largely context-

dependent. Therefore, better defining the role of YAP1 in each

cancer type will be a key challenge for future studies about target

identification and cancer therapy. We investigated the potential
02
role of YAP1 in survival predication from a pan-

cancer perspective.

Tumor-infiltrating immune cells are a major component of

the ecosystem in tumor microenvironment (TME) and regulate

tumor progression (26). Recently, the Hippo signaling pathway

is emerging as an important pathway to affect immune function

in cancer (27). YAP1 has been reported to affect the activity of B

cells, Tregs, macrophages, and myeloid-derived suppressor cells

(MDSCs) in several cancer types (28). However, the role of YAP1

in different cancer types and its mechanisms in immune

regulation remain to be investigated. In this study, we

analyzed the correlation between YAP1 expression and

infiltration of various immune cells in 33 cancer types.

Strategies to inhibit YAP1 activity include the following (1):

Disrupting the YAP1–TEAD binding or blocking the

transcriptional activity of the YAP1–TEAD complex. Carbonic

anhydrase 3 (CA3) and verteporfin act by disrupting the YAP1–

TEAD binding (29–31). The TDU domain of vestigial like family

member 4 (VGLL4), a natural antagonist of YAP1, competes

with YAP1 to bind TEADs (32). Narciclasine and peptide17

competes with TEAD4 for binding to YAP1 (33, 34). In addition,

K-975, a TEAD inhibitor, inhibits YAP1/TAZ–TEAD

interaction (35) (2). Targeting downstream targets of YAP1/

TAZ (BCL-xL, FOXM1, and TG2). A37, celecoxib, TP-0903,

cyclic peptide RA-V (deoxybouvardin), navitoclax, thiostrepton,

and NC-9 fall into this category (36–43). Of these drugs, only

verteporfin has been approved by Food and Drug

Administration (FDA). However, YAP1 may act in a TEAD-

independent manner (44). The efficacy and selectivity of other

drugs are not satisfactory. New drugs are needed to inhibit YAP1

activity. In this study, we calculated the correlation between

YAP1 expression and IC50s of drugs with FDA approval or in

clinical trials, which is a simple way to roughly assess the

drug sensitivity.

In this study, we analyzed YAP1 expression in 33 cancer

types to reveal its role in predicating prognosis, modulating
frontiersin.org
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TME, and drug response to chemotherapeutic and targeted

drugs that were FDA-approved or are in clinical trials.
Methods and materials

Data collection

Transcriptional RNA-sequence data [cohort: TCGA Pan-

Cancer (PANCAN), batch effects normalized mRNA data],

genome-wide DNA methylation levels (DNA Methylation

450K), and clinical characteristics (curated clinical data) of

samples related to 33 cancer types were downloaded from

UCSC Xena (https://xenabrowser.net/datapages/), which is

derived from TCGA resources (45).
Survival analysis

Survival information, including overall survival (OS),

progression-free interval (PFI), disease-free interval (DFI), and

disease-specific survival (DSS), was also downloaded from the

UCSC Xena database. The Kaplan–Meier model and univariate

Cox regression were then used to assess the prognostic value of

YAP1. Bivariate YAP1 expression levels were used to perform

Kaplan–Meier curves analysis using the optimal cut point from

the survminer R package (0.4.9) and survival R package (version

3.3.1). p-values of the Kaplan–Meier method and hazard ratio

(HR) with a 95% confidence interval (95% CI) were calculated

for each cancer type and presented as forest plots using the

forestplot R package (version 2.0.1).
Infiltration of immune cells

The proportions of 22 immune cell types and immune scores

of all samples of 33 cancer types were downloaded from the

supplementary data of the published paper (46). Infiltration of

immune cells was performed with the CIBERSORT program, a

method that uses gene expression profiles of complex tissues to

calculate cell composition (47). The Xcell, TIMER, EPIC,

quanTIseq, and MCP-counter programs were also used.

TIMER provides the coefficients of six immune infiltrating

cells indicating the relative abundance of immune cells (48).

The EPIC program estimates the proportions of immune and

cancer cells by separating the reference gene expression profiles

of major non-malignant cell types (49). The ESTIMATE

program was performed to infer tumor purity and immune

cell admixture (immune score) from expression data (50).

Pearson correlation coefficients between YAP1 expression and

infiltration of immune cells or immune score were calculated
Frontiers in Immunology 03
using the ggpubr R package (version 0.4.0), and scatter plots

were visualized using ggplot2 (version 3.3.6).
Gene set enrichment analysis

For each cancer type, samples with YAP1 expression above

the median level were grouped as high YAP1 expression, and the

others were grouped as low YAP1 expression to compare the

difference in their hallmark gene sets. Fifty hallmark gene sets

were downloaded from the Molecular Signatures Database

(MSigDB, https://www.gsea-msigdb.org/gsea/index.jsp), and

gene set enrichment analysis (GSEA) was performed using

GSEA software (version 4.2.3). One thousand times was set as

the number of permutations and phenotypes was set as

permutation type. Normalized enrichment score (NES) and

nominal p value for each biological process were calculated for

each cancer type. Hallmark gene sets with nominal p value < 0.05

were presented as a bubble plot using the ggplot2 R package.
Correlation of YAP1 expression with
tumor mutation burden and
microsatellite instability

Tumor mutation burden (TMB) andmicrosatellite instability

(MSI) levels for each sample in pan-cancer were downloaded

from the supplementary data of the published paper (46).

Pearson correlation coefficients between YAP1 expression and

TMB or MSI levels for each cancer type were calculated using

ggpubr R package and displayed as radar charts using fmsb R

package (version 0.7.3).
Azoxymethane/dextran sulfate sodium-
induced colorectal cancer model and
immunohistochemical staining of YAP1

CRC was induced in C57BL/6J mice by azoxymethane

(AOM)/dextran sulfate sodium (DSS) as previously described

(51). Colon sections of each mouse were collected for IHC

staining and YAP1 was stained as previously described (51).
Assessment of drug sensitivity

IC50s (half-maximal inhibitory concentrations) of drugs and

gene expression of cancer cell lines were downloaded from the

CellMiner database (https://discover.nci.nih.gov/cellminer/

home.do). Only drugs with FDA approval or in clinical trials

were included in further analyses. Pearson correlation
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coefficients between YAP1 expression and the IC50 z score of

each drug were calculated using the ggpubr R package and

represented as bubble plots or scatter plots using the ggplot2

R package.
Cell viability assay

Cells were seeded at a density of 1 × 104 cells/well in 96-well

plates. When cells reached 60% confluence, drugs were added

into the wells and incubated for 24 h or 48 h. Medium

containing 10% Cell Counting Kit-8 (CCK-8) reagent

(Dojindo, Japan) was then added into the cells and incubated

for another 1.5 h at 37°C. The light absorbance was measured at

450 nm on the microplate reader (Bio-Rad, USA). Each group

was performed in sextuplicate. Verteporfin, AZD-2858 were

purchased from TargetMol, USA, and varlitinib was purchased

from MCE, USA
Western blot assay

Cellular proteins were extracted with protein extraction

reagent (Beyotime Biotechnology) and quantified by BCA

protein assay (Beyotime Biotechnology). A total of 12 mg of

protein per sample was added to SDS-PAGE gels for

electrophoresis (100 V, 2 h), followed by constant flow

membrane transfer (ice bath, 210 mA, 2 h). The transferred

polyvinylidene fluoride (PVDF) membranes were blocked with

5% BSA-containing Tris-buffered saline with Tween (TBST) for

2 h at room temperature, and incubated with primary antibodies

overnight at 4°C. Then, membranes were washed three times

with TBST and incubated with secondary antibody at room

temperature for 2 h. Membranes were examined with a gel

imager (ECL, Millipore, USA). Antibodies of Vimentin, E-

Cadherin, smad2, ERK, p-ERK, CREB, and GAPDH were

purchased from Cell Signaling Technology (CST); YAP1, p-

YAP1, and PD-L1 were purchased from Proteintech. All primary

antibodies were used at 1:1,000 dilution. Secondary antibodies

were purchased from Beyotime Biotechnology (1:2,000 dilution).
Reverse transcription-quantitative
polymerase chain reaction

Primers were designed using the Primer-Blast tool at NCBI

(https://www.ncbi.nlm.nih.gov/tools/primer-blast/) and

synthesized by Sangon Biological Engineering Co., Ltd.

(Shanghai, China). The sequences of the primers are listed in

Supplementary Table S1. Total cellular RNA was extracted with

RNA Trizol (Beyotime Biotechnology). Reverse transcription of

RNA was performed using HiScript III RT SuperMix (Vazyme).

The SYBR qPCR Mix (Vazyme) was used in a 10-µl reaction
Frontiers in Immunology 04
mixture that included 1 µl of cDNA template, 0.4 µl of each 0.5

µM primer, 3.6 µl of ddH2O, and 5 µl of 2× SYBR buffer. The

reaction was performed with 1 cycle of 30 s at 95°C and 50 cycles

of 10 s at 95°C, 30 s at 60°C, and 15 s at 60°C. Actin was used as

the reference mRNA. The qPCR reaction was performed

in triplicate.
Statistical analysis

Differences in YAP1 mRNA expression between normal and

cancer tissues or between the two pathological stages of each

cancer type were tested by Wilcox test. The differences in the

proportions of the four pathological stages between groups with

high or low YAP1 expression were compared by chi-squared test.

Differences in OS, PFI, DFI, and DSS between those two

subgroups were compared using the Kaplan–Meier method

and log-rank rest. The HRs were calculated by univariate Cox

regression. All p values were two-sided, and p < 0.05 was

considered statistically significant.
Results

YAP1 is aberrantly expressed in various
cancer tissues

We compared YAP1 mRNA expression between normal and

primary cancer tissues in 23 cancer types. For the other 10 cancer

types, RNA-sequence data from paired normal tissues were not

available. YAP1 was differently expressed in 14 of the 23 cancer

types with statistical significance. Among them, YAP1 expression

was upregulated in cholangiocarcinoma (CHOL), colon

adenocarcinoma (COAD), and thyroid carcinoma (THCA), and

was downregulated in bladder urothelial carcinoma (BLCA),

breast invasive carcinoma (BRCA), head and neck squamous

cell carcinoma (HNSC), kidney chromophobe (KICH), kidney

renal clear cell carcinoma (KIRC), kidney renal papillary cell

carcinoma (KIRP), lung adenocarcinoma (LUAD), lung

squamous cell carcinoma (LUSC), pheochromocytoma and

paraganglioma (PCPG), prostate adenocarcinoma (PRAD), and

uterine corpus endometrial carcinoma (UCEC) (Figure 1A). IHC

staining also identified that YAP1was upregulated in colon cancer

tissues versus normal colonic mucosa tissues (52). YAP1 has been

reported to be upregulated in CHOL and THCA (17, 18). YAP1

does not contain DNA-binding sequences; thus, the binding

partners are important for its function. YAP1 binds to TEADs

to facilitate the expression of tumor-promoting genes, and YAP1

may switch to bind to TP73 to promote apoptosis of cancer cells

(19). Therefore, we also analyzed the expression of TEADs and

TP73 in pan-cancer. Consistent with YAP1 expression, TEAD2

was upregulated not only in CHOL, COAD, and THCA, but also

in BRCA, HNSC, liver hepatocellular carcinoma (LIHC), LUAD,
frontiersin.org
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LUSC, and UCEC (Figure 1B). Expression of TEAD1/2/4 is shown

in Supplementary Figure S1. TP73 was also upregulated in most

cancer types, including CHOL, COAD, and THCA (Figure 1C).

Xia et al. reported that high levels of YAP1 expression were
Frontiers in Immunology 05
positively correlated with TEAD4 gene expression, and their co-

expression was a prognostic marker for poor ovarian cancer

survival (53). High expressions of YAP1 and TEADs and their

target genes were associated with low OS in patients with non-
A

B

C

FIGURE 1

Transcriptional level of YAP1, TEAD2, and TP53 in normal and cancer tissues according to RNA-sequence data from TCGA. ****p < 0.0001, ***p
< 0.001, **p < 0.01, *p < 0.05, and ns p > 0.05.
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metastatic human gastric carcinomas (54). Strano et al. reported

that physical interaction with YAP1 protein enhanced

transcriptional activity of TP73 (55). High expression of YAP1,

TEAD4, and TP73 was significantly associated with high grade,

advanced stage, supraglottic location of tumors, nodal metastases,

and recurrence of human laryngeal cancer. In addition, high

expression of all proteins was significantly associated with poor

overall and disease-free survival (56). The tumor-promoting or

tumor-suppressing role of the YAP1–TP73 complex, as well as the

binding preference mechanism of YAP1 remains to be revealed.
YAP1 expression correlates with its DNA
methylation and RNA modification

To seek the potential regulation of YAP1 expression by DNA

methylation and post-transcriptional RNA modifications, we

performed correlation analyses. DNA methylation levels of eight

CpG sites in the 5’UTR of YAP1 were included. In general, YAP1
Frontiers in Immunology 06
expression was negatively correlated with its DNA methylation

level in most cancer types, suggesting that DNA demethylation

in the 5’UTR of YAP1 may promote its expression (Figure 2A).

RNA modifications play pivotal roles in RNA stability and

translation efficiency. We found that a wide range of RNA

modification-related genes were positively correlated with

YAP1 expression. Genes responsible for reading, writing, and

erasing the modifications on m1A, m5C, and m6A were broadly

associated with YAP1 expression in all cancer types, particularly

in lymphoid neoplasm diffuse large B-cell lymphoma (DLBC),

rectum adenocarcinoma (READ), skin cutaneous melanoma

(SKCM), uveal melanoma (UVM), and testicular germ cell

tumors (TGCT) (Figure 2B). Among the 37 regulators, RNA

m6A methylation readers and writers, including ZC3H13,

LRPPPRC, YTHDC2, YTHDF3, and KIAA1429, were positively

correlated with YAP1 expression in more than 20 of the 33

cancer types with statistical significance, suggesting the potential

role of RNA m6A methylation in facilitating YAP1

mRNA stability.
A

B

FIGURE 2

YAP1 expression correlates with its DNA methylation and RNA modification. (A) Pearson correlation between YAP1 expression and its DNA
methylation in 33 cancer types. (B) Pearson correlation between YAP1 expression and RNA modification regulators. *p < 0.05.
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Clinical prognostic value of YAP1 in pan-cancer
To assess the role of YAP1 in predicating clinical outcomes

of patients in 33 cancer types, we analyzed OS, DSS, DFI, and

PFI using the Kaplan–Meier method (log-rank test) and

univariate Cox regression. High YAP1 expression was a risk

factor for the OS in seven cancer types, PFI in eight cancer types,

DFI in six cancer types, and DSS in eight cancer types. In

general, high YAP1 expression was risky in adrenocortical

carcinoma (ACC), BLCA, COAD, brain lower grade glioma

(LGG), LUAD, and pancreatic adenocarcinoma (PAAD), but it

is a protective factor in esophageal carcinoma (ESCA), KIRC,

PRAD, and mesothelioma (MESO) (Figures 3A, B). Of note,

high YAP1 expression was a risk factor for all four prognostic

survival indicators of ACC and BLCA (Figure 2A). Therefore,

the role of YAP1 is largely context-dependent. In ACC, COAD,

and TGCT, YAP1 expression was higher in the late pathologic
Frontiers in Immunology 07
stage (AJCC pathologic stages III and IV) than that in the early

stage (AJCC pathologic stages I and II) (Figure 3C). In BLCA,

PAAD, and TGCT, a higher frequency of patients with more

severe stages was observed in patients with higher YAP1

expression compared with those with lower YAP1 expression

(Figure 3D). Those results demonstrate that YAP1may promote

cancer progression in ACC, COAD, PAAD, and TGCT. Among

them, the tumor-promoting role of YAP1 in COAD and PAAD

has been determined experimentally (57, 58).
YAP1 induces immunosuppressive TME

TME contains tumor cells, immune cells, and stromal cells,

which play pivotal roles in cancer initiation, progression, and

drug response. We analyzed the correlation between YAP1
A

B

DC

FIGURE 3

Prognostic value of YAP1 expression in pan-cancer. (A) Survival outcomes of cancer patients with high or low YAP1 expression. Bold lines: p <
0.05. (B) Survival curves of PFI in ACC, BLCA, COAD, and PAAD. (C)YAP1 expression between patients with the early or late pathologic stages of
cancer. (D) Distribution of pathologic stages in BLCA, PAAD, and TGCT. ***p < 0.001, **p < 0.01, and *p < 0.05.
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expression and infiltration of 19 cell types in tumor tissues using

CIBERSORT, Xcell, TIMER, EPIC, quanTIseq, and MCP-

counter programs. We found that YAP1 expression was

associated with infiltration of cells in both innate and adaptive

immune system in pan-cancer. In general, YAP1 expression was

negatively correlated with the infiltration of CD8+ T cells, T

follicular helper cells, gd T cells, activated natural killer (NK) T

cells, CD4+ Th1 cells, and myeloid dendritic cells in most cancer

types, but positively correlated with the infiltration of MDSCs,

cancer-associated fibroblasts (CAFs), and neutrophil cells

(Figure 4A). These results were consistent using different tools,

except for the filtration of CD8+ T cells calculated by TIMER

and other programs. EPIC and TIMER programs showed an

opposite correlation between YAP1 expression and infiltration of

CD4+ T cells in a few cancer types. The correlation of YAP1

expression with infiltration of regulatory T cells (Tregs), plasma

B cells, NK cells, and macrophage was contradictory when using

different programs (Figure 4A). Thus, experiments are needed to

confirm the results. Notably, CD8+ T cells are a key subset of

MHC class I-restricted T cells and are one of the major

mediators of adaptive immunity. High expression of YAP1

may inhibit the infiltration of CD8+ T cells in 21 of the 33

cancer types (BLCA, BRCA, COAD, HNSC, KIRC, KIRP, LGG,

LIHC, LUAD, LUSC, OV, MESO, PCPG, PRAD, SARC, SKCM,

TGCT, THCA, THYM, UCEC, and UCS), indicating its

immunosuppressive role in TME (Figure 4B). Immune score

predicts the level of infiltrating immune cells. YAP1 expression

was negatively with the immune score in 12 cancer types

(HNSC, KIRC, KIRP, LIHC, MESO, OV, SARC, SKCM,

TGCT, THCA, THYM, and UCEC). However, it was

positively correlated with the immune score in BRCA, DLBC,

GBM, LGG, PAAD, PCPG and PRAD (Figure 4C). IL-6, CSF-1,

CSF-2, CSF-3, and CXCL5, which are capable of recruiting

MDSCs, were downregulated in CRC cells when YAP1 was

inhibited by verteporfin (Figure 8C).
Correlations between YAP1 and immune
checkpoints, TMB, and MSI

Immune checkpoints are regulators of the immune system.

They consist of a group of programmed death receptors and

their ligands expressed on immune cells. Tumor cells can evade

immune destruction by upregulating immune checkpoints (59).

Therefore, we performed the Pearson correlation analyses to

reveal the relationship between YAP1 expression and 46

immune checkpoint regulators. We found that YAP1

expression was positively correlated with most immune

checkpoint genes and immune cell marker genes in all 33

cancer types. CTLA-4, TIM-3 (HAVCR2), and PD-1 (PDCD1)

are key checkpoint regulators that suppress immune response.

They all positively correlated with YAP1 expression in LGG,
Frontiers in Immunology 08
PAAD, and PRAD, but negatively correlated with YAP1

expression in MESO, SARC, TGCT, and UCEC (Figure 5A).

We confirmed that YAP1 inhibitor verteporfin greatly reduced

PD-L1 expression in CRC cell lines (Figure 8B). In most cancer

types, CD274 (PD-L1), NRP1, and TNFSF15 were positively

correlated with YAP1 expression. In PAAD, PRAD and PCPG,

YAP1 expression was highly correlated with the expression of

most immune checkpoint genes, suggesting that YAP1 may help

cancer cells to evade immune destruction (Figure 5A). TMB

refers to the total number of mutations per million bases (60). It

is considered a promising biomarker of immune response, as

tumors with high mutations are associated with high tumor neo-

antigen burden, making them immunogenic, and therefore

being more responsive to immunotherapy (61–64). MSI is a

condition of genetic susceptibility to mutation due to impaired

DNA mismatch repair (65). It is also used as a major predictive

marker for the efficacy of immune checkpoint blockade therapies

(66). We found that YAP1 expression was positively correlated

with TMB in TGCT and was negatively correlated in PCPG,

KIRP, and COAD (Figure 5B). In addition, YAP1 expression was

positively correlated with MSI in GBM, HNSC, and TGCT and

was negatively correlated with MSI in DLBC, PRAD, THCA, and

UCS (Figure 5C). Our results suggest that YAP1may predict the

efficacy of immune checkpoint inhibitors in TGCT, GBM,

and HNSC.
YAP1-associated cancer hallmarks

Hallmark gene sets summarize and represent specific well-

defined biological states or processes and display coherent

expression. We subdivided patients into two groups for each

cancer type based on YAP1 expression above or below the

median level, and analyzed the differences in 50 hallmark gene

sets across 33 cancer types. More than 23 hallmarks were

aberrantly upregulated in LAML, LGG, and PCPG patients

with high YAP1 expression versus those with low YAP1

expression. Various hallmark gene sets were upregulated in

pan-cancer. TGF-b signaling pathway was upregulated in 23

cancer types, mitotic spindle process in 16 cancer types,

Hedgehog signaling pathway in 15 cancer types, KRAS

signaling in 8 cancer types, epithelial mesenchymal transition

(EMT) in 10 cancer types, and angiogenesis in 7 cancer types,

indicating that YAP1 is involved in promoting cell proliferation,

cancer cell stemness, invasiveness, and migration processes

(Figure 6). We then confirmed these results on CRC cell lines

(Lovo and SW620). As expected, YAP1 was upregulated in

AOM/DSS-induced colitis-associated cancer in C57BL/6J mice

(Figure 8A). The YAP1 inhibitor verteporfin significantly

reduced their cell viability (Figure 8B). Verteporfin also

reduced expression of p-ERK (KRAS signaling pathway) and

smad2 (TGF-b signaling pathway), and downregulated Wnt
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target genes AXIN2, BIRC5, CCND1, and CD44 (Figures 8C, D).

In addition, upregulation of E-cadherin (epithelial maker) and

downregulation of vimentin (mesenchymal marker) were

observed in verteporfin treatment, suggesting a role of YAP1

in promoting EMT (Figure 8D). Of note, those results were

based on enrolled cancerous samples. The hallmark difference

between samples with higher and lower YAP1 expression is less

than that between the samples with or without YAP1 function.

Thus, the YAP1-associated hallmarks included but were not

limited to those mentioned above
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Potential drugs for YAP1

We further screened potential drugs that may be effective in

cancer patients with high YAP1 expression. We downloaded the

z scores of IC50s of 24,360 drugs in 60 cancer cell lines. Only 218

FDA-approved drugs and 574 drugs in clinical trials were

included for correlation analysis. Of the 218 FDA-approved

drugs, chemotherapeutic agents that inhibit DNA synthesis

(teniposide, dacarbazine, doxorubicin, triethylenemelamine,

nitrogen mustard, etoposide, and thiotepa) topped the list,
A B

C

FIGURE 4

Correlation of YAP1 expression with immune cell infiltration. (A) Pearson correlation between YAP1 expression and infiltration of 22 immune cell
types using different programs. Positive correlation is in red and negative correlation is in blue. *p < 0.05. (B) Pearson correlation between YAP1
expression and infiltration of CD8+ T cells in pan-cancer. Only statistically significant cancer types were shown. (C) Pearson correlation
between YAP1 expression and immune score. Only statistically significant cancer types were shown. Tfh, T follicular helper cells. Treg, regulatory
T cells; NKT, natural killer T cells; NK, natural killer cells; CAF, cancer-associated fibroblast; MDSC, myeloid-derived suppressor cell; Endo,
endothelial cell; Eos, eosinophil; HSC, hematopoietic stem cell. gd T cells, gamma-delta T cells.
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which might be effective in treating cancer patients with high

YAP1 expression. Interestingly, an antipsychotic medication,

fluphenazine, may also have an effect. Inhibitors of hypoxia-

inducible factor (IDF-11774), MCL-1 (S63845, AZD-5991,

pyridoclax, and S-64315), ribonucleotide reductase (imexon),

FASN (JNJ-54302833), WNT signaling (CCT251545), STAT/

STAT3 (CPD-401), and CHK (rabusertib) were among the top

10 drugs in clinical trial that may work in patients with high

YAP1 expression, whereas inhibitors of EGFR (TAS6417),

Bruton ’s agammaglobulinemia tyrosine kinase (BTK)

(spebrutinib), SYK (entospletinib), RET (Blu667), VEGFR2

(ENMD-2076, P-529), and avb3 integrin (MK-0429,

cilengitide) may not work (Figure 7). We then treated Lovo

and SW620 cell lines with AZD2858 and varlitinib alone or in

combination with verteporfin. These results showed that the

inhibitory rate of combined treatment versus verteporfin is

smaller than that of AZD2858 or varlitinib alone versus
Frontiers in Immunology 10
control, indicating that the role of AZD2858 and varlitinib in

cytotoxicity was partially dependent on YAP1 activity

(Figure 8E). In addition, the combination of varlitinib and

verteporfin was more effective than either single agent. KRAS

is an effector molecule responsible for signal transduction from

ligand-bound EGFR to the nucleus. Varlitinib is a targeted drug

against EGFR. Dual inhibition of EGFR and YAP1 obtained

better therapeutic outcomes, suggesting that the KRAS pathway

was involved in YAP1 activity, as we analyzed in silico (Figure 6).
Discussion

YAP1 is a transcriptional co-activator and a major effector of

the Hippo signaling pathway. Emerging work indicates that

YAP1 is widely activated in human malignancies and is

essential for cancer initiation, progression, and drug resistance
A

B C

FIGURE 5

Correlation between expression of YAP1 and immune checkpoints, TMB, and MSI. (A) Heat map of correlation between YAP1 expression and 46
immune checkpoint regulators. *p < 0.05. (B, C) Correlation between YAP1 expression, TMB, and MSI. ***p < 0.001, **p < 0.01, and *p < 0.05.
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in most solid tumors. High expression of YAP1 has been

reported to promote the excessive cell proliferation in multiple

tissues, including liver, gastrointestinal tissue, skin, and heart

(67–70). TEAD-dependent YAP1 function has also been linked

to invasive and metastatic behavior of tumor cells (71).

Compelling evidence also showed that YAP1 can alter the

TME by recruiting immunosuppressive cell types, suppressing

cytotoxic T-cell function or promoting the polarization of

tumor-associated macrophages towards the pro-tumor M2

phenotype (72–74). In this study, we analyzed YAP1

expression in pan-cancer and evaluated its role in prognostic

value, immunomodulation, and drug response.

According to the TCGA database, YAP1 expression was

elevated in CHOL, COAD, and THCA, but decreased in 11 of

the 23 cancer types, namely, BLCA, BRCA, HNSC, KICH, KIRC,

KIRP, LUAD, LUSC, PCPG, PRAD, and UCEC (Figure 1).

However, YAP1 has been reported to be oncogenic in BLCA

(75, 76), BRCA (77), HNSC (78), KICH (79), KIRC (80), KIRP

(81), LUAD (82), LUSC (83), PRAD (84), and UCEC (85).

PCPG is a rare adrenal tumor. The role of YAP1 in PCPG

remains to be investigated. The downregulation of YAP1 in those

caners might be due to case number limitation, and in addition

to YAP1 expression level, YAP1 activity also depends on its

cellular location. High YAP1 expression is a risk factor for

survival outcomes in ACC, BLCA, LGG, LUAD, PAAD, and

COAD (Figure 3). Moreover, in ACC, BLCA, COAD, and
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TGCT, YAP1 was associated with more severe pathologic

stages (Figure 3). Among them, the prognostic value of YAP1

on BLCA (84), LUAD (86), PAAD (87) and COAD (88) has

been reported.

According to our result, high expression of YAP1 predicted

poor survival outcomes in patients with LUAD, COAD, and

PAAD, and was associated with more severe pathologic stages in

patients with COAD, PAAD, and TGCT (Figure 3). PAAD has

been reported to be characterized by immunosuppressive TME.

In this study, YAP1 in PAAD was positively correlated with a

wide range of immune checkpoint regulators. YAP1 expression

was positively correlated with levels of TMB and MSI in TGCT.

In addition, important immune cells, including activated CD4+

memory T cells and T follicular helper cells, were positively

correlated with YAP1 expression in LUAD. Therefore, we would

like to discuss in more detail the role of YAP1 in these

cancer types.

Elevated expression of the gene signature for YAP1/TAZ

activity is associated with poor prognosis in patients with non-

small-cell lung cancer (NSCLC) (89, 90), which is consistent

with the results of LUAD in our study (Figure 3). Our GSEA

results suggested that high YAP1 expression was associated with

reduced activities of DNA repair processes (Figure 6), and

defective DNA repair contributes to individual susceptibility to

lung cancer development (91). We also showed that TGF-b
signaling was upregulated in LUAD with high YAP1 expression
FIGURE 6

GSEA of hallmarks in cancer patients with high YAP1 expression versus those with low YAP1 expression. Only statistically significant hallmarks (p < 0.05)
were shown.
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(Figure 6). TGF-b is the most potent inducer of EMT in NSCLC

and is pivotal to the development of tumor-promoting

microenvironment in the lung cancer tissues (92). In our

findings, YAP1 may inhibit infiltration of CD8+ T cells, CD4+

Th1 cells, T follicular helper cells, and NKT cells, but increase

infiltration of CAFs, which promote the development of LUAD.

Zhang et al. have reported that YAP1 activation was not

sufficient to trigger NSCLC formation, but promoted its

progression to higher grades (89, 93). The role of YAP1 in

immune cell infiltration in LUAD will be further experimentally

confirmed in our future studies.

High level of YAP activity has been found to be prognostic

for poor outcome in four datasets of CRC patients (94). In our

study, YAP1 expression was associated with severe pathologic

stage and poor survival outcome in COAD (Figure 3). YAP1/

TAZ is required for the formation and growth of intestinal

tumors (95). Among the enriched hallmarks, higher YAP1

expression was associated with upregulated Wnt b-catenin
signaling, TGF-b signaling via NFKB, and Hedgehog signaling

(Figure 6). Overactivation of the Wnt signaling pathway is the

most oncogenic pathway in CRC. In addition, b-catenin-driven
cancers require the YAP1 transcriptional complex for

tumorigenesis (96), suggesting the network between the two
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signaling pathways. Barry et al. reported that forced YAP1

overexpression in the gut epithelium was not sufficient to form

tumor (95). The lack of Wnt signaling pathway might be the

reason. In COAD, YAP1 expression was positively correlated

with the infiltration of MDSCs and CAFs, and was negatively

correlated with the infiltration of CD8+ T cells, CD4+ Th1 cells,

activated NK cells, and NKT cells (Figure 4). Mechanically,

YAP1 promotes MDSC induction by inhibiting PTEN

expression, resulting in upregulation of COX-2, p-AKT, and p-

p65 in CRC-derived cells, which leads to secretion of the

cytokine granulocyte-macrophage colony-stimulating factor

(97). YAP1-dependent matrix remodeling is required for the

generation and maintenance of CAFs (98). Mechanisms of YAP1

in recruiting CAFs and suppressing CD4+ Th1 cells, T follicular

helper cells, activated NK cells, and NKT cells are yet to

be unraveled.

PAAD is a very aggressive neoplasia that seems to arise from

pancreatic exocrine cells. Pancreas-specific YAP1 knockout

halted tumor progression (99). Activation of YAP1 in acinar

cells upregulated JAK-STAT3 signaling and promoted the

development of pancreatic cancer (100). In this study, YAP1

expression was higher in PAAD patients with more severe

pathological stages (Figure 3). Mechanically, YAP1 and the
A B

FIGURE 7

Potential drugs for YAP1. (A) Correlation of YAP1 expression with and IC50 z score of FDA-approved drugs (top 25). (B) Correlation of YAP1
expression and IC50 of drugs in clinical trial.
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ZEB1 complex activates ITGA3 to promote its metastasis

(101). PAAD is characterized by immunosuppressive TME. In

our results, YAP1 expression was positively correlated with

MDSC infiltration and negatively correlated with NKT

cells. Mielgo et al. reported that YAP1 recruited MDSCs to

suppress T-cell function and generate an immunosuppressive

microenvironment (102). The mechanism remains to

be clarified.

Testicular cancer is a very common malignancy in young

men. Although testicular cancer has a high cure rate, patients

have a high long-term risk of secondary malignant tumors. Ji

et al. have reported that different immune status in TME may be

responsible for the different survival outcomes of TGCT patients

(103) . Moreover , YAP1 inh ib i t ion enhanced the

chemosensitivity of cisplatin in TGCT (104). Studies about the

YAP1 in immunomodulation in TGCT remain absent.

In this study, from a pan-cancer perspective, high expression

of YAP1 was associated with upregulation of TGF-b signaling,

KRAS signaling, Hedgehog signaling, EMT, and androgen

response in most cancer types (Figure 6). There was a close

interplay between YAP1 and TGF-b signaling. YAP1 activation

promoted TGF-b expression, which was involved in the

biological processes of endothelial-to-mesenchymal transition

(EMT) and fibrosis (105–107) in the liver, lung, and kidney.

Their interactions in other organ tissues need to be investigated.

We confirmed that YAP1 was able to upregulate smad2 in TGF-

b signaling in CRC cell lines (Figure 8). KRAS and YAP1

converged on the transcription factor FOS and activated a

transcriptional program involved in regulating EMT (108).

However, another study found limited overlap of gene

expression between KRAS G12V and YAP1 S127A-driven

tumors (109). The interplay between YAP1 and KRAS

signaling remains largely unknown. In this study, YAP1

inhibitor reduced the KRAS pathway activity in CRC

(Figure 8). Hedgehog signaling activation could upregulate

YAP1 expression and induce osteosarcoma development (110),

or aid in generation of liver (111). The cooperation between

Hedgehog and YAP1 signaling in tumor formation and

progression remains to be uncovered. YAP1 mRNA was

upregulated in androgen-insensitive prostate cancer cells (112),

but the mechanism of their interaction is largely unknown.

Furthermore, in our findings, the YAP1 inhibitor did reduce

EMT markers in CRC.

Emerging evidence demonstrated the role of YAP1 in

modulating TME. In this study, we found that YAP1 may

suppress the infiltration of CD8+ T lymphocytes, gd T cells, T

follicular helper cells, NKT cells, and activated NK cells.

Moreover, YAP1 may recruit the CAFs and MDSCs to tumor

site to suppress the immune response. Among them, the

relationship between YAP1 and infiltration of CD8+ T

lymphocytes, MDSCs, and CAFs has been reported in several

cancer types. However, the mechanisms are incomplete. The role
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of YAP1 in the infiltration and activities of T follicular helper

cells, NKT cells, and activated NK cells remains to be

investigated. Stampouloglou et al. reported that YAP1

overexpression in T cells reduced their activation,

differentiation, and function, which translated in vivo into an

impairment of T-cell infiltration and tumor repression (113).

Another study confirmed that YAP1 attenuated CD8+ T cell-

mediated anti-tumor response (114). Mechanically, YAP1

overexpression in cancer cells could upregulate PD-L1

expression and impede the activities of CD8+ T cells in

melanoma (115). Another mechanism is that YAP1/TEAD

directly upregulates CXCL5 in cancer cells to recruit CXCR2-

expressing MDSCs, leading to decreased infiltration of CD8+ T

cells (74). In addition, IL-6 and CSF1-3 induced by YAP1 in

PAAD stimulated the accumulation of MDSCs (116), and

upregulation of COX2 by YAP1 in human granulosa cells

promoted the recruitment of MDSCs (117). The role of YAP1

in CD8+ T cells and MDSCs in other cancer types remains to be

unraveled. In this study, we confirmed the results by

experiments on CRC cells and found that the YAP1 inhibitor

verteporfin decreased the expression of PD-L1, CXCL5, COX-2,

IL-6, and CSF1-3 (Figure 8). Mechanotransduction-mediated

YAP1 activation establishes a feed-forward self-reinforcing loop

that contributes to maintenance of the CAF phenotype and

promotes breast cancer invasion (98). Mechanistically, active

YAP1 promotes the expression of ANLN and DIAPH3 and

stabilizes actomyosin proteins, which is required for the

generation and maintenance of CAFs (98). Another

mechanism is that high expression of YAP1 in the tumor

stromal cells converts normal fibroblasts into CAFs in the

TME of prostate cancer (118). The function of YAP1 in CAFs

of other cancer types remains largely unknown. In this study,

high expression of YAP1 was associated with TGF-b signaling in

pan-cancer. TGF-b-associated extracellular matrix genes link

CAFs to immune evasion and immunotherapy failure (57).

Therefore, YAP1 may be involved in the function of CAF

through TGF-b signaling. We found that YAP1 inhibitor

verteporfin reduced smad2 expression in CRC cell lines,

suggesting a downregulation of TGF-b signaling (Figure 8).

The role of YAP1 in the infiltration and activity of T follicular

helper cells, NKT cells, and activated NK cells remains to be

investigated. Another interesting result in this study is that YAP1

expression was negatively correlated with infiltration of CD8+ T

cells, but positively correlated with infiltration of resting CD4+

memory T cells in most cancer types. This might not be due to

the direct relationship between these two cells. YAP1 expression

was also negatively correlated with infiltration of activated CD4+

memory T cells, suggesting that YAP1may impede the activation

of memory CD4+ T cells. CD4+ T cells are required for survival

of CD8+ T cells during both primary and memory recall

responses (119). Therefore, the possible relationship is that

YAP1 may impair the activation of memory CD4+ T cells, and
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impede the survival of CD8 T cells. Further experimental studies

on CD4+ T cells will be conducted in the near future to verify the

role of YAP1 in memory CD4+ T-cell activation.

Further analyses showed that YAP1 expression was

positively correlated to a wide range of immune checkpoints,

especially in PAAD, PCPG, and PRAD, suggesting that YAP1 is

a potential new drug target for anti-cancer immunotherapy in

these cancer types. In PAAD, PRAD, and LGG, YAP1

expression was positively correlated with the expression of

CTLA-4, TIM-3 (HAVCR2), and PD-1 (PDCD1), which are key

checkpoint regulators that suppress immune reaction. In most

cancer types, CD274 (PD-L1), NRP1, and TNFSF15 were

positively correlated with YAP1 expression. YAP1 has been

reported to induce PD-L1 expression (115). Apart from PD-L1,

YAP1 might also regulate the expression of other immune

checkpoints. The relationship between these immune

checkpoints and YAP1 and the role of their interactions in

TME regulation remain to be investigated. These checkpoint

r egu l a to r s may p l ay key ro l e s in YAP1 - induced

immunosuppressive TME. In PAAD, PRAD, and PCPG,

YAP1 expression was highly correlated with the expression of

most immune checkpoint genes in our result. Among them,
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PAAD has been reported to be characterized by the

immunosuppressive microenvironment, suggesting a role for

YAP1 in PAAD development (102).

Methylation of DNA cytosine bases leads to the

inaccessibility of DNA regulatory elements to their

transcription factors through a number of mechanisms,

leading to the gene transcription shutdown. We found that

YAP1 expression was negatively regulated by its DNA

methylation in the 5’UTR. Cellular RNAs are naturally

decorated with a variety of chemical modifications, which

affect the mRNA stability and translation. In our study,

extensive modification “effectors,” including enzymes of

“writers” and “erasers” that alter the modification level and

binding proteins of “readers” that recognize the chemical marks,

were positively correlated with YAP1 mRNA level. Further

research should be conducted to study whether aberrant DNA

methylation and RNA modifications of YAP1 are involved in

cancer development and how they work.

FDA-approved chemotherapeutic drugs that are capable of

inhibiting DNA synthesis, including teniposide, dacarbazine,

doxorubicin, and triethylenemelamine, and inhibitors of

hypoxia-inducible factor, MCL-1, ribonucleotide reductase,
A E

B D
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FIGURE 8

Experiments to confirm the activities of YAP1. (A) IHC staining of YAP1 in normal colon tissue and AOM/DSS-induced colitis-associated CRC in
C57BL/6J mice. (B) Effect of YAP1 inhibitor verteporfin (VP) on the viability of CRC cells (24 h). (C) Regulation of YAP1 inhibitor on Wnt target
genes and chemokines that recruit MDSCs’ infiltration in LoVo cell line. (D) YAP1 is involved in KRAS and TGF-b signaling pathways as well as
EMT processes in Lovo cell line. (E) Effect of AZD2858 and varlitinib in combination with YAP1 inhibitor on the viability of CRC cells. d: versus
control group, f versus verteporfin group. VP: 1 mM; AZD2858: 1 mM; varlitinib: 5 mM. ns (no significance), *p < 0.05, **p < 0.01, and ***p <
0.001.
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and FASN in clinical trials are potential drugs to treat cancer

patients with high YAP1 expression. Among them, the

cytotoxicity effect of AZD2858 and varlitinib was partially

attributed to YAP1 activity.
Conclusion

YAP1 was aberrantly expressed in various cancer types and

regulated by its DNA methylation and post-transcriptional

modifications. High expression of YAP1 was associated with

poor survival outcomes in ACC, BLCA, LGG, LUAD, and

PAAD. YAP1 may promote tumor progression through

immunosuppression, particularly by suppressing the

infiltration of CD8+ T lymphocytes, CD4+ Th1 cells, T

follicular helper cells, NKT cells, and activated NK cells, as

well as recruiting MDSCs and CAFs in pan-cancer. The YAP1-

promoting tumor activity is probably attributed to the activation

of TGF-b, Hedgehog, or KRAS signaling pathways. AZD2858

and varlitinib in clinical trials might be effective in cancer

patients with high YAP1 expression.
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Glossary

ACC adrenocortical carcinoma

BLCA bladder urothelial carcinoma

BRCA breast invasive carcinoma

CESC cervical squamous cell carcinoma and endocervical adenocarcinoma

CHOL cholangiocarcinoma

CI confidence interval

CNTL controls

COAD colon adenocarcinoma

DFI disease-free interval

DLBC lymphoid neoplasm diffuse large B-cell lymphoma

DSS disease-specific survival

ESCA esophageal carcinoma

GBM glioblastoma multiforme

GSEA gene set enrichment analysis

HNSC head and neck squamous cell carcinoma

HR hazard ratio

IC50 half-maximal inhibitory concentration

KICH kidney chromophobe

KIRC kidney renal clear cell carcinoma

KIRP kidney renal papillary cell carcinoma

LAML acute myeloid leukemia

LCML chronic myelogenous leukemia

LGG brain lower-grade glioma

LIHC liver hepatocellular carcinoma

LUAD lung adenocarcinoma

LUSC lung squamous cell carcinoma

MDSC myeloid-derived suppressor cells

MESO mesothelioma

MISC miscellaneous

MSI microsatellite instability

NES normalized enrichment score

NK natural killer

OS overall survival

OV ovarian serous cystadenocarcinoma

PAAD pancreatic adenocarcinoma

PCPG pheochromocytoma and paraganglioma

PFI progression-free interval

PRAD prostate adenocarcinoma

PVDF polyvinylidene fluoride

READ rectum adenocarcinoma

SARC sarcoma

SKCM skin cutaneous melanoma

STAD stomach adenocarcinoma

TBST Tris-buffered saline with Tween

TGCA The Cancer Genome Atlas

TGCT testicular germ cell tumor

THCA thyroid carcinoma

THYM thymoma

(Continued)
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TMB tumor gene mutation burden

UCEC uterine corpus endometrial carcinoma

UCS uterine carcinosarcoma

UVM uveal melanoma
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