
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Catherine Sautes-Fridman,
INSERM U1138 Centre de Recherche des
Cordeliers (CRC), France

REVIEWED BY

Sizun Jiang,
Center for Virology and Vaccine Research,
Harvard Medical School, United States
Bokai Zhu,
Stanford University, Country United States
in collaboration with reviewer SJ
Archita Mishra,
University of Western Australia, Australia

*CORRESPONDENCE

Henri-Alexandre Michaud

henri-alexandre.michaud@inserm.fr

†These authors share first authorship

‡These authors share senior authorship

SPECIALTY SECTION

This article was submitted to
Cancer Immunity
and Immunotherapy,
a section of the journal
Frontiers in Immunology

RECEIVED 04 August 2022

ACCEPTED 28 December 2022
PUBLISHED 19 January 2023

CITATION
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A 31-plex panel for high-
dimensional single-cell analysis
of murine preclinical models of
solid tumors by imaging
mass cytometry
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Currently, the study of resistance mechanisms and disease progression in cancer

relies on the capacity to analyze tumors as a complex ecosystem of healthy and

malignant cells. Therefore, one of the current challenges is to decipher the intra-

tumor heterogeneity and especially the spatial distribution and interactions of the

different cellular actors within the tumor. Preclinical mousemodels are widely used

to extend our understanding of the tumor microenvironment (TME). Such models

are becoming more sophisticated and allow investigating questions that cannot be

addressed in clinical studies. Indeed, besides studying the tumor cell interactions

within their environment, mouse models allow evaluating the efficacy of new

drugs and delivery approaches, treatment posology, and toxicity. Spatially resolved

analyses of the intra-tumor heterogeneity require global approaches to identify

and localize a large number of different cell types. For this purpose, imaging mass

cytometry (IMC) is a major asset in the field of human immuno-oncology.

However, the paucity of validated IMC panels to study TME in pre-clinical mouse

models remains a critical obstacle to translational or basic research in oncology.

Here, we validated a panel of 31 markers for studying at the single-cell level the

TME and the immune landscape for discovering/characterizing cells with complex

phenotypes and the interactions shaping the tumor ecosystem in mouse models.

KEYWORDS

Imaging mass cytometry, preclinical mouse model, tumor microenvironment, immune
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Introduction

Cancer progression and response to treatment are modulated by

complex intrinsic and extrinsic biological mechanisms. The tumor

microenvironment (TME) is composed of malignant and non-

malignant cells that constantly interact forming a complex network.

This ecosystem changes over time and space, shaping the tumor

architecture and heterogeneity. Importantly, it has been established

that the tumor cell composition dramatically affects the treatment

response. In this context, the immune contexture of solid tumors has

been extensively studied, especially since the development of

immunotherapies against immune checkpoints. It has been

suggested that the immune cell localization and functional states

may predict the treatment response. For instance, the immunoscore,

based on the density of CD3+ and CD8+ T cells in the tumor and its

invasive margins, can reliably predict the recurrence risk in patients

with colorectal cancer (1, 2). The spatial distribution of B cells and

their network of interactions also are considered predictive markers.

Depending on their localization and interactions, B cells display

opposite role. When dispersed, B cells progressively acquire

regulatory functions and are associated with poor prognosis.

Conversely, when they are organized in tertiary lymphoid

structures, their abundance is associated with anti-tumor functions

and predicts good outcome to blockade of the programmed cell

death-1 (PD-1) receptor and its ligand PD-L1 (3–6).This

emphasizes the TME complexity and the need to better characterize

cell interactions within the tumor.

Mouse preclinical models are widely used to extend our

understanding of the TME. Such models have become more and

more sophisticated, from mice grafted with tumor cells to organ

specific-induced tumors or genetically engineered models (7–9). As

the immune system physiology is similar in mice and humans,

preclinical mouse models can be used to decipher the complex

relationships between cancer cells and immune cells and to

extrapolate findings to humans (10, 11). For instance, mouse

models led to many key discoveries in cancer treatment, including

the immune checkpoint-based immunotherapies (12–14). P.S. Hedge

and D.S. Chen identified the development and use of preclinical

models as a major challenge in cancer immunotherapy to translate

basic research findings to the clinic and also clinical findings back to

preclinical models to better characterize the tumor biology (15).

Besides studying the tumor cell interactions with their

environment, mouse models allow assessing the efficacy of new

drugs and delivery approaches, treatment posology and toxicity,

and their impact on the TME, which cannot be done using human

samples (16).

Single-cell high dimensional imaging mass cytometry (IMC) has

been developed to investigate the tumor cell architecture and

interactions. IMC combines immunohistochemistry and mass

cytometry and can simultaneously detect ~40 single markers in situ.

Tissue sections are labeled with metal-tagged antibodies. Then,

selected regions of interest (ROI) are ablated with a UV laser

(resolution of 1μm2) and the metal tags are detected by time-of-

flight mass spectrometry. This allows overcoming the limitations

frequently observed with fluorescent tags, particularly spectral

overlapping and auto-fluorescence. Cell segmentation from

multiplexed images is used to generate a single-cell file (.fcs or.csv)
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in which the mean expression of each marker in each cell and its

spatial coordinates (X and Y) on the slide are associated.

Several studies have highlighted IMC value for cancer research.

Indeed, IMC has allowed better describing the TME cell heterogeneity

and networks, discovering novel phenotypes, and precisely

characterizing the treatment response in patients (17). Although

many antibodies have been validated for high-plex imaging of

human tissue samples, none or very few antibodies have been

evaluated for IMC analysis of formalin-fixed paraffin-embedded

(FFPE) mouse tissue samples. In this work, we validated an original

panel of 31 antibodies for the IMC analysis of different FFPE mouse

samples, including lymphoid organs and tumor models (e.g.

melanoma and intestinal tumors). As previously reported for

human and non-primate antibody panels (18–21), this panel allows

characterizing the TME architecture and the immune contexture. We

also demonstrated that this antibody panel and dedicated analyses can

be used to identify cells with complex or atypical phenotypes, to

localize them, and to deduce their network within the TME.
Results

Antibody validation and complex tissue
architecture visualization

We selected the 31 markers to identify immune and non-immune

cells and their different functional states (Table 1). As the IMC

workflow includes a single staining step, we needed to confirm that

the same antigen retrieval method was compatible with all 31

antibodies. Therefore, we assessed whether the antigen retrieval step

commonly used for conventional immunofluorescence worked with

all antibodies in the relevant tissues (Sup Figure 1). After validation of

the antigen retrieval step, we conjugated all 31 antibodies with metal

isotopes and tested them by IMC using a tissue microarray (TMA)

representative of eight mouse normal tissues (Sup Figure 2). The

tested panel included markers to identify macrophages (CD11b,

CD68, and IBA-1), dendritic cells (CD11c), plasmacytoid cells

(CD11c, B220), granulocytes (MPO), other myeloid cells (CD11b),

B cells (CD19, B220), CD4+ and CD8+ T cells (CD3, CD4, and CD8),

and natural killer (NK) cells (NCR-1). It also included functional

markers to better define the immune cell infiltrate: M1/M2

macrophage balance (CD80), cytotoxicity (granzyme-B), T helper

type 2 (Th2) cells (GATA-3), regulatory T cells (FOXP3), T helper

type 17 (Th17) cells (RORgt), activation/antigen presentation (MHC-

II), apoptosis (cleaved caspase-3), proliferation (Ki-67), residency

(CD103), and activation/exhaustion (CD39). To study the non-

immune compartment, the panel included phenotypic markers of

smooth muscle cells (aSMA), lymphatic vessels (LYVE-1), high

endothelial venules (PNAd), epithelial cells (pan-cytokeratin and E-

cadherin), fibroblasts (vimentin), endothelial cells (CD31), cell

adhesion (b-catenin), and extracellular matrix (pan-actin and

collagen-I).

Using IMC and the set of cell markers we could thoroughly

investigate the anatomical and cellular organization of lymph node

tissue (Figure 1). By analyzing the obtained multiplexed images, we

identified the typical lymph node areas, such as the B cell-rich cortical

area and the T cell-rich paracortical area (Figure 1A, ab). In the
frontiersin.org
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cortical area, two germinal centers were visible (Figure 1A, d) with

high density of B cells, a characteristic of secondary follicles. At the

periphery, we identified the capsule, characterized by the presence of

collagen-I (Figure 1A, c). We also detected high endothelial venules,

specialized blood vessels for lymphocyte recruitment in lymph nodes,

on the basis of the presence of PNAd-expressing endothelial cells

(CD31+) (Figure 1A, f). Between germinal centers, we identified a

cortical sinus (Figure 1A, e), characterized by the presence of small

blood vessels (CD31+), macrophages (CD68+), dendritic cells

(CD11c+) and other myeloid cells (CD11b+). Functional markers,

such as CD103 (integrin alpha-E beta-7) and the ectonucleotidase
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CD39, helped us to better define the lymph node area. Although

poorly described in the literature, we observed that CD103 expression

was spatially defined and associated with the T-cell area (CD4+,

CD8+). Similarly, and in accordance with our previous work, CD39

expression was localized in an area rich in myeloid cells (CD11b+)

that constitutively express this enzyme (Figure 1B) (22).

We also identified and localized cells that are poorly present in

lymph nodes, such as NK cells (NCR-1+) and neutrophils

(CD11b+MPO+) (Figure 1C, i and ii). The 1μm resolution allowed

visualizing contacts between immune cells. For instance, we identified

a proliferating (Ki-67+) CD8+ T cell in contact with a macrophage
TABLE 1 Antibody Panel.

Target Clone Supplier Metal Dilution Function

aSMA 1A4 SantaCruz 110Cd 1/1000 Smooth muscle cells

IBA1 EPR16588 Abcam 141Pr 1/500 Macrophages

CD19 6OMP31 Fluidigm 142Nd 1/800 B cells

Vimentin D21H3 Fluidigm 143Nd 1/1000 Fibroblasts

B220 RA3-6B2 Fluidigm 144Nd 1/800 B cells

NCR1 EPR23097-35 Abcam 145Nd 1/400 Natural killer cells

E-cadherin 24E10 Cell Signaling 146Nd 1/100 Epithelial cells

Granzyme B D2H2F Cell Signaling 147Sm 1/100 Cytotoxicity

Pan-Cytokeratin AE1/AE3 SantaCruz 148Nd 1/200 Epithelial cells

CD11b EPR1344 Fluidigm 149Sm 1/100 Myeloid cells

CD31 EPR17259 Abcam 151Eu 1/200 Endothelial cells

CD3 CD3-12 Abcam 152Sm 1/400 T cells

CD8a EPR21769 Abcam 153Eu 1/400 CD8+ T cells

CD11c D1V9Y Cell Signaling 154Sm 1/400 Dendritic cells

RORgt EPR20006 Abcam 155Gd 1/200 Th17 cells

CD80 Polyclonal Abcam 156Gd 1/400 M1/M2 balance

FOXP3 D6O8R Cell Signaling 158Gd 1/400 Regulatory T cells

CD68 polyclonal Proteintech 159Tb 1/1000 Macrophages

PNAd MECA-79 Biolegend/Ozyme 162Dy 1/1000 High Endothelial Venule

CD4 BLR167J Bethyl 163Dy 1/100 CD4+ T cells

MPO EPR20257 Abcam 164Dy 1/2000 Neutrophils

b-catenin D13A1 Fluidigm 165Ho 1/400 EMT

MHC-II REA813 Miltenyi 166Er 1/200 Antigen presentation

GATA-3 EPR16651 Abcam 167Er 1/400 Th2 cells

Ki-67 B56 Fluidigm 168Er 1/500 Proliferation

Collagen-I polyclonal Fluidigm 169Tm 1/500 Extracellular matrix

LYVE-1 polyclonal Abcam 171Er 1/100 Lymphatic vessels

Caspase-3 5AE1 Fluidigm 172Yb 1/200 Apoptosis

CD103 EPR22590-27 Abcam 174Yb 1/200 Residency

Pan-actin D18C11 Fluidigm 175Lu 1/200 Extracellular matrix

CD39 EPR20627 Abcam 176Yb 1/100 Immune Checkpoint

Iridium / Fluidigm 191/193Ir 1/400 Nucleus
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(CD68+) (Figure 1C, iii). The high-plex IMC capacity improved tissue

phenotyping accuracy. For instance, we could determine whether

CD4 was expressed by a T cell or a macrophage (Figure 1C, iv and v).

We also detected complex phenotypes (Figure 1C, v), such as a Th2

cell (CD3+CD4+GATA3+) in contact with several myeloid

cells (CD11b+).
Immune cell distribution in a preclinical
mouse model of melanoma

Next, we tested our antibody panel using tumor tissue samples

from C57Bl/6 mice grafted with the B16-K1 melanoma cell line (23,
Frontiers in Immunology 04
24). This preclinical model has been used to investigate the melanoma

immune contexture and the effects of immunotherapies (25). We

identified the tumor and peritumoral areas in FFPE tumor sections

stained with hematoxylin to detect the nucleus (Figure 2A). After

IMC, we could detect the different tissue components, such as large

vascular structures (CD31+) that were surrounded by collagen-I and a

tubular structure that was reminiscent of a lymphatic vessel full of B

(B220+) and T (CD3+) cells in the peritumoral area (Figure 3B).

Analysis of the immune contexture showed that T cells accumulated

at the tumor periphery and that very few T cells efficiently infiltrated

the tumor core. Ki-67 expression distribution highlighted an active

tumor nodule with many more Ki-67-expressing cells compared with

the peritumoral area (Figure 2B). After cell segmentation, we
A

B

C

FIGURE 1

Lymph node anatomy, cell composition, and cell localization revealed by IMC. (A) Multiplexed pseudo-colored images showing the lymph node
architecture: (a) cortex, (b) paracortex, (c) capsule, (d) germinal center, (e) cortical sinus, and (f) high endothelial venule. The white dashed line separates
the paracortex from the cortex. Upper zoom (red square): cell composition of the cortical sinus (e) assessed by CD11c, CD11b, CD31 and CD68 signal
analysis. Insets (orange square): high endothelial venule identified by PNAd, CD31, and aSMA expression. (B) Multiplexed pseudo-colored images
showing the CD103- and CD39-positive areas. Green and red dashed lines delimit the CD103- and CD39-positive areas, respectively. Lymphoid areas
are identified by B220, CD4, and CD8 expression. Myeloid areas are identified by CD11b, CD11c and CD68 expression. (C) Single-cell analysis and cell
interactions: (i) NK cell (NCR-1+), (ii) neutrophil (CD11b+MPO+), (iii) two proliferating CD8+ T cells (CD8+Ki-67+) and a macrophage (CD68+), (iv)
discrimination between CD4+ T cells (CD3+CD4+CD68-) and CD4+ macrophages (CD68+CD4+CD3-), and (v) a Th2 T cell (CD3+CD4+GATA-3+) in
contact with a myeloid cells (CD11b+).
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observed that about 41% of cells within the tumor were proliferating

(of which only 9% were T cells) (Figure 2C) and were homogenously

distributed in the tumor area. Conversely, Ki-67-negative cells

segregated at the periphery (Figure 2D). By calculating the distance

of each cell type from the tumor center, we objectively demonstrated

the exclusion of T and dendritic cells from the tumor core in this

tumor node (Figure 2E). Altogether, this showed that this antibody

panel can be used to comprehensively describe the main

compartments and specific cell phenotypes also in a mouse model

of a solid tumor. Furthermore, objective parameters could be

extracted from the single-cell data to support the descriptive

observation, for instance the T cell exclusion.
Comparative single-cell analysis of healthy,
lymphoid, and tumor tissue samples from
the intestine

We then analyzed and compared by IMC intestine tissue sections

from wild type (WT; healthy tissue) and ApcD14+ C57Bl/6 mice that

spontaneously develop intestinal tumors (26). The pan-cytokeratin
Frontiers in Immunology 05
(epithelial cells), aSMA (smooth muscle cells) and E-cadherin

(epithelial cells) markers allowed identifying the characteristic

intestine structures (Figure 3A). In WT intestine sections, we

identified a Peyer’s patch on the basis of the high density of B cells

(B220), among which some were proliferating (Ki-67+), and of T cells.

IMC resolution allowed detecting the muscularis mucosae (aSMA+),

proliferating epithelial cells in the crypts (E-cadherin+, Ki-67+), the

lamina propria and villi, and mucin-secreting goblet cells (E-

cadherin+) with a large nucleus that displayed apical polarized

cytokeratin expression. We could distinguish small intestine and

colon on the basis of the form and size of their villi (Figure 3A).

The pathologist identified two tumor areas in the ApcD14+ intestine

samples (Figure 3A). Overall, we could describe five distinct areas:

two tumor areas (tumor-1 and tumor-2) in the ApcD14 intestine

sections, the Peyer’s patch in WT intestine sections, and two

healthy areas, one in the WT (HWT) and one in the ApcD14+ (HApc)

sections (i.e. the whole tissue minus the Peyer’s patch or minus the

two tumors, respectively).

To fully exploit the generated data, we performed a cellular

segmentation of the two images that corresponded to the WT and

ApcD14+ intestine sections followed by unbiased cell clustering. Cell
A B

D

E

C

FIGURE 2

Cell distribution and tumor microenvironment characterization by IMC. (A) IHC staining with PAX-5 (brown) and hematoxylin (blue) of a region of interest
(ROI) in a B16-K1 melanoma cell graft tissue section. The black dashed lines delimitate the tumor (a) and the peritumoral (b) areas. (B) Pseudo-colored
image of the ROI. Overlaid signals of collagen I (extracellular matrix), B220 (B cells), CD3 (T cells), CD31 (endothelial cells), Ki-67 (proliferation) and DNA
(nucleus). The white lines delimit: (a) a lymphatic vessel, and (b) a tumor area from the tumor core to the periphery. The white dashed line demarcates
the main tumor area (c). (C) Proliferating cells and T cells identified by manual gating. (3). (D) Distribution of Ki-67-positive (red) and Ki-67-negative
(black) cells in the main tumor area, assessed as in (C). (E) (i) T-cell exclusion in the tumor core within the tumor area (2) in (B) confirmed by the CD11c
(dendritic cells), CD68 (macrophages), CD4 (CD4+ T cells) and CD8 (CD8+ T cells) signals. (ii) Distribution of dendritic cells, macrophages, CD4+ and
CD8+ T cells in the tumor. For each cell, its distance from the tumor core was calculated. The color scale indicates the distance from the core. The
dashed line represents the border between tumor core and periphery.
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clustering identified eleven cell clusters: B cells, CD4+ T cells, CD8+ T

cells, macrophages, dendritic cells, neutrophils, endothelial cells,

epithelial cells, smooth muscle cells, myofibroblasts, and fibroblasts

(Figure 3B). We then compared the frequency of the immune cell

types identified in each area. The mean percentages of immune cells
Frontiers in Immunology 06
were similar in the two healthy areas (HWT and HApc) and in the two

tumor areas (13% and 12%, respectively) (Figure 3C), but not their

composition. Indeed, the image analysis suggested a decrease of CD8+

T cells in the two tumor areas (Sup Figure 3). Single-cell analysis

confirmed that the proportion of CD8+ T cells was lower in the two
A

B D

E F

G

C

FIGURE 3

Single-cell analysis and validation. (A) Pseudo-colored images of gut sections from a WT and ApcD14+ mouse. The dashed white line separates small
intestine and colon. The areas of interest (the Peyer’s patch and two tumors) are delineated by yellow lines. The zoomed inset (middle panel) represents
a villus (a) with the lamina propria (b), goblet cells (c), crypts (d), and muscularis mucosae (e) in the WT small intestine. (B) Heatmap showing the z-score
of the expression of the indicated markers in the 11 cell clusters generated by Phenograph after cell segmentation of the WT and ApcD14+ images. UC:
unidentified cluster. (C) Immune cell frequencies in the two healthy zones HApc and HWT (black dots), and in the two tumors (red dots). Immune cells
were defined using the clusters identified in (B). The Peyer’s patch was excluded from the analysis. (D) Percentage of each immune cell cluster identified
in (B) among all immune cells present in two healthy area HApc and HWT (black dots) and the two tumors (red dots). (E) t-SNE representation of the
expression of functional markers in the CD4+ T-cell cluster identified in (B). Red arrows in the red square shows CD4+ T cells expressing multiple
functional markers. (F) Validation of the functional marker expression on cells identified in (E): i: CD4+FOXP3+GATA-3+, ii: CD4+FOXP3+GATA-3+Ki-67+.
iii: CD4+FOXP3+RORgt+ cells. For each cell phenotype, upper lines represent single marker expression and bottom lines show the single marker
expression combined with the segmentation mask. (G) (i) Manual gating identified CD3+CD4+FOXP3+Ki-67+ cells. (ii) Localization of the cells identified in
(G, i). The image corresponds to the segmentation mask of the Peyer’s patch and the red cluster corresponds to CD3+CD4+FOXP3+Ki-67+ cells. (iii)
Validation of the expression of FOXP3 and Ki-67 in the cells identified in (G, i) using the raw images.
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tumors than in the two healthy areas (23% versus 4%). We then found

that compared with the healthy tissues, the two tumor areas were

enriched in neutrophils (25% versus 53%), whereas the percentage of

macrophages was decreased (12% versus 4%) (Figure 3D). The

concordance between raw marker expression and analysis of the

post-segmentation data validated the segmentation process.

In the intestine, CD4+ T cell composition is particularly

heterogeneous, including FOXP3+ regulatory, Th2 and Th17 T cells

(27, 28). Therefore, we checked whether our antibody panel could

detect cells with complex phenotypes. To this aim, we used t-

distribution Stochastic Neighborhood Embedding (t-SNE) for

dimensionality reduction of the functional marker expression data

for the CD4+ cluster (Figure 3E). In the t-SNE plots, cells are

distributed according to their expression profile. In this way, we

could identify regulatory, Th2, and Th17 CD4+ T cells on the basis of

their FOXP3, GATA-3 and RORgt expression profile. Moreover, we

could discriminate between proliferating and resident CD4+ T cells on

the basis of granzyme-B, Ki-67 and CD103 expression, respectively

(Figure 3E). We also identified CD4+ T cells that expressed different

marker combinations: FOXP3 and GATA-3 (Figure 3E, i), FOXP3,

GATA-3 and Ki-67 (Figure 3E, ii), or RORgt and GATA-3 (Figure 3E,
iii). To validate these observations, we localized these cells on the

image and confirmed the expression of each marker (Figure 3F).

To assess whether we could detect also rare events, we looked for

CD3+CD4+FOXP3+Ki-67+ T cells. By manual gating, we identified

few cells that displayed this phenotype (i.e. 0.015% of all cells)

(Figure 3G, i). To validate this finding, we first localized these cells

and found that they were restricted to the Peyer’s patch (Figure 3G,

ii). We then confirmed the expression of both FOXP3 and Ki-67 in

CD4+ T cells (Figure 3G, iii).

Altogether, these results validated both the segmentation process

and the possibility to identify rare cells.

We then used principal component analysis (PCA) to determine

whether the cell cluster frequencies were different in the two tumors,

Peyer’s patch, and two healthy areas. PCA clustered the two tumors

together, far away from the two healthy areas. As expected, the Peyer’s

patch, mostly composed of immune cells, was separated from the

other two tissue types (Figure 4A). This suggests a structural

similarity of the two tumor areas and also of the two healthy areas,

as indicated also by the high-dimensional visualization of each area by

t-SNE (Figure 4B).

Multiplexed images also suggested different E-cadherin, b-catenin
and cytokeratin expression patterns in function of the epithelial cell

localization (Figure 4C). For instance, pan-cytokeratin expression

(green) was mainly in apical enterocytes, whereas b-catenin (blue)

expression was increased in the tumor areas. To investigate the

epithelial cell heterogeneity, we performed sub-clustering based on

the expression of E-cadherin, b-catenin and pan-cytokeratin, and

identified seven clusters of epithelial cells. As expected, in the normal

adjacent tissue, epithelial cell clusters were well organized and

associated with the crypts or the villi. Conversely, in the two tumor

areas, epithelial clusters were mixed, revealing an anarchic

proliferation, as illustrated for tumor-2 in Figure 4D.

The Hyperion Imaging System offers the opportunity to

reconstitute in situ the cell interaction network and to identify cell

communities. Therefore, we assessed whether the antibody panel

could identify specific structures based on cell-cell interactions. For
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this purpose, we evaluated the contacts between each cell cluster in

the WT and ApcD14+ samples. The cell networks were very similar in

the two ecosystems (healthy tissues and tumors); however, we

identified a pattern that mainly involved B-cell interactions in the

WT tissue sample (Figure 4E, left panels). As the Peyer’s patch is

particularly rich in B cells, we then split the WT sample into healthy

area (HWT; minus the Peyer’s patch) and Peyer’s patch and compared

their cluster interaction signatures. The results (Figure 4E, right

panels) indicated that the previously observed difference between

ApcD14+ and WT samples was explained by the presence of the Peyer’s

patch in the WT sample, and validated the possibility of studying cell-

cell interactions with our antibody panel.
Discussion

In the present work, we validated a 31-antibody panel suitable for

IMC analysis of FFPE mouse samples. We tested the antibody panel

using one lymph node sample and tumor samples isolated from the

B16-K1 and the ApcD14+ mouse models. We chose a lymph node to

validate a large series of antibodies against immune markers because

of their specific cell composition. Lymph nodes are the place where

the immune response initiates and their analysis is crucial to decipher

the immune mechanisms associated with a pathological state, such as

the development of the anti-tumor response. ApcD14+ mice that

develop spontaneous intestinal tumors allowed comparing tumor

and adjacent healthy tissues. The multiplexed images generated by

IMC allowed us to characterize the tissue architecture, to identify

small components (blood vessels, high endothelial venules, lymphoid

structures), and to describe their cell composition. In tumors from the

B16-K1 mouse melanoma model, IMC revealed that T cells segregate

at the periphery and macrophages infiltrate the tumor core, a typical

feature of immune-excluded tumors.

The cell segmentation brought additional information. This

crucial step has to be optimized to avoid artefacts. For instance,

aberrant phenotypes, such as CD3+CD19+ cells, may be detected due

to miss-assignment of signals coming from two strongly interacting

cells (29). To limit this issue, we tested different boundary

adjustments and used the frequency of B220+CD3+ cells as a

segmentation quality index (Sup Figure 4). In this report, we used

the post-segmentation data to validate our antibody panel by

detecting the expected complex phenotypes, such as proliferating

cells or regulatory T cells. On the other hand, we validated the single-

cell analysis by assessing the signal intensity in raw data. Single-cell

data allow transforming subjective observations into quantifiable

parameters, such as cell density or the distance between immune

cells and tumor core. Using the post-segmentation data, we identified

and localized cells with complex phenotypes, thus revealing the strong

CD4+ T cell heterogeneity. It is known that Th17 and Th2 CD4+ T

cells are present in the intestine. Unlike the Th1 and Th2 subsets that

are considered definitive, the Th17 and regulatory T-cell subsets do

not represent stably differentiated cells and retain some plasticity (30).

This may explain the detection of rare and transient phenotypes, such

as CD3+CD4+FOXP3+ cells that express GATA-3 or RORgt. We also

identified rare events, such as CD4+FOXP3+Ki-67+ T cells. In mice,

FOXP3 is expressed in regulatory T cells and in naive CD4+ T cells

stimulated through their TCR in the presence of TGF-b (31). The
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specific localization of this cell cluster in the Peyer’s patch suggests the

presence of newly activated CD4+ T cells rather than the presence of

regulatory T cells. Unsupervised approaches allow investigating the

heterogeneity in a cell population, a key question in oncology (32). In

ApcD14+ tumor tissue samples, clustering identified epithelial cell

clones with different epithelial marker expression profiles. Their

spatial distribution illustrated the loss of cell organization.

Investigating cell heterogeneity, by associating clustering and spatial

approaches, might help to determine the tumor cell origin and to

better understand the transformation steps. Tissue modeling

addresses interactions or avoidances between cell clusters. This

approach has been used in many cancer studies (29). Here, we
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could specifically identify the Peyer’s patch thanks to the many

significant interactions of B cells with other cell types.

Beside IMC, other technologies based on sequential staining offer

the possibility of multiplexed imaging, for instance PhenoCycler

(previously known as CODEX) (33) and MACSima (34). One

limitation of sequential immunostaining is that it may modify the

epitope affinity and damage the tissue architecture. Tissue auto-

fluorescence also may limit the detection of a weakly expressed

epitope. IMC overcomes the limitations of conventional

immunofluorescence-based multiplex imaging and has been used in

many studies based on human samples (C. C. 17, 35, 36). In the

context of preclinical models, IMC has been used to study frozen
A B

D

E

C

FIGURE 4

Comparison of cell heterogeneity and interactions in healthy and tumor intestine samples. (A) Principal component analysis of the five zones of interests
based on the abundance of the clusters identified in (Figure 3B). HWT: whole WT tissue sample minus the Peyer’s patch; HApc: whole ApcD14+ tissue
sample minus the two tumor nodes identified by a pathologist. (B) Visualization of high-dimensional images using t-SNE and based on marker
expression. Each color corresponds to one of the clusters identified in (Figure 3B). (C) Pseudo-colored image showing the signal intensity for E-cadherin,
b-catenin and pan-cytokeratin in the ApcD14+ intestine tissue sample. (D) Heatmap showing the z-score of the marker expression in the sub-clusters
generated by Phenograph based on E-cadherin, b-catenin and pan-cytokeratin expression from the epithelial cluster identified in (Figure 3B) and
localized in the ApcD14+ intestine tissue section. Each color identifies an individual cluster. (E) Heatmap in which dots indicate significant interaction or
avoidance between the indicated clusters. Red squares indicate interactions (green) or avoidance (red) of B cells with the other clusters.
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mouse tissues that do not require tissue embedding, rehydration and

antigen retrieval and that therefore, can be stained with antibodies

validated for mass cytometry (37, 38). However, frozen sections are

usually thick (6-12 μm) and this limits cell segmentation due to cell

overlap. Furthermore, the absence of fixation may lead to the loss of

the tissue morphology. FFPE tissue sections may overcome these

limitations. In few studies, FFPE mouse samples have been analyzed

by IMC, but with smaller panels (39; H.-C. 40–42). For instance,

Peran et al., used a 7-antibody panel to investigate the interactions

between cancer-associated fibroblasts and tumor cells. Gheiratmand

et al. used a 8-antibody panel in a proof-of-concept study to validate

the use of plastic slides and to generate 3D images. Lotsberg et al.,

recently described a 18-antibody panel without immune markers to

study FFPE mouse spheroids (43). Our high-plex antibody panel that

includes immune markers suitable for FFPE mouse samples will be

useful for studies based on preclinical mouse models.

In conclusion, in this work we validated a 31-antibody panel to

investigate the TME in mouse preclinical models. Our panel was

designed to identify the main immune cell populations and also

stromal and tumoral cells, and is also suitable for single-cell

downstream analysis. IMC is in constant progress, and more metals

can be added for antibody tagging. Thanks to the low or absent

spectral overlap, it will be easy to add in-house validated and

conjugated antibodies or to replace one antibody in our panel.
Materials and methods

Tissue samples

Unless specified, tissues samples were from C57BL/6 mice. No

mouse was sacrificed for this study. Only unused mouse FFPE tissue

blocks from previous studies were used. The TMA containing eight

mouse tissues (spleen, thymus, lymph node, liver, lung, muscle, lung

tumor, MCA-205 fibrosarcoma cell graft) was generated by the

Imaging and Mass Cytometry platform, IRCM, Montpellier, France.

Lymph node and B16-K1 mouse melanoma cell graft samples were

from Dr Bonnefoy’s team. Intestine tissue samples from WT and

ApcD14/+ mice were from Dr Jay’s laboratory (26).
Antibodies and metal conjugation

The anti-aSMA antibody was conjugated to the cadmium-110

(110Cd) isotope with the Maxpar® MPC9 Antibody Labeling Kit. All

other antibodies were labeled using the Maxpar® X8 Antibody

Labeling Kit according to the manufacturer’s instructions (PRD002

Rev 14, Fluidigm, Standard Biotools).
Imaging mass cytometry: Tissue labeling

After deparaffinization and antigen retrieval using Dako Target

Retrieval Solution at pH 9 (S236784-2, Agilent technologies) in a

water bath (96°C for 30 min), 3μm tissue sections were encircled with

a Dako Pen, incubated with Superblock™ (37515, ThermoFisher

Scientific) at room temperature (RT) for 45 min, and then with FcR
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Blocking Reagent (130-092-575, Miltenyi) at RT for 1h. After three

washes (8 min/each) in PBS/0.2% Triton X-100 (PBS-T), metal-

tagged antibodies (list in Table 1) were diluted in PBS/1% BSA

buffer. After incubation with the primary antibodies at 4°C

overnight, sections were washed in PBS-T three times (8 min/each)

and nuclei were stained with iridium (1:400 in PBS; Fluidigm,

Standard Biotools), a DNA Intercalator, for 30 min at RT. Sections

were washed in PBS for 5 min, then in distilled water for 5 min, and

dried at RT for 30 min.
Imaging mass cytometry: Data acquisition

Images were acquired with the Hyperion Imaging System

(Fluidigm, Standard Biotools) according to the manufacturer’s

instructions. After choosing the ROI in the section, the ROI was

ablated with a UV laser at 200Hz. Data were exported as MCD files

and visualized using the Fluidigm MCD™ viewer 1.0.560.6. The

minimum and maximum thresholds were adapted for each marker

and for each tissue for optimal visualization. Gamma was set to 1.
Data analysis

Cell segmentation. Cell segmentation was done with the flexible

multiplexed image segmentation pipeline based on pixel classification

developed by Zanotelli et al. (44). Briefly, pixel classification and

training were performed with Ilastik v1.3.3 to generate a probability.

Then, a segmentation mask was created from the probability map

using CellProfiler v4.1.3. For each cell identified, the mean intensity of

each marker and the spatial coordinates were associated with the

computeFeatures function in the R EBImage package (45) and

exported in.fcs format using the R package flowCore (46). Single-

cell marker expression signals were summarized using the mean pixel

values for each channel. Single-cell data were censored at the 99th

percentile to remove outliers. Identification of zones of interest.

Tissue architecture and features were identified by a pathologist.

For intestine section comparison, seven fcs file were generated: two

files concerned the whole tissue sample (WT intestine and ApcD14/+

intestine with tumors) and five files concerned the Peyer’s patch, the

two intestinal tumors, and the two healthy zones (HWT represents the

whole healthy tissue minus the Peyer’s patch, and HApc represents the

whole ApcD14/+ tissue minus the two tumor areas). Cell clustering. The

Phenograph algorithm in R was used to analyze the dataset after the

99th percentile normalization to eliminate outliers and minimize

background noise. The aSMA, B220, CD19, b-catenin, CD3, CD4,
CD8, CD11b, CD11c, CD31, CD68, E-cadherin, MPO, pan-

cytokeratin, and vimentin signals were used for cell clustering with

a k-value set at 60. To further analyze CD4+ T cells, cells were sub-

clustered using CD103, FOXP3, GATA-3, granzyme-B, Ki-67 and

RORgt expression with a k value set at 30. Epithelial cells were sub-

clustered using pan-cytokeratin, b-catenin, and E-cadherin with a k-

value set at 1000. Heatmaps. Heatmaps were generated using the z-

score for each marker. Hierarchical clustering was performed using

Euclidean distances and according to the Ward’s linkage method in

the R package pheatmap (47). High-dimensional data visualization in

2D maps. The Barnes-Hut t-SNE method was used to generate 2D
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maps after concatenation and normalization to the 99th percentile of

all areas with perplexity = 30, initial dimensions = 110, and theta =

0.5. Principal Components Analysis. The frequencies of each cluster

per zone were retrieved with the FlowJo software and analyzed with

the PCA method proposed by FactoMineR (48). Distance. Each cell

was assigned a distance value from a point arbitrarily defined as the

tumor center using the following equation: (x-a)² +(y-b)²=r, where a

and b are the coordinates of the ROI center, x and y the cell position,

and r the circle radius. Data were represented using the ggplot2

package (49). Cell-cell interactions. Cell-cell interactions were

determined and visualized using the R packages imcRtools (50) and

cytomapper (51), respectively. A permutation test was performed to

define the interactions (positive or negative) with neighboring cells.

Cells were considered as neighbors if the distance between them was

<12 μm, and then counted using the Histocat expansion graph

method of the buildSpatialGraph function that defines how many

neighbors a cell of cluster A has with cluster B (given that it has at

least one neighbor of type B). The default number of permutations

was set to 1000. For each iteration, the interaction was compared with

the counted cells and an interaction score and p-value were obtained.

The results, represented in heatmaps, correspond to the significant

values at the alpha 1‰ risk.
Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.
Ethics statement

The animal study was reviewed and approved by Comité
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SUPPLEMENTARY FIGURE 1

Assessment by immunofluorescence analysis of antigen retrieval compatibility

of unconjugated antibodies. 1x and 3x (yellow squares) magnified images of

each unconjugated antibody on relevant tissues (spleen, lymph nodes, lung,
liver, MCA-205 cell tumor and intestine) using the same antigen retrieval

conditions (EDTA, pH 9, 96˚C, 30 min) by immunofluorescence.

SUPPLEMENTARY FIGURE 2

Single-antibody signal by imaging mass cytometry. 1x and 3x (yellow square)

magnified images of representative metal-tagged antibody signals in the

relevant mouse FFPE tissues: LYVE-1 and pan-actin in lung, PNAd and GATA-
3 in lymph node, and E-cadherin, b-catenin, pan-cytokeratin and RORgt in

intestine sections. All the other markers were tested with mouse FFPE
spleen sections.
SUPPLEMENTARY FIGURE 3

CD8 staining in the intestinal tumors and adjacent healthy tissue. Yellow lines

delimit the tumors according the pathologist’s annotation. CD8 expression
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(yellow) is homogeneously distributed in the adjacent healthy tissue, but is
absent in the tumors. Nuclei are in blue.

SUPPLEMENTARY FIGURE 4

Segmentation optimization. (A) Segmentation masks for the WT intestine tissue

section. The left column represents the result of the conventional segmentation
pipeline (see Methods). Cell boundaries are expanded. Each cell is in contact
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with its neighboring cells. The right column represents the result obtained with
the optimized pipeline in which cell boundaries are reduced. The zoom in the

Peyer’s patch shows that cells are individualized. (B) Crop images of the stack of
the cell segmentation and the image. (C) Manual gating of CD3- and B220-

expressing cells (i.e. aberrant phenotype). Both methods lead to the same

number of cells. The optimized method reduced by 2-fold the rate of
aberrant phenotypes.
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