
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Pooneh Mokarram,
Shiraz University of Medical Sciences,
Iran

REVIEWED BY

Ying Liang,
Jiangxi Agricultural University, China
Tuoxian Tang,
University of Pennsylvania,
United States
Youtao Lu,
University of Pennsylvania,
United States
Zeguo Sun,
Icahn School of Medicine at Mount
Sinai, United States
Jinyang Cai,
Virginia Commonwealth University,
United States
Zishan Wang,
Icahn School of Medicine at Mount
Sinai, United States
Xin Wang,
National Institutes of Health (NIH),
United States

*CORRESPONDENCE

Chen Li
chenli2012@zju.edu.cn
Dante Neculai
dneculai@zju.edu.cn
Xun Zeng
xunzeng@zju.edu.cn

†These authors have contributed
equally to this work

SPECIALTY SECTION

This article was submitted to
Cancer Immunity
and Immunotherapy,
a section of the journal
Frontiers in Immunology

RECEIVED 04 August 2022
ACCEPTED 26 September 2022

PUBLISHED 12 October 2022

CITATION

Luo Y, Zong Y, Hua H, Gong M,
Peng Q, Li C, Neculai D and Zeng X
(2022) Immune-infiltrating signature-
based classification reveals
CD103+CD39+ T cells associate with
colorectal cancer prognosis and
response to immunotherapy.
Front. Immunol. 13:1011590.
doi: 10.3389/fimmu.2022.1011590

TYPE Original Research
PUBLISHED 12 October 2022

DOI 10.3389/fimmu.2022.1011590
Immune-infiltrating signature-
based classification reveals
CD103+CD39+ T cells associate
with colorectal cancer
prognosis and response
to immunotherapy

Yang Luo1,2†, Yunfeng Zong1,3†, Hanju Hua4, Meiting Gong5,
Qiao Peng1,3, Chen Li6,7*, Dante Neculai2* and Xun Zeng1,3*

1State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical
Research Center for Infectious Diseases, National Medical Center for Infectious Diseases,
Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First
Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China, 2Department of Cell
Biology, Department of Pathology Sir Run Run Shaw Hospital, Zhejiang University School of
Medicine, Hangzhou, China, 3Research Units of Infectious disease and Microecology, Chinese
Academy of Medical Sciences, Hangzhou, China, 4Colorectal Surgery Department, The First
Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China, 5Zhejiang University-
University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine,
Zhejiang University, Haining, China, 6Department of Human Genetics, Women’s Hospital, Zhejiang
University School of Medicine, Hangzhou, China, 7Alibaba-Zhejiang University Joint Research
Center of Future Digital Healthcare, Hangzhou, China
Background: Current stratification systems for tumor prognostic prediction

and immunotherapeutic efficacy evaluation are less satisfying in colorectal

cancer (CRC). As infiltrating immune cells in tumor microenvironment (TME)

played a key role in tumor progression and responses to immune checkpoint

blockade (ICB) therapy, we want to construct an immune-related scoring

system with detailed immune profiles to stratify CRC patients.

Methods: We developed a scoring system based on immune-related

s ignatures and va l idated i ts ab i l i ty to pred ict prognos is and

immunotherapeutic outcomes in CRC. CD45+ cells from CRC patients were

sorted to investigate detailed immune profiles of the stratification system using

mass cytometry. A single-cell RNA sequencing dataset was used to analyze

transcriptomic profiles.

Results: We constructed an immune-related signature score (IRScore) based

on 54 recurrence-free survival (RFS)-related immune signatures to stratify CRC

patients. We revealed that IRScore was positively correlated with RFS and

favorable outcomes in ICB treatment. Moreover, we depicted a detailed

immune profi le in TME using mass cytometry and identified that

CD103+CD39+ T cells, characterized by an exhaustive, cytotoxic and

proliferative phenotype, were enriched in CRC patients with high IRScore. As
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a beneficial immune signature, CD103+CD39+ T cells could predict prognosis

and responses to ICB therapy in CRC.

Conclusions: All the analyses above revealed that IRScore could be a valuable

tool for predicting prognosis and facilitating the development of new

therapeutic strategies in CRC, and CD103+CD39+ T cells were one of

defined immune signatures in IRScore, which might be a key factor for

antitumor immunity.
KEYWORDS

colorectal cancer, immunotherapy, prognosis, high-dimensional single-cell analysis,
immune cell diversity
Introduction

Colorectal cancer (CRC) ranks the third most commonly

diagnosed malignant human cancer and the second leading

cause of death worldwide (1). In China, 592,232 new

colorectal cases and 309,114 CRC-related deaths were

estimated to occur in 2022 (2). Currently, main therapeutic

methods of CRC usually involve local treatments, including

surgery removal, radiation therapy and systematic therapies

like chemotherapy and targeted therapy. The most widely used

CRC stratification system is the AJCC/TNM staging system (3).

However, due to the significant heterogeneity in patients with

CRC identified by the genetic or epigenetic investigation and

transcriptomic profiles, patients with the same tumor stage may

respond differently to the same treatment and thus lead to

varying clinical outcomes. Therefore, there is a clinical

requirement to establish a method for predicting CRC

prognosis and evaluating the efficacy of immunotherapy.

Since its successful application in melanoma, tumor

immunotherapy, especially immune checkpoint blockade (ICB),

has been increasingly becoming a preferred consideration for

various cancers (4–7). ICB treatment can reactivate exhausted

functional cells and elicit durable antitumor responses. In this

scenario, immune cells in tumor microenvironment (TME) play a

key role in tumor progression and can influence the efficiency of

ICB therapy. A positive response to ICB therapy relies on the

context of TME and its interactions with tumor cells (8). TME is a

complex and heterogeneousmixture of tumor cells, non-tumor cells

such as infiltrating lymphocytes, macrophages, fibroblasts, stromal

cells and other surrounding host cells, and non-cellular components

like extracellular matrix (ECM) and secreted factors (9–12). These

immune and non-immune cells with distinct functions can

suppress or promote tumor progression. For example, higher
02
level of cytotoxic T lymphocytes (CTLs) infiltration has been

shown to be positively correlated with better antitumor responses

and prognosis (13, 14). Thus, depicting the detailed infiltrating

immune profiles and understanding the role of each immune subset

in TME are required to improve the efficacy of ICB therapy. On the

other hand, due to the complexity of TME, most patients, including

CRC, do not benefit from current ICB therapy strategies, resulting

in wasted healthcare resources and poor prognosis. Therefore, an

effective stratification system, which can distinguish responders and

non-responders for ICB therapy, can facilitate precision and

personalized medicine. Since the infiltrating immune cells in

TME played a key ro le in tumor prognos i s and

immunotherapeutic outcomes, an infiltrating immune cell

signature-based subtyping system will be useful for tumor

prognosis prediction and immunotherapeutic efficacy evaluation

in CRC.

This study focused on immune-related signatures in TME

and investigated the relationship between immune signatures

and prognosis, and the association of immune signatures with

response to ICB therapy in CRC. We evaluated 151 immune-

related signatures in TME collected from public studies in 7 CRC

cohorts and developed immune-related signature score

(IRScore) based on 54 identified prognosis-related signatures.

We depicted a detailed immune profile of IRScore by performing

cytometry by time of flight (CyTOF) analyses of tumor

infiltrating lymphocytes (TILs) in CRC. We revealed that

CD103+CD39+ T cells were one of defined immune signatures

in IRScore, and the CD45+CD3+CD103+CD39+ signature could

predict patients’ prognosis and responses to ICB therapy (Figure

S1A). Our study provides a useful tool for predicting CRC

prognosis and response to ICB therapy and uncovers

important clues to key immune subsets that affect tumor

progression and outcomes of ICB therapy.
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Materials and methods

Acquisition and pre-processing of
CRC cohorts

Gene expression data and clinical information of CRC

cohorts used in this study were acquired from UCSC Xena

(15) and Gene Expression Omnibus (GEO) (16). Two CRC

single-cell datasets were downloaded from GEO under the

accession number GSE178341 and GSE108989. The metastatic

urothelial cancer treated with anti-PD-L1 agent (atezolizumab)

cohor t IMv igor210 was ob ta ined v i a R package

IMvigor210CoreBiologies (17). The melanoma cohort

undergoing anti-PD-1 checkpoint inhibition therapy was

downloaded from GEO under accession number GSE78220.

Only primary tumors and treatment-naive patients

were included.

Microarray data (GSE103479, GSE17538, GSE33113,

GSE37892, GSE38832, GSE39084 and GSE39582 used to

develop IRScore; GSE39395 and GSE39396 used to draw

signatures of fibroblasts, endothelial cells and epithelial cells)

were downloaded and processed using the R package GEOquery

(18). For TCGA cohort, log-transformed (on a base 2 scale) gene

expression data were downloaded from UCSC Xena (https://

xenabrowser.net/datapages/). Processed expression data of

GSE178341, GSE108989 and GSE78220 were directly

downloaded from GEO. Counts data and patients’ information

from the IMvigor210 cohort were obtained by function counts

and pData, and the gene counts were transformed into TPM for

the following analysis. All datasets used in this study were listed

in Table S1.
Collection of immune-related signatures

One hundred forty-eight immune-related signatures were

collected from previously published studies through a literature

search (Table S2) (19–22). The signature genes of fibroblasts,

endothelial cells and epithelial cells were obtained by performing

differential analysis in GEO cohorts GSE39395 (immune cells:

CD45+Epcam-, epithelial cells: CD45-Epcam+, stromal cells:

CD45-Epcam-) and GSE39396 (immune cells: CD45+EPCAM-

CD31-FAP-, epithelial cells: CD45-EPCAM+CD31-FAP-,

endothelial cells: CD45-EPCAM-CD31+FAP-, cancer-associated

fibroblasts: CD45-EPCAM-CD31-FAP+).
IRScore calculation

First, we calculated a single sample gene set enrichment

score for each patient using the gsva function implemented in

the R package GSVA (23) and scaled the enrichment score to
Frontiers in Immunology 03
draw a normalized enrichment score (NES). Patients were

divided into high and low groups according to the median

value. Then Univariate Cox regression was performed to

examine the relationship between NES and RFS in each CRC

cohort. A meta-analysis implemented in the R packagemeta (24)

was used to evaluate the Hazard Ratio (HR) and P-value. Only

signatures with a P-value less than 0.05 were included. Totally

we identified 54 immune-related signatures and classified them

into 30 prognostically good signatures (HR< 1) and 24

prognostically bad signatures (HR > 1). We thus defined and

calculated a so-called IRScore for each sample as:

IRScore =o
M

i=1
NESi −  o

N

j=1
NESj

where NESi represents NES of ith prognostically good

signature and NESj is NES of jth prognostically bad signature;

M and N denote the number of prognostically good and bad

signatures, respectively.
Prediction of immunotherapeutic
response

Prediction of ICB therapy response for TCGA and

GSE39582 cohorts was conducted using the subclass mapping

method (SubMap) (25). The SubMap module implemented in

GenePattern (https://www.genepattern.org/) was used to

conduct the prediction. Besides, a melanoma cohort treated

with sequential CTLA-4 and PD-1 blockade was used to help

predict patients’ responses to anti-CTLA-4 and anti-PD-1

treatment (26).
Differential gene expression analysis and
gene set enrichment analysis

Differential gene expression analysis for microarray data was

performed by R package limma (27), and for TCGA counts data,

DESeq2 (28) was introduced for analysis. Gene set enrichment

analysis and KEGG analysis was performed by R package

clusterProfiler (29). HALLMARK gene sets and KEGG gene

sets used in GSEA analysis were downloaded from the

Molecular Signatures Database (MSigDB) (30). The curated

signatures were obtained and summarized from previously

published studies and provided in Table S3 (31–34).
Single-cell RNA-seq data analysis

Following the standard analysis procedures, scRNA-seq data

were analyzed using the R package Seurat (35). For scRNA-seq

data downloaded from GSE178341, 64 clusters were obtained
frontiersin.org
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using function FindClusters. IRScore was calculated for each

cluster and each patient based on average expression data

derived by the AverageExpression function. Clusters and

patients were classified into high and low IRScore groups

respectively. As for scRNA-seq data of CRC T cells from

GSE108989, we calculated IRScore for each cell and likewise

classified them into high and low IRScore groups according to

the median value. UMAP and tSNE algorithms implemented in

Seurat were used to visualize high-dimensional data.
Bulk RNA sequencing and CyTOF

Thirteen fresh CRC tumor samples were collected from the

First Affiliated Hospital, Zhejiang University School of Medicine.

Clinical information of CRC patients was recorded in Table S4.

All participants, or their legally authorized representatives,

provided written informed consent upon enrollment. Each

CRC tumor tissue was divided into two parts, one for RNA-

seq and one for CyTOF. Tumor tissues were kept in RNAlater

and total RNA was extracted using TRIzol reagent (Thermo

Fisher Scientific). RNA-seq was performed at Beijing Genomics

Institute (BGI) (Shenzhen, Guangdong, China) using the

DNBSEQ system. UCSC hg38 reference genome was used to

map the paired-end transcriptome reads. FPKM and read counts

were generated for subsequent analysis.

The rest of tumor tissues from the same patients were

transferred to MACS Tissue Storage Solution (Miltenyi

Biotec), digested and prepared into single-cell suspensions as

previously reported (36). Briefly, Samples were washed in RPMI

1640 (Thermo Fisher Scientific), suspended in 5 ml Hank’s

Balanced Salt Solution (HBSS) (Thermo Fisher Scientific) with

1 mM DTT, 5 mM EDTA and incubated at 37°C shaker at 145

rpm for 30 minutes. After washing twice with RPMI 1640,

samples were then mechanically dissociated with a sterile

scalpel and digesting in a buffer cocktail containing 2 mg/ml

collagenase IV (Sigma), 20 mg/ml DNase (Sigma) in RPMI 1640

for 2 hours in a 37°C shaker at 145 rpm in gentleMACS C tubes

(Miltenyi Biotec), followed by dissociating on the gentleMACS

Dissociator (Miltenyi Biotec) for 30 minutes. Tissue samples

were filtered through a 100 mM cell strainer, washed, and

enriched using 36% Percoll (GE Healthcare) at 2000 rpm for

10 minutes. Single cell suspensions were washed twice with PBS

and stained with 5 mM 103Rh (Fluidigm) for 5 minutes at RT for

viability. Cells were fixed in Fix I buffer (Fluidigm) at RT for 10

minutes and resuspended in freezing solution (90% FBS, 10%

DMSO) after washing, and were stored at -80 ˚C for future use.

A mass cytometry panel with 41 metal isotope-tagged antibodies

(Table S5) was used to profile immune signatures in CRC

samples. CyTOF was performed at Zhejiang Puluoting Health

Technology Co., Ltd (Hangzhou, Zhejiang, China) by Helios

(Fluidigm) with 300 events/s. Data were exported as FCS files.

Fcs files were read into R by read.FCS function and signal
Frontiers in Immunology 04
intensities were arcsinh transformed with a cofactor of 5. The

R function metaClustering_consensus implemented in package

FlowSOM (37) was used to cluster all cells into 36 clusters. The

tSNE algorithm was performed on 13,000 randomly selected

cells (1000 cells per sample) to demonstrate high-dimensional

data. The 99th percentile of maker intensity was defined as the

maximum to exclude extreme value, and then all markers’

intensities were rescaled ranging between 0 to 1. The cluster-

marker expression heatmap was generated by the R package

pheatmap based on the median expression value.
Statistical analyses

Log-rank test implemented in R package survival was used to

evaluate differences in recurrence-free survival between high and

low groups. The Kaplan-Meier curves were drawn using the R

package survminer. R function coxph implemented in survival

was used to compute the Cox proportional hazards regression

model. The circular heatmap was visualized by R package circlize

(38). Spearman’s correlation was calculated by function rcorr

implemented in R package Hmisc. All data except mentioned

above were displayed using R package ggplot2 (39). Wilcoxon

signed-rank test was used to compare the difference between two

groups, and the Kruskal-Wallis test was used to compare

differences among three or more groups. All analyses were

conducted using R software (version 4.1.1). P-value< 0.05 was

considered statistically significant unless explicitly noted.
Results

Construction of IRScore and the
association with clinical and
molecular phenotypes

To develop a predictive scoring system of recurrence-free

survival (RFS) for CRC, single sample gene set enrichment

analysis (ssGSEA) was performed to calculate enrichment

score for each patient from 7 CRC cohorts based on 151

curated immune-related signatures. A univariate Cox

regression model was applied to evaluate the predictive value

of normalized enrichment score (NES) in each cohort. After

leveraging 7 CRC cohorts, 54 immune-related signatures

significantly associated with prognosis were identified (P-

value< 0.05) (Figure 1A). We calculated IRScore for each

patient in each cohort and stratified patients into high IRScore

group and low IRScore group according to the median value,

that is, CRC patients with IRScore higher than the median value

were allocated as high IRScore group, and those lower than the

median value as low IRScore group. Survival analysis revealed

that patients in the high IRScore group had longer survival time

without recurrence than those in the low IRScore group (Figure
frontiersin.org
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S1B). Same phenomena were observed in the combined dataset

and in TCGA cohort regardless of progression-free interval

(PFI), disease-free interval (DFI), disease-specific survival

(DSS) or overall survival (OS) (Figures 1B, C, S1B-E).

Then we investigated the relationships between IRScore and

clinical features. Non-metastatic CRCs with microsatellite

instability/deficient mismatch repair (MSI/dMMR) had been

reported to have better prognosis and immunotherapeutic

outcomes than microsatellite stability/proficient mismatch repair

(MSS/pMMR) (40). We revealed that CRC patients harboring MSI/

dMMR had significantly higher IRScore than those with MSS/

pMMR. IRScore differed among four summarized AJCC stages,
Frontiers in Immunology 05
with higher IRScore in early-stage patients and lower IRScore in

advanced-stage patients, indicating that IRScoremight be associated

with tumor progression in CRC. The imbalanced components of

high and low IRScore groups in tumor stages, lymphatic invasion

andMMRwere summarized by Sankey diagrams (Figures 1D, S1F).

We also explored associations between IRScore and different

molecular signatures. We observed that IRScore was negatively

correlated with angiogenesis, epithelial-mesenchymal transition

(EMT), and positively correlated with antigen processing

machinery and proliferation (Figure 1E). Moreover, IRScore was

positively associated with immune signatures such as CD8 T

effector, cytotoxicity, immune checkpoint, proliferation-related
B C

D

E

A

FIGURE 1

Construction and exploration of IRScore in CRC cohorts. (A). Immune-related signatures with survival significance in CRC. Circles with black
border represent prognostic significance of the signature in corresponding cohort, and the size of circles represents the significance level. Red
circles represent Hazard Ratio (HR) >1, implying prognostically “bad” signatures, and blue circles represent HR< 1, implying prognostically “good”
signatures. (B, C) Kaplan-Meier curves of progression-free interval (PFI, B) and disease-free interval (DFI, C) based on IRScore groups in TCGA
cohort. (D). Violin plots showing the relationship between IRScore and MSI/MSS (left), tumor stages (middle), and Sankey diagram illustrating the
relationship between IRScore and CRC subtypes in TCGA cohort.(E). The association and correlation between IRScore and gene signatures
(angiogenesis, EMT, antigen presenting machinery and proliferation) in TCGA cohort illustrated by violin plots (left) and scatter plots with trend
lines (right) in TCGA cohort.
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signatures, and negatively associated with pan-fibroblast TGF-b
response signature (pan-F-TBRS), naiveness and plasminogen

inhibitor (Figure S1G). These data suggested that IRScore was

positively correlated with factors for good prognosis in CRC.
IRScore could be an indicator to predict
responses to ICB therapy

The efficacy of ICB therapy targeting programmed cell death

1 (PD-1) or cytotoxic T-lymphocyte associated protein 4

(CTLA-4) was limited in CRC, so we examined the predictive

and immunotherapeutic efficacy of IRScore. We used SubMap

and a melanoma cohort treated with sequential CTLA-4 and

PD-1 blockade to predict patients’ responses. Patients in the high
Frontiers in Immunology 06
IRScore group might respond to PD-1 inhibitors in both cohorts,

while there was a possibility that patients in the low IRScore

group in GSE39582 were likely to respond to CTLA-4 inhibitors

(Figures S2A, B).

We further used the published IMvigor210 cohort to

investigate the predictive efficacy of IRScore. Patients with

high IRScore significantly had longer survival time than those

with low IRScore (Figure 2A). The inflamed phenotype

presented the highest IRScore than desert or excluded

phenotypes, and tumors in the high IRScore group had higher

neoantigen burdens (Figures 2B, C). The results showed that the

CR/PR group had the highest IRScore and patients in the high

IRScore group displayed better responses to ICB (Figures 2D-F).

The predictive efficacy of IRScore was also testified in GSE78220

cohort. High IRScore patients presented favorable responses and
B C

D E F

G H I J

A

FIGURE 2

Prediction of patients’ responses to immunotherapy by IRScore. (A) Kaplan-Meier curve of survival probability based on IRScore groups in
IMvigor210 cohort. (B) Comparison of IRScore among different immune phenotypes. (C) Comparison of neoantigen burden between high and
low IRScore groups. (D) Violin plots of IRScore between CR/PR and SD/PD. (E) Compositions of patients’ responses to PD-L1 inhibitor treatment
between high and low IRScore groups (P-value< 0.05, Fisher’s exact test). (F) Waterfall plots illustrating IRScore according to immunotherapeutic
responses in IMvigor210 cohort. (G) Kaplan-Meier curve of survival probability based on IRScore groups in GSE78220 cohort. (H) Violin plot of
IRScore between CR/PR and PD. (I) Compositions of patients’ responses to PD-1 inhibitor treatment in the two IRScore groups. (J) Waterfall plot
illustrating IRScore according to immunotherapeutic responses in GSE78220 cohort.
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prolonged survival (Figures 2G-J). Together, these results

implied that higher IRScore was associated with better

responses and longer survival time in ICB treatment patients.
Transcriptomic, genomic and immune
signatures of high and low IRScore
groups in CRC

Underlying changes accompanied the phenotypic differences

between high and low IRScore groups. We assessed

transcriptomic, genomic and immune features between high
Frontiers in Immunology 07
and low IRScore groups to investigate such changes. We first

examined Cancer Hallmark gene sets in the two groups by

GSEA. Gene sets related to proliferation and inflammation

significantly contributed to the positive side, indicating that

they were significantly enriched in up-regulated genes when

comparing the high IRScore group to the low IRScore group.

Epithelial-mesenchymal transition (EMT) and signaling

pathways known to induce EMT, including TGF-b, Notch,
Wnt-b-catenin and Hedgehog, were enriched in low IRScore

tumors (Figures 3A, S3A). We further analyzed differentially

expressed genes (DEGs, absolute log2FoldChange > 1, adjusted

P-value< 0.05) between the two groups coupled with Kyoto
B

C D E

A

FIGURE 3

Comparison of transcriptomic profile, genomic alteration and immune infiltration between high and low IRScore groups. (A) Gene set
enrichment analysis of Cancer Hallmark gene sets identified significantly enriched pathways in high and low IRScore groups. (B) Oncoplot
showing the top 20 most frequently mutated genes in high and low IRScore groups in TCGA cohort. (C) Abundance of different cell types in
high and low IRScore groups was estimated by xCell in TCGA cohort. Z-scored results were depicted in heatmap. (D) Abundance of different
cell types in high and low IRScore groups in the single-cell dataset GSE178341. Z-scored results were depicted in heatmap (left). Waterfall plot
illustrating IRScore of each patient according to high and low groups (right). (E) Box plots showing the expression level of indicated genes in the
two IRScore groups. *P < 0.05, **P < 0.01, ***P < 0.001,****P < 0.0001.
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Encyclopedia of Genes and Genomes (KEGG) pathways

enrichment analysis. Consistently, the most enriched KEGG

pathway represented by low IRScore tumors was ECM-

receptor interaction. In high IRScore tumors, up-expressed

genes were enriched for immune-related pathways implicated

in processes crucial for host innate/adaptive immune responses

(Figures S3A, B). Moreover, we analyzed gene mutation

conditions of the two groups in TCGA cohort. The top 6

mutated genes were identical in the two groups but with

distinct mutation frequencies except for APC (74%) and TP53

(56%). Besides, most genes tended to have higher mutation

frequencies in the high IRScore group, in tune with the result

that tumors with high IRScore had higher mutation burdens

(Figures 3B, S3C).

Next, we investigated the TME characteristics of the two

groups. Using xCell (41), we estimated immune and stromal cell

compositions for patients with different IRScore in TCGA

cohort. The high IRScore group was enriched with several

CD8+ T cell types, Type 1 T helper (Th1), Type 2 T helper

(Th2), B cell types, plasma cells, plasmacytoid dendritic cells

(pDCs), and mast cells, but less fibroblasts, mesenchymal stem

cells (MSCs), endothelial cells, pericytes (Figure 3C). To evaluate

whether tumor-infiltrating cells displayed similar patterns as in

TCGA cohort in a single-cell perspective, we utilized a single cell

dataset (GSE178341) and classified tumor cells into 64 clusters.

We identified 22 immune cell clusters, 33 epithelial clusters, 3

fibroblast clusters, 4 clusters expressing both endothelial and

fibroblast markers (referred to as endo_fibro clusters) and 2

clusters expressing both epithelial and immune cell markers

(referred to as other) (Figures S3D, E). We calculated cluster-

level IRScore and classified 64 clusters into high and low IRScore

groups. The high IRScore group consisted of 16 immune cell

clusters, 15 epithelial clusters and 1 other cluster, and the low

IRScore group comprised 6 immune cell clusters, 18 epithelial

clusters, 3 fibroblast clusters, and 4 endo_fibro clusters and 1

other cluster (Figure S3G). Consistently, the immune cell

clusters had the highest IRScore, followed by epithelial

clusters. Fibroblast and endo_fibro clusters presented the

lowest IRScore (Figures S3F, H). Moreover, we calculated

IRScore for each patient based on average gene expression and

classified 62 patients into high and low IRScore groups. Patients

with high IRScore had higher frequency of immune cells, while

fibroblasts were enriched in low IRScore group (Figure 3D). We

also evaluated gene expression between the two groups, and it

showed that patients in the high IRScore group displayed

significantly higher expression of immune checkpoint genes

CTLA4, HAVCR2, ICOS, LAG3, PDCD1 and TIGIT. Besides,

expression of T cell development-associated genes TBX21 and

EOMES, tumor reactivity-associated genes ITGAE and ENTPD1,

and cytotoxic gene GZMB were also significantly higher in

patients with high IRScore (Figure 3E).

Collectively, we observed significant differences in

transcriptomic, genomic and immune characteristics between
Frontiers in Immunology 08
the two groups. Mesenchymal and tumor-promoting

phenotypes represented the low IRScore tumors, and in

contrast, the high IRScore tumors displayed immune-

active characteristics.
CRC TILs’ clustering and subtype analysis

Although high IRScore closely correlated with several

immune signatures (Figure 3C), the detailed immune

phenotype was still missing. We collected 13 treatment-naive

CRC samples and performed bulk RNA-seq and CyTOF for

TILs. We calculated IRScore for each patient according to RNA-

seq data and divided them into high and low IRScore groups.

Using the t-distributed stochastic neighbor embedding

dimensionality reduction algorithm, we visualized the diversity

of CD45+ tumor-infiltrating cells. We identified 4 major clusters:

T cells, B cells, natural killer (NK) cells and myeloid cells

(Figures 4A, B). PCA analysis of cell frequencies showed that

patients in high and low IRScore groups were clearly separated

(Figure 4C). T cells were the most abundant immune cell

population among TILs, with a mean of 70% across samples,

followed by B cells with a mean of 24% (Figure 4D). Besides,

frequency of T cells was higher in the high IRScore group than

that in the low IRScore group (P-value = 0.073). No significant

difference was observed for frequencies of B cells, NK cells, or

myeloid cells between the two groups (Figure 4E).

To further investigate functional subtypes of the overall

TILs, an in-depth clustering analysis was conducted, and those

TILs were finally classified into 36 clusters (Figure 4F).

Specifically, we identified 4 B cell clusters (B01-B04), 2

myeloid cell clusters (M01-M02), 2 NK cell clusters (NK01-

NK02), 16 CD4+ T cell clusters (T01-T16), 9 CD8+ T cell clusters

(T17-T25), 2 gd T cell clusters (T27-T28) and 1 CD4-CD8- T cell

cluster (T26). Most T cell clusters presented effector memory

phenotype (Tem: CCR7-, CD45RA-) or central memory

phenotype (Tcm: CCR7+, CD45RA-) (42) and expressed

classical activation marker CD69 (43) (Figure 4F). We

compared frequency of each cluster between high and low

IRScore groups. Except for clusters M01, T07, T12, T14, T17

and T25, most clusters showed no significant difference between

the two groups (Figures 4G, S4A). Intriguingly, clusters with

higher frequencies in the high IRScore group (T12, T14, T17 and

T25) were positive for CD103 and CD39 (Figure 4H).

Frequencies of total CD103+CD39+ TILs were also

significantly higher in the high IRScore group (Figure 4G, P-

value = 0.073). Previous studies revealed that co-expression of

CD103 and CD39 identified a unique population of tumor-

reactive CD8+ TILs in solid human tumors with an exhausted

tissue-resident memory phenotype (44, 45). T25 exhibited high

expression of exhaustion markers PD-1, CTLA4 and low

express ion of CCR7, CD45RA, CD127 and CD28,

representative of an effector-memory phenotype (Figure 4I).
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FIGURE 4

Identification of detailed immune profiles of CRC TILs by mass-cytometry. (A) tSNE plot displaying T cells, B cells, NK cells and myeloid cells
based on manual annotation. (B) tSNE plots of normalized expression of markers used to annotate main immune clusters. (C) PCA analysis of
cluster frequencies in the two IRScore groups. Each dot represented one patient. (D) Boxplot showing the frequency of B cell, myeloid cell, NK
cell and T cell for each sample. (E) Comparison of frequencies of T cell, B cell, NK cell and myeloid cell between high and low IRScore groups.
(F) Heatmap of normalized marker expression for 36 immune clusters. (G) Boxplots showing significant differences of frequency in T07, T12,
T14, T17, T25 and total CD103+CD39+ TILs (T12+T14+T17+T24+T25) between high and low IRScore groups. (H) Contour plots showing
expression of CD103 and CD39 in T07, T12, T14, T17 and T25. (I) Histograms showing expression of indicated markers in T07, T12, T14, T17 and
T25.
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T12 was the CD4+ counterpart of T25, with an almost identical

marker expression pattern (Figures 4F, I). CD39+CD4+ TILs

shared similar activated, tissue-resident and effector cell-

associated signatures with CD39+CD103+CD8+ TILs (46). The

CD4+ T14 and CD8+ T17 were also inter-counterparts

(Figures 4F, I). Together, clusters co-expressing CD103 and

CD39 had higher frequencies in the high IRScore group. This

phenotype might be relevant to better prognosis in CRC patients

with higher IRScore.
The characteristics of
CD103+CD39+CD4+/CD8+ T cells and
relationship with IRScore

To further evaluate whether CD103+CD39+ T cells

represented the immune signature of the high IRScore group,

we calculated IRScore of tumor-infiltrating CD4+/CD8+ T cells

from a single-cell dataset (GSE108989) and investigated gene

expression patterns of CD4+/CD8+ TILs co-expressing CD103

(ITGAE) and CD39 (ENTPD1). We classified those TILs into

high and low IRScore groups. Besides, we defined cells

expressing CD103 and CD39 as double-positive cells (DP),

cells expressing neither CD103 nor CD39 as double-negative

cells (DN), and cells expressing either CD103 or CD39 as single-

positive cells (SP).

Sixteen clusters were identified, including 8 CD4+ clusters

and 8 CD8+ clusters (Figures 5A, S5A). CD8+ clusters were

identified as activated effector cytotoxic cells based on the

expression of canonical cytotoxic markers GZMA/B/H, PRF1,

IFNG and NKG7. CD8_2, CD8_6, and CD8_8 also exhibited

expression of exhaustion markers PDCD1 and HAVCR2,

indicating dual characteristics. Among CD4+ clusters, CD4_2

and CD4_4 specifically expressed naive marker genes such as

CCR7, IL7R and SELL, thus representing naive T cells; CD4_1,

CD4_3, CD4_5 and CD4_8 were characterized by high

expression of FOXP3 and IL2RA, suggestive of the identity of

regulatory T cells (Tregs); CD4_6 and CD4_7 were comprised of

CD4+ T cells with high expression of exhausted marker genes

HAVCR2, PDCD1 and cytotoxic molecules GZMA, GZMB,

PRF1, indicative of the status of exhausted and cytotoxic CD4+

T cells (Figure S5B).

DP cells comprised 46.2% of total detected cells and were

significantly enriched in the high IRScore group with absolute

predominance over DN cells. In contrast, DN cells only

constituted 13.3% of whole cells. There were relatively equal

proportion of DP and DN cells in the low IRScore group

(Figures 5B, E). Besides, DP cells were enriched in 6 CD4+ and

7 CD8+ clusters (Figure 5C). Surprisingly, a roughly coincident

ratio could be observed when comparing the distribution of high

and low IRScore TILs in each cluster (Figure 5D). Moreover, DP

cells were composed of the most significant proportion of high

IRScore cells, and DN cells were the least, consistent with the
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observation that DP cells displayed the highest IRScore, with DN

cells being the lowest, and SP cells having intermediate IRScore

(Figures 5F, H). We also compared IRScore between CD4+ and

CD8+ cells and found that CD8+ cells had significantly higher

IRScore than CD4+ cells, on account of a higher percentage of

DP cells among CD8+ cells (Figures 5G, I).

We examined the expression of well-known naive, cytotoxic

and exhausted markers among DP, DN and SP cells (45).

Intriguingly, DP cells displayed dual phenotypes with higher

expression of cytotoxic and exhausted marker genes, whereas

DN cells had higher expression of naive genes; SP cells exhibited

an intermediate status (Figure 5J). To better understand the

function of DP cells, we compared them with DN cells at the

transcriptome level. Among CD8+ T cells, DP cells highly

expressed a set of 898 genes (adjusted P-value< 0.05, log2FC >

0), including exhausted markers (HAVCR2, LAYN, TIGIT,

PDCD1, CTLA4), cytotoxic markers (GZMA, GZMB, PRF1,

NKG7) and proliferation-related genes MCMs (Figure 5K).

The concurrence of an exhausted phenotype with cytotoxic

and proliferative characteristics in DP cells was further

confirmed by GSEA analysis of HALLMARK gene sets and the

curated signatures. Genes up-expressed among DP cells were

significantly enriched for processes associated with

inflammation, proliferation, cytotoxicity and presented an

exhausted phenotype (Figures 5L, S5E). CD4+ DP cells also

exhibited an exhausted and proliferative phenotype (Figures

S5C, D). GSEA analysis of HALLMARK gene sets and the

curated gene signatures revealed that immune-related

pathways were enriched considerably in up-expressed genes in

CD4+ DP cells, and an unfavorable status of hypoxia and

unfolded protein response was likewise found in CD4+ DN

cells (Figure S5F). Together, these data indicated that DP cells

were accumulated in the high IRScore group, characteristic of a

cytotoxic, exhausted and proliferative phenotype.
CD45+CD3+CD103+CD39+ signature
could predict the CRC prognosis and
responses to ICB therapy

As identified in CyTOF and scRNA-seq analyses, high IRScore

could be partially represented by a CD45+CD3+CD103+CD39+

signature, we further examined its predictive value and efficacy in

predicting response to ICB therapy. Similarly, we calculated NES of

this CD45+CD3+CD103+CD39+ signature and divided patients into

two groups (M1 and M2) according to the median value. In TCGA

cohort, patients with higher NES presented prolonged survival than

those with lower NES (Figures 6A, B). In ICB therapy cohort

IMvigor210, patients with higher NES had prolonged overall

survival, and NES of patients with better responses (CR/PR/SD)

to ICB therapy were significantly higher than those with progressive

disease (PD). Besides, the higher NES group (M2) consisted of more

patients that benefited from ICB therapy (Figures 6C, S6A-C). We
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FIGURE 5

Transcriptomic profiles of CD103+CD39+ T cells and association with IRScore. (A) UMAP projection of CD4+ and CD8+ TILs, showing 8 CD8+

clusters and 8 CD4+ clusters in different colors. (B) UMAP projection of CD103 and CD39 double-positive cells (DP), double-negative cells (DN) and
single-positive cells (SP). (C) Stacked barplot showing the percentile of DP, DN and SP cells in each clusters (left), log2 odds ratio (DP versus DN,
middle) and p value (right). (D) Percentile of high and low IRScore TILs in each cluster. (E) Stacked barplot showing the percentile of DP, DN and SP
cells in high and low IRScore groups (left), log2 odds ratio (DP versus DN, middle) and p value (right). (F) Percentile of high and low IRScore TILs
among three cell types. (G) Stacked barplot showing the percentile of DP, DN and SP cells in CD4+ and CD8+ TILs (left), log2 odds ratio (DP versus
DN, middle) and p value (right). (H) Comparison of IRScore among DP, DN and SP cells. (I) Comparison of IRScore between CD4+ and CD8+ TILs.
(J) Dotplot showing expression of exhausted, cytotoxic and naive markers in DP, DN and SP cells. (K) Volcano plot of differentially expressed genes
between CD8+ DP and DN cells. (L) Enrichment plot for the curated gene signatures in CD8+ TILs by GSEA. ****P < 0.0001
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also showed that CD103+CD39+ CD4+/CD8+ T cells had certain

ability in predicting prognosis and responses to ICB

therapy respectively (Figures 6D-I, S6D-I). Thus, the

CD45+CD3+CD103+CD39+ signature was a beneficial immune

signature that, to a certain extent, could predict the prognosis and

efficacy of ICB therapy.
Frontiers in Immunology 12
Discussion

The TME is a heterogeneous mixture of tumor cells,

infiltrating and resident host cells, extracellular matrix and

secreted cytokines (9–12). Cross-talk between TME

components significantly affects tumor development and
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FIGURE 6

Predictive value of CD45+CD3+CD103+CD39+ phenotype in prognosis and immunotherapy. (A, D, G) Kaplan-Meier plots of relationship
between the immune signatures from RNAseq dataset (CD45+CD3+CD103+CD39+ (A), CD45+CD3+CD4+CD103+CD39+ (D) and
CD45+CD3+CD8+CD103+CD39+ (G) and PFI in TCGA cohort. Patients were stratified according to the median of signature NES, where M1 was
the lower NES and M2 was the higher NES. B, E, (H) Kaplan-Meier plots of relationship between the immune signatures from RNAseq dataset
(CD45+CD3+CD103+CD39+ (B), CD45+CD3+CD4+CD103+CD39+ (E) and CD45+CD3+CD8+CD103+CD39+ (H) and DFI in TCGA cohort. Patients
were stratified according to the median of signature NES, where M1 was the lower NES and M2 was the higher NES. C, F, (I) Kaplan-Meier plots
of relationship between immune signatures from RNAseq dataset (CD45+CD3+CD103+CD39+ (C), CD45+CD3+CD4+CD103+CD39+ (F) and
CD45+CD3+CD8+CD103+CD39+ (I) and OS in IMvigor210 cohort. Patients were stratified according to the median of signature NES, where M1
was the lower NES and M2 was the higher NES.
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progression (47). This study utilized immune-related signatures

to develop IRScore for CRC patients ’ stratification.

Investigations regarding the relationship between this

classification strategy and prognosis, transcriptomic profiles,

immune activities etc., will allow for a better understanding of

the TME and improved instructions for ICB therapy

(Figure S1A).

In this study, we developed the IRScore system based on 54

prognosis-related immune signatures. Our research revealed that

IRScore was positively correlated with immune and proliferative

signatures and negatively associated with EMT and naiveness

(Figure 1E). The proliferation signature of high IRScoremight be a

result of CD8+ TILs, however, alternative interpretation is the

proliferating tumor cells. Actively proliferating cells are more

likely to be accumulated with mutations, leading to a heavier

mutation burden. T cells’ recognition of mutation-derived

neoantigens in tumors is critical for antitumor activity.

Moreover, tumor neoantigens are associated with therapeutic

benefits in PD-1 or CTLA-4 blockade. Besides, IRScore was

positively correlated with prolonged survival and beneficial

responses to ICB therapy, which might be explained by

favorable transcriptomic features and active antitumor activities

in the high IRScore group. Better responses to ICB treatment in

the high IRScore group allowed us to focus on the differences of

infiltrating immune signatures in TME between the two groups.

As indispensable components to the TME, TILs show a

critical role in tumor progression. The antitumor function

involves CD8+ cytotoxic cells, NK cells, and CD4+ Th1 cells,

while MDSCs, TAMs and Tregs inhibit antitumor responses (48–

51). We showed that the high IRScore group was more abundant

for several CD8+ T cell populations and Th1 cells, whereas the low

IRScore group hadmore fibroblasts, endothelial cells and pericytes

(Figure 3C). We found more Tregs in the high IRSore group,

which might be due to Tregs displaying positive effects and

associating with good prognosis in specific cancer types (52–54).

Analyses of a CRC single-cell dataset confirmed the fact that

endothelial and fibroblast clusters had the lowest IRScore while

immune cell clusters were the highest (Figures 3C, E).

Recently, molecular subtyping systems focusing on immune

infiltrating signatures have emerged to stratify patients and predict

prognosis and immunotherapeutic outcomes in various tumors

(55–57). However, these subtyping systems failed to depict

detailed immune profiles in TME, which are important for

understanding the mechanisms by which immune cells

modulate tumor progression and response to ICB therapy. To

solve this problem, we used mass cytometry to perform in-depth

immune profiling of tumor samples from CRC patients. Among

the 36 identified clusters, T12, T14, T17 and T25 were significantly

abundant in the high IRScore group, and all of them displayed a

CD103+CD39+ phenotype (Figures 4F-H). Since high IRScore was

associated with favorable prognosis and antitumor response, these

clusters might represent tumor-reactive populations. T25

exhibited increased expression of PD-1, CTLA4 and low
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expression of CCR7, CD45RA, CD127 and CD28 (Figure 4I),

consistent with previous studies that a subset of tumor-reactive

CD8+ TILs were positive for CD103 and CD39 and exhibited an

exhausted tissue-resident memory phenotype (44, 45). We further

validated CD4+ and CD8+ TILs co-expressing CD103 and CD39

at the single-cell level. Duhen and colleagues found that

CD103+CD39+CD8+ TILs were enriched in CRCs with MSI/

dMMR and displayed more elevated exhaustion markers

CTLA4, PDCD1, HAVCR2 and lower expression of naive

markers S1PR1, SELL, TCF7 (44). We showed that CD8+ DP

TILs up-regulated genes related to proliferation, exhaustion,

cytotoxicity markers and down-regulated genes related to

naiveness (Figures 5J-L). Moreover, CD103+CD39+CD8+ TILs

displayed more clonal expansion and better tumor antigen

recognition than CD103-CD39-CD8+ TILs, indicating that

CD103+CD39+CD8+ TILs were enriched with tumor specific T

cells (44, 58). CXCL13, a B-cell recruiting chemokine, was the

most significantly up-regulated gene exceptHAVCR2, ITGAE and

ENTPD1 in CD8+ DP cells (Figure 5K). He et al. showed that

CXCL13 was the unique marker for tumor antigen specific CD4+/

CD8+ T ce l l s in mul t ip l e tumors (59) . Bes ide s ,

CXCL13+CD103+CD8+ TILs were potentially associated with B

cell recruitment, neoantigen load and tertiary lymphoid structures

(TLSs) formation in human tumors (60), and were identified as

tumor antigen specific T cells in lung cancer (59, 61). Thus,

CD103 and CD39 positive cells might shape a tumor

microenvironment suitable for B-cell antitumor activities.

Other researchers had shown the effects of CD103+CD39+

TILs in various tumor types. This population of T cells were

enriched in genes associated with exhaustion, and may represent

a prognostic marker of cancer progression (44, 58). Higher

frequencies of CD39+CD103+CD8+ TILs in patients with head

and neck cancer were associated with better overall survival, and

in vitro studies showed that co-expression of CD39 and CD103

were strongly enriched in tumor-recognizing and -killing CD8 T

cells (44). Circulating CD103+CD39+CD8+ T cells was

significantly enriched in nasopharyngeal carcinoma patients

without distant metastasis, and those patients had better PFS

(62). CD103+CD39+ TILs could also be considered as a potential

biomarker for predicting patients’ response to novel ICB

approaches in various tumors. CD103+CD39+ TILs could serve

as a potential biomarker of anti-OX40 clinical activity in patients

with head and neck cancer, and might represent a biomarker of

RFS following anti-PD-1 therapy in melanoma (63, 64). In our

study, we also revealed that the CD45+CD3+CD103+CD39+

signature could predict prognosis and response to ICB

(Figure 6). These findings suggest that co-expression of CD39

and CD103 could serve as useful markers of tumor specific CD8+

T cells, and could be exploited for the development of

targeted immunotherapies.

However, due to the limitation of CyTOF samples and

markers, we only observed limited immune features that were

significantly differentiated between high and low groups. Other
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potential phenotypes might have a significant difference if more

samples and markers were included. Besides, more in-depth

investigations and basic experimental research are required to

explain further the underlying mechanisms of the event in

the future.

In conclusion, we developed IRScore to stratify CRC patients

and explored various profiles contributing to the differences

between high and low IRScore groups. We further characterized

the detailed immune signature, CD103+CD39+ T cells, in

IRScore system, which may offer important clues to

mechanisms of antitumor immune responses in CRC.
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SUPPLEMENTARY FIGURE 1

Association between IRScore and clinical factors and molecular
signatures. (A). Workflow of this study: IRScore construction and

characterization, and IRScore-based detailed immune signatures

exploration. (B). Kaplan-Meier curves of recurrence-free survival based
on IRScore groups in 7 GEO cohorts. (C). Kaplan-Meier curves of

recurrence-free survival based on IRScore groups in a combined
dataset. (D, E). Kaplan-Meier curves of disease-specific survival (DSS, D)
and overall survival (OS, E) based on IRScore groups in TCGA cohort. (F).
Violin plots showing the relationship between IRScore and dMMR/pMMR

(left), tumor stages (middle) and Sankey diagram (right) illustrating the

relationship between IRScore and CRC subtypes in GSE39582 cohort. (G).
The association and correlation between IRScore and different gene

signatures (Pan-F-TBRS, naiveness, plasminogen inhibitor, CD8 T
effector, cell cycle, cytotoxicity, DNA damage repair, DNA replication,

homologous recombination, immune checkpoint, mismatch repair,
nucleotide excision repair and exhaustion) in TCGA cohort.
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SUPPLEMENTARY FIGURE 2

Prediction of response to immunotherapy using SubMap. (A, B). SubMap
prediction of response to anti-PD1 and anti-CTLA4 treatment in TCGA

cohort (A) and GSE39582 cohort (B).
SUPPLEMENTARY FIGURE 3

Transcriptomic, genomic and immune characterizations of IRScore. (A).
Circos plots of GSEA-based Cancer Hallmarks pathways (top) and KEGG

pathways (bottom) differences between high and low IRScore groups
(from the innermost to the outmost: TCGA, GSE39582, GSE39084,

GSE38832, GSE37892, GSE33113, GSE17538, GSE103479). The grids

were colored according to NES (high versus low IRScore group, p.adj<
0.1). A blank grid meaning the pathway difference is not significant (p.adj >

0.1). (B). Volcano plot showing up- or down-regulated genes of high
versus low IRSore group in TCGA cohort (p.adj< 0.05, absolute

log2FoldChange > 1). Corresponding bar plots showing the enriched
KEGG pathways in up- or down-regulated genes. (C). Boxplot showing

the difference of mutation burden between high and low IRScore groups

in TCGA cohort. (D). Dotplot showing the expression of genes used to
identify endothelial cells, epithelial cells, fibroblasts and immune cells. (E).
The tSNE projection of endo-fibro cells, epithelial cells, fibroblasts and
immune cells. (F). The tSNE projection of cluster-level IRScore. (G).
Stacked bar chart showing the cluster compositions in high and low
IRScore groups. (H). Comparison of IRScore among main cell types. Each

point represented one cell subset.
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SUPPLEMENTARY FIGURE 4

Difference of cluster frequencies between high and low IEScore groups.
(A). Boxplots showing the difference of frequencies in 31 immune clusters

between high and low IRScore groups.

SUPPLEMENTARY FIGURE 5

Transcriptomic profiles of CD103+CD39+ T cells. (A). Violin plot showing

the expression of CD69, CD4, CD8A and CD8B. (B). Heatmap of CD4+

and CD8+ T cells, with 16 main clusters identified, each containing a

unique set of signature genes. (C). Volcano plot of differentially expressed

genes between CD4+ DP and DN cells. (D). Enrichment plot for the
curated gene signature in CD4+ TILs by GSEA. (E, F). Gene set

enrichment analysis of Cancer Hallmark gene sets identified significantly
enriched pathways in CD8+ (E) and CD4+ (F) DP and DN cells.

SUPPLEMENTARY FIGURE 6

Prediction of CD45+CD3+CD103+CD39+ phenotype to immunotherapy. (A,

D, G). Violin plots showing the difference of NES (CD45+CD3+CD103+CD39+

(A), CD45+CD3+CD4+CD103+CD39+ (D) and CD45+CD3+CD8+CD103+

CD39+ (G)) between CR/PR/SD and PD in IMvigor210 cohort. (B, E, H).
Composition of patients’ responses to PD-L1 inhibitor treatment between

M1 and M2 in IMvigor210 cohort ((B): P-value = 0.010; (E): P-value = 0.019;
(H): P-value = 0.035, Fisher’s exact test). (C, F, I). Waterfall plots illustrating NES

(CD45+CD3+CD103+CD39+ (C), CD45+CD3+CD4+CD103+CD39+ (F) and

CD45+CD3+CD8+CD103+CD39+ (I)) according to immunotherapeutic
responses in IMvigor210 cohort.
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Glossary

CIMP CpG island methylator phenotype

CIN Chromosomal instability

CR Complete response

CRC Colorectal cancer

CTLA4 Cytotoxic T-lymphocyte associated protein 4

CTLs Cytotoxic T lymphocytes

CyTOF Cytometry by time of flight

DEGs Differentially expressed genes

dMMR Deficient mismatch repair

DN Double-negative cells

DP Double-positive cells

ECM Extracellular matrix

EMT Epithelial-mesenchymal transition

GEO Gene Expression Omnibus

HBSS Hank’s Balanced Salt Solution

HGSC High-grade serous ovarian cancer

HR Hazard ratio

ICB Immune checkpoint blockade

IRScore Immune-related signature score

MCM Minichromosome maintenance

MSCs Mesenchymal stem cells

MSI Microsatellite instability

MSS Microsatellite stability

MSigDB Molecular Signatures Database

NES Normalized enrichment score

NK Natural killer cell

pan-F-TBRS Pan-fibroblast TGF-b response signature

PD Progressive disease

PD-1 Programmed cell death 1

pDCs Plasmacytoid dendritic cells

PR Partial response

pMMR Proficient mismatch repair

RFS Recurrence-free survival

scRNA-seq Single-cell RNA sequencing

SD Stable disease

SP Single-positive cells

ssGSEA Single sample gene set enrichment analysis

SubMap Subclass mapping

Tcm Central memory T cell

Tem Effector memory T cell

Th1 Type 1 T helper cell

Th2 Type 2 T helper cell

TILs Tumor infiltrating lymphocytes

TME Tumor microenvironment

Tregs Regulatory T cells

UPR Unfolded protein response
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