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Circadian rhythms regulate various biological processes, such as cell division and

metabolism. Circadian rhythm disruption (CRD) is often associated with

malignant tumor progression and poor prognosis. However, the effect of CRD

on liver cancer prognosis has not been systematically analyzed or fully

elucidated. Here, we developed a method to quantify and assess intratumoral

CRD in a single-cell transcriptomic analysis of liver cancer and systematically

analyzed the role of CRD in tumor progression and prognosis. Furthermore, a

LASSO-Cox regression model based on 14 CRD genes was used to predict

overall patient survival across multiple datasets. We found that malignant cells

with highCRD scoreswere enriched in specificmetabolic pathways, such as fatty

acid metabolism and the trichloroacetic acid cycle. Intercellular communication

analysis suggested that CRD regulates chemokine-mediated interactions. With

the bulk transcriptomic datasets, we determined that LiverCRD scores were

significantly correlated with macrophage infiltration levels and could guide

targeted immunotherapy and chemotherapy strategies. In addition, LiverCRD is

also associated with the mutational landscape—for example, TP53 mutation

frequency was higher in high-CRD samples. Finally, the 14-gene-based LASSO-

Cox regression model could accurately predict overall patient survival across

datasets. In conclusion, Our proposed analysis reflects the relationship between

CRD and the immune environment in liver cancer, suggesting that CRD may

serve as a potential prognostic indicator. Our results may help guide targeted

anti-tumor strategies.

KEYWORDS

circadian rhythm disruption, liver cancer, single-cell transcriptomic analysis,
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Introduction

Liver cancer is a global health threat, and its incidence is

increasing worldwide (1). Hepatocellular carcinoma (HCC) is

the most common type of liver cancer, and hepatitis B virus

(HBV) and hepatitis C virus (HCV) infections (2) are key

pathogenic factors in the development of HCC. Although our

understanding of HCC pathophysiology has improved, this

knowledge has not yet been translated into clinical practice.

The dominant mutational drivers of HCC, such as TERT, TP53,

and CTNNB1, are difficult to target (3, 4). In addition, the

efficacy of translating molecular and immune classifications into

biomarkers to guide therapy remains under investigation.

Molecular subtypes of HCC have been defined according to

the primary molecular drivers and pathways or the immune

status of the tumor (5–7). The proliferative class accounts for

approximately 50% of HCC cases; it is enriched in TP53

mutations and FGF19 or CCND1 amplification and has the

worst prognosis. The non-proliferative tumor category accounts

for the remaining 50% of HCC cases, is more prevalent in

alcohol-related and HCV-related HCC, and has a better

prognosis. Our understanding of the molecular features of

HCC has been further improved via the classification of HCC

according to immune cell status: immune-activated, immune-

exhausted, immune-intermediate, and immune-excluded (8).

Immune-activated HCC (found in 20% of cases) exhibits high

active helper T (CD4+) and cytotoxic T (CD8+) cell infiltration

and is responsive to immune checkpoint inhibitor (ICI) therapy.

In contrast, immune-exhausted tumors are dominated by TGF-b
driven CD8(+) cell depletion. Immuno-excluded tumors,

representing the other end of the spectrum, are characterized

by a lack of T-cell infiltration, an increase in regulatory T cell

numbers, classical Wnt signaling, and other immunosuppressive

cascades. Immune-excluded tumors are predominantly resistant

to ICI therapy.

Circadian rhythm disruptions (CRDs) can lead to metabolic

and immune diseases (9, 10). In addition, the expression of core

clock genes and proteins is significantly attenuated in highly

malignant or aggressive tumors, suggesting that circadian

rhythms may be associated with cell differentiation (11). The

circadian clock alters tumor cell metabolism and controls tumor

development by interacting with non-clock transcription factors

(9, 12), ultimately affecting cell differentiation and proliferation.

On a molecular level, the biological clock is based on a
Abbreviations: HBV, hepatitis B virus; HCV, hepatitis C virus; Treg,

regulatory T; CRD, circadian rhythm disruptions; TFs, transcription

factors; ROR, retinoic acid receptor-related orphan receptor; RREs, ROR

response elements; CRGs, CRD-related genes; KEGG, Kyoto encyclopedia of

genes and genomes; IC50, the 50% inhibiting concentration; GDSC,

Genomics of Drug Sensitivity in Cancer; TIDE, tumor immune dysfunction

and exc lus ion; IPS , Immunophenoscore ; TCIA, The Cancer

Immunome Atlas.
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transcription–translation feedback loop (13). Multiple

transcription factors, nuclear receptors, and coregulators bind

to specific DNA recognition sequences, such as E-boxes, retinoic

acid receptor-related orphan receptor response elements, and D-

boxes, which engage in driving biological periodicity. The

circadian rhythm of tumor cells appears to be somewhat

disturbed compared to that of normal tissue. Meta-analysis

has revealed widespread misexpression of clock genes in

multiple human cancers (14). Notably, the abnormal

expression of clock genes appears to correlate strongly with

the stage or aggressiveness of various cancers. For example, the

biological clock is disrupted in advanced stages of Hodgkin’s

lymphoma (15). Clock genes are also more dysregulated in

triple-negative breast cancers than in other breast cancers (16).

Moreover, the circadian clock and cell differentiation are closely

linked. The core clock is not clearly expressed in undifferentiated

pluripotent stem cells, but it gradually manifests with cell

differentiation and biological development (17). However, the

molecular function and mechanism of circadian rhythm

disruption in liver cancer have not yet been elucidated.

Therefore, it is necessary to systematically analyze the

relationship between circadian rhythm disruption and tumor

progression in liver cancer.

In this study, we employed a computational method to

calculate and assess intratumoral CRD in liver cancer cells

using a single-cell transcriptomic dataset. CRD scores

predicted tumor responses to immune checkpoint blockade

(ICB) therapy and can guide targeted strategies for

chemotherapy. Furthermore, a LASSO-Cox regression model

based on 14 CRD genes was used to predict overall patient

survival across multiple datasets. Through systematic analysis,

we aimed to determine the role of circadian rhythm disruption

in tumor progression and prognosis. Targeted drug prediction

analysis can provide new therapeutic strategies for combination

antitumor therapy.
Materials and methods

Datasets

In this study, we analyzed two publicly available single-cell

transcriptome datasets on liver cancer annotated with clinical

information (18). We integrated and normalized the two

datasets according to a previously reported pipeline (19). The

merged single-cell transcriptome data were log-normalized and

scaled for downstream analysis using Seurat V4.0.1. In addition

to single-cell transcriptome data, we downloaded multiple bulk

liver cancer transcriptome datasets and their corresponding

clinical information to verify results obtained from the merged

single-cell transcriptome datasets. The log2 normalized and

transformed gene expression matrix of the Cancer Genome

Atlas Liver Hepatocellular Carcinoma (TCGA-LIHC) dataset
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was downloaded from the University of California, Santa Cruz

(UCSC) Xena browser (ht tps : / /xenabrowser .net / ) .

Transcriptomic and clinical data from 159 pairs of tumor and

normal samples taken from Chinese HCC patients with HBV

infection were downloaded from the National Omics Data

Encyclopedia database (https://www.biosino.org/node/) using

the accession number OEP000321 (20). The LIRI-JP dataset,

including transcriptome data from 231 HCC samples, was

downloaded from the International Cancer Genome

Consortium Data Portal (https://dcc.icgc.org/). Gene

expression microarray data and detailed clinical information

on GSE14520 (21) (including 221 HCC samples) were

downloaded from the Gene Expression Omnibus database

(https://www.ncbi.nlm.nih.gov/geo/).
Liver CRD score calculation

CRD-related genes (CRGs) were collected from the CircaDB

database (22). We employed gene set enrichment analysis to

infer the CRD level of each cell based on the CRG expression

matrix. First, we normalized all the sample matrices to minimize

the effect of outliers. The relative ranking of CRDs among all

genes reflects the overall CRD status of the sample. We used

single-sample gene set enrichment analysis (ssGSEA) to

calculate the relative CRD enrichment score of each sample

(LiverCRD score), which represented the CRD status of the

sample. We then employed a random sampling strategy to

determine the abnormal gene set activity score. All genes were

divided into 50 expression bins based on their average

expression. The number of occurrences of CRGs, that is, their

frequency within each bin, was calculated and identified as N.

Based on random sample N timings, random signature genes

from each bin were chosen. In other words, the total number of

random signature genes K matched the number of CRGs. This

process was repeated 1000 times at random. We then created a

random score as the mean of the K x 1000 random signatures

sampled to define the background level of CRGs. The threshold

for determining abnormal CRD levels was set at 75% based on

quartiles, which was -0.24.
Weighted correlation network analysis

We performed a weighted correlation network analysis

(WGCNA) (23) to identify CRGs significantly associated with

one or more clinical properties of the samples. This analysis was

performed using the R package WGCNA V1.70-3. We screened

the gene modules that were significantly positively correlated

with the tumor stage (p< 0.05). Finally, 206 genes were screened

for subsequent analysis and modelling.
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Intercellular communication analysis

We used data obtained from CellphoneDB (24) to analyze

intercellular interactions. First, we investigated whether there

was significant interaction (p< 0.05) between the two cell types

(tumor and normal) by evaluating the average expression levels

of annotated ligand-receptor pairs in the STRING database (25).

Ligand-receptor pairs associated with p< 0.05 were subsequently

screened to evaluate the relationship between the two cell types.

Given that cytokines are critical for intercellular communication

in cancer progression, we further analyzed cytokine signaling

activity in the transcriptomic profile using CytoSig (26) to

predict the effect of cytokines from the transcriptome-level

signaling cascade.
Differential expression and pathway
enrichment analysis

The differentially expressed gene levels of samples in the

high-CRD and low-CRD groups were calculated using the R

package DESeq2 V1.30.1 (27). We set FDR< 0.05 and |log2FC| >

1 as the criteria for differentially expressed genes. Pathway

enrichment analysis based on cancer hallmarks and the Kyoto

Encyclopedia of Genes and Genomes (KEGG) signaling (28)

pathway was conducted using the enricher function of the R

package clusterProfile V3.18.1 (29).
Immune and stromal infiltration

We used CIBERSORT (30) to determine the relative

composition of immune cells in TCGA-LIHC samples based

on the gene expression matrix. The overall immune and stromal

infiltration levels were estimated using the R package Estimate

V1.0.13 (31).
Drug susceptibility and immunotherapy
response analysis

We downloaded gene expression matrices and half-maximal

inhibitory concentration (IC50) values of 805 cell lines treated

with 198 drugs from the Genomics of Drug Sensitivity in Cancer

(GDSC) database (32). Based on this training dataset, we used

the R package oncoPredict V0.2 to build a ridge regression

model and predict the response of each TCGA sample to each

drug. The change in response of the high-risk and low-risk

groups to each drug represented the difference in drug response

between the two groups. Tumor immune infiltration data were
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downloaded from the Tumor Immune Dysfunction and

Exclusion (TIDE) database (http://tide.dfci.harvard.edu/

download/). Immunophenoscores (IPSs) were downloaded

from the Cancer Immunome Atlas (https://tcia.at/home).

Higher tumor-infiltrating cell exclusion scores and lower IPSs

predicted poorer responses to immunotherapy.
Mutation analysis

Somatic mutation data on the TCGA-LUAD samples were

downloaded from the UCSC Xena browser (https://xenabrowser.

net/). The mutational landscape and somatic mutation interactions

of samples with high and low CRD levels were analyzed using

maftools V2.6.05. Among the various types of mutations, Missense,

Nonsense, Frame_Shift_Ins, Frame_Shift_Del, In_Frame_Ins,

In_Frame_Del, Splice_Site, Translation_Start_Site, and Nonstop

were considered nonsynonymous mutant variants. Silent and

other types of mutations, including introns, 3’ untranslated

regions, 5’ untranslated regions, and intergenic regions, were

considered synonymous mutant variants. Synonymous mutations

were also considered wild-types because they did not affect proteins.

Frameshift and nonsynonymous mutant variants were encoded as

truncating mutations, consistent with previous studies (33).

Mutation proportions were assessed using one-sided Z-tests and

two-sided c2 tests. Statistical significance was set at p< 0.05.
Prognostic model construction

To better apply CRD scores in clinical sample analysis and

make it possible to evaluate patient prognosis, we used the

LASSO-Cox regression model to screen potential genes

significantly associated with prognosis based on the 206 CRGs

that were significantly positively correlated with the tumor stage.

After 1,000 permutations and cross-validation, 14 genes were

screened. Linear combinations of these genes (based on their

expression levels) were used to calculate the CRD scores of the

HCC samples from each patient. The minimum criterion

determined the regression coefficient. The final CRD risk score

of each sample was calculated as follows:

CRD risk score  =  0:112� ENO1 +  0:077� STMN1 +  0:108

� SLC1A7 +  0:055� RAB13 +  0:019

� SRPRB +  0:019� UGDH −  0:039

� RCAN2 + 0:201�HILPDA +  0:042

�WEE1 +  0:159�HSPA8 +  0:022

� BAMBI −  0:383� P2RX1 −  0:053� UBB

+  0:048�MAFG
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We subsequently divided the samples into high-risk and

low-risk groups based on the median CRD score. The statistical

significance of overall survival (OS) was determined using the

log-rank test and visualized as Kaplan–Meier curves using the R

package survminer V0.4.9.
Results

Malignant cells with CRD correlate with
disease phenotypes

Most patients in both single-cell transcriptome datasets

received PD-1 or PD-L1/CTLA-4 monoclonal antibody

therapy and predominantly exhibited stage IV liver cancer

development (Figure 1A). The cell numbers identified for each

patient ranges from 109 to 1, 416. The merged, regrouped, and

annotated single-cell transcriptome datasets are shown in

Figures S1A, B. As shown in Figures 1B, C, malignant cells

differed significantly between patients, whereas immune cells

were more consistent. The epithelial score of malignant cells was

markedly higher than that of stromal and immune cells (Figure

S1C), which is consistent with previous studies (34). Marker

genes in different clusters were highly expressed in specific

immune cells (Figure S1D), further supporting the accuracy of

our clustering. Based on the collected CRGs (Table S1), the CRD

score of malignant cells was significantly higher than that of

other cells, indicating that the malignant cell cycle was more

severely disordered (Figure 1D). We further divided the

malignant cells into groups with high, medium, and low CRD

scores (Figure S1E). We found that cells with a high CRD score

were enriched in various metabolic signaling pathways. In

contrast, cells with a low CRD score were significantly

enriched in signaling pathways such as cell junctions

(Figure 1E). Moreover, the CRD score of malignant cells

varied widely between different samples (Figure 1F), indicating

that liver cancer has high intratumoral heterogeneity.

We subsequently screened for CRGs associated with clinical

factors. First, we used the WGCNA method to analyze the single-

cell transcriptome matrix (Figure S2A) and divide the CRGs into

multiple modules (Figure 1G). The relationship between core genes

and clinical variables in each module was then calculated

(Figure 1H), and genes significantly associated with these

variables were identified (Table S2). We found that these genes

were greatly enriched in tumorigenesis and development-related

signaling pathways, such as epithelial-mesenchymal transition,

MAPK signaling, P53 signaling, hypoxia, and cytokine receptor

interaction (Figure S2B), suggesting that these CRD scores are

closely related to the malignant progression of HCC. In addition,

the CRD score was significantly correlated with clinical variables,

such as age, sex, cancer stage, and the viral infection status of the

samples (Figure 1I).
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CRD remodels cellular communication in
the tumor microenvironment

Cytokine interactions between immune cells and malignant

cells in the tumor microenvironment (TME) have always been the

focus of research in antitumor immunotherapy (35, 36). Owing to

the significant enrichment of cytokine interaction signaling

pathways reported in Section 3.1, we speculated that cells in the

high-CRD and low-CRD groups and immune cells in the TME are

also involved in other types of intercellular communication. We

thus used the CellphoneDB to analyze intercellular interactions and

construct an intercellular communication network (Figure 2A).

Notably, among the chemokines, high-CRD and low-CRD groups

exhibited distinct intercellular communication with immune cells

(Figure 2B), including CCL20, CXCL12, and CCL5, all of which

were affected by CRD. In the low-CRD group, the accumulation of

CCL5/CCR5, CCL5/ACKR1, and CXCR3/CCL20 suggests the

accumulation of CD8(+) T cells. These results indicate that the

low-CRD groupmay have had a higher level of immune infiltration.

In comparison, the high-CRD group may have had a lower level of

immune infiltration and inconsistent immunotherapy responses.
Frontiers in Immunology 05
We also compared immune co-suppressive factors (Figure 2C) and

immune co-stimulatory factors (Figure 2D). However, we did not

find significant differences between the low-CRD and high-CRD

groups. To our knowledge, in the tumor microenvironment,

chemokines can be expressed in various types of cells, and their

expression levels are high, while stimulatory factors and inhibitory

factors are not much detectable, and their expression levels are also

limited. Therefore, chemokine expression is more easily detected

and differential chemokines are more easily identified, so it is easier

for us to find differences in chemokines from the results.

Cytokines are critical for intercellular communication in cancer

progression (37). To investigated whether CRDs regulate cytokine

signaling activity, we calculated the cytokine activities at the single-

cell level. As shown in Figure 2E, cytokines such as IL17A and IL1A

were upregulated in TAM, and cytokines such as MCSF, IL3, IGF1,

and INS were significantly upregulated in the high-CRD group.

IL17A and IL1A are two well-known regulators of macrophages

(38, 39), indicating the correctness of the cytokine activity we

calculated. MCSF is the macrophage colony-stimulating factor

that regulate the differentiation of myeloid lineage cells (40), and

IL3 plays functional role on regulating the myofibroblastic
B C

D E F

G H I

A

FIGURE 1

Circadian rhythm disruption (CRD) heterogeneity across different sample origins in malignant cells. (A) Clinical and molecular properties of liver
cancer patient samples from the scRNA dataset. (B) Uniform manifold approximation and projection (UMAP) of malignant and non-malignant cells
obtained from patients. (C) UMAP of all cells obtained from patients. (D) CRD score of cells calculated via single-sample gene set enrichment
analysis. (E) Differences in pathway enrichment between high-CRD and low-CRD groups. (F) CRD score distribution across patients. (G) Division of
CRD-related genes (CRGs) into multiple modules. (H) Correlation between different gene modules and clinical variables. (I) Correlation between
CRD scores and clinical indicators (age, gender, cancer stage, and viral infection status).
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differentiation (41). The diversity of CRD scores suggests differences

in the TME composition—CRD may be a significant regulator of

immune cell accumulation in HCC.
CRD status correlates with tumor
progression and the immune
microenvironment

Based on the CRGs related to clinical variables screened in

Section 3.1, we used the ssGSEAmethod to evaluate the CRD status

of the bulk samples. We defined the enrichment score as the

LiverCRD score (Table S3), which significantly correlated with

tumor stage (Figures 3A, S3A). We further divided the samples

into high and low median scores and compared their gene

expression and pathway activity levels (Figure 3B and Table S4).

Similar to the single-cell transcriptome results in Section 3.1, in both

the cancer hallmark and KEGG signaling pathway datasets, we

observed the differential activation of many metabolism-related

signaling pathways, such as bile acid and fatty acid metabolism.

This coincided with the activation of many signals related to tumor

development, such as the MYC signaling pathway, E2F target,
Frontiers in Immunology 06
oxidative phosphorylation, interferon response, and mTOR

signaling pathway (Figures 3C, D).

These results suggest that CRD is likely associated with the

remodeling of the immune microenvironment. Although the

LiverCRD and immune/stromal infiltration scores estimated

using the Estimate algorithm did not significantly correlate with

each other (Figure S3B), the two groups exhibited significant

differences in T cell and macrophage levels (Figure 3E). Many

immune checkpoints were higher in the high-LiverCRD group

(Figure S4A), and the expression of immune checkpoints, such as

PD-1 and CTLA-4, was significantly positively correlated with the

LiverCRD score (Figure S4B). Many immune-related molecules,

such as MHC molecules, immune stimulators, and immune

inhibitors, were regulated by CRD (Figure 3F). Based on immune

cell exclusion and dysfunction levels downloaded from the TIDE

database, the high-LiverCRD group had a higher level of immune

cell rejection (Figure S4C). Our predictions suggested that the high-

LiverCRD group had worse response to immunotherapy than the

low-LiverCRD group (Figures 3G, S4D). These results reflect those

of a previous single-cell transcriptome analysis, which showed that

the immunemicroenvironment of the high-CRD group had a lower

level of immune infiltration and lower CD8(+) T cell content than
B

C

D

E

A

FIGURE 2

Intercellular ligand-receptors and cytokine‐related pathway network analysis. (A) Intercellular communication networks among malignant and non-
malignant cells. Interactions between malignant cells and other cell subpopulations through ligan-receptors (LRs) are divided into (B) chemokines,
(C) co-stimulatory factors, and (D) coinhibitory factors. P-values are indicated by circle size, and the average expression level of LRs is indicated by
color. (E) Summary of signaling activities of representative cytokines in multiple cell types.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1011264
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2022.1011264
the low-CRD group (42). Based on the gene expression matrix and

IC50 value of the GDSC database, we constructed a ridge regression

model to predict the drug response of TCGA samples (Table S5).

The high-LiverCRD group responded better to MDM2, MEK, and

mTOR inhibitors than other drugs (Figure 3H), reflecting the

higher activity of these pathways in the high-CRD group in the

previous analysis.
CRD status affects the mutational
landscape

The precise regulation of the cell cycle relies on a series of

regulatory molecules, among which mutations are particularly

critical (43). We thus analyzed the mutational landscape of the

high-CRD and low-CRD groups (Figure 4A). As shown in

Figure 4B, TP53 and MYO18B more frequently mutated in the
Frontiers in Immunology 07
high-CRD group than the low-CRD group. In addition, TP53

mutations in the high-CRD group were more likely to be

enriched via truncating mutations that affect protein function.

In contrast, the number of TP53 mutations in the low-CRD

group that did not affect protein function was relatively high

(Figure 4C), suggesting that CRD may be regulated by TP53

mutation status. Notably, although ARID1A mutation levels and

types were not significantly different between the two groups

(Figure 4D), ARID1A mutations were associated with lower

patient survival rates in the high-CRD group than in the low-

CRD group (Figure 4E), suggesting that ARID1A mutations in

the former were affected by factors performing different

functions. We also compared the somatic mutation

interactions between the two groups. Although the two groups

of mutations generally co-occurred, the specific crosstalk

differed between them (Figure 4F). The ARID1A/VCAN,

KMT2C/UBR4, and LAMA1/CSMD1 pair mutations co-
B C

D E
F

A

G H

FIGURE 3

Functional analysis of the CRD enrichment (LiverCRD) score and liver hepatocellular carcinoma immune signature. (A) Differences in the distribution
of LiverCRD scores at different TNM stages. (B) Differentially expressed genes between high-risk and low-risk subgroups. (C) Hallmark enrichment
analysis of the distribution of LiverCRD) scores. (D) Kyoto Encyclopedia of Genes and Genomes enrichment analysis of LiverCRD score distribution.
(E) Differences in immune cell distribution between high-risk and low-risk subgroups. ns means P > 0.05, * means P ≤ 0.05, ** means P ≤ 0.01, ***
means P ≤ 0.001, **** means P ≤ 0.0001. (F) Relationship between LiverCRD scores and immune modulators. (G) Distribution of patient
immunophenoscores under anti-CTLA-4 and anti-PD-1 treatment between high-CRD and low-CRD subgroups. (H) Differences in drug response
between high-risk and low-risk subgroups.
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occurred in the high-CRD group. The MUC2/AHNAK,

PRKDC/SLIT2, and MUC16/MUC2 pairs of mutations co-

occurred in the low-CRD group.
Fourteen-gene signature predicts
survival in patients with liver cancer

After 1,000 permutations and cross-validation, we

determined the parameters of the LASSO-Cox regression

model (Figure 5A). The model was constructed using 14 genes

and calculated their respective regression coefficients (Figure 5B

and Table S6). As shown in Figure 5C, patients who died had

significantly higher CRD risk scores, indicating that CRD risk

significantly affected patient survival (Figure 5D). As shown in

Figure 5E, the median survival times of the high-risk and low-

risk groups were approximately 800 and 2,500 days, respectively.

We verified the robustness of the high-risk scores using three

independent datasets. As shown in Figure 5F, the CRD risk
Frontiers in Immunology 08
scores of different datasets significantly correlated with the

hazard ratio, and their respective patient survival curves also

differed significantly (Figure S5). Although these datasets were

sequenced by various countries, the survival analysis was

performed within a single dataset, and survival differences

were consistent across datasets. These results suggest that the

CRD risk score is a robust indicator of survival in HCC patients.

Compared with clinical factors, the CRD score could assess

patient risk similarly to tumor stage (Figure 5G). Time-

dependent receiver operating characteristic curve analysis also

indicated that the CRD risk score was effective in assessing

patients 1-, 3-, and the effect was stable in the 5-year survival

state (Figure 5H). In addition, we constructed a nomogram for

multivariate analysis, showing that the CRD risk score predicted

overall survival (Figure S6A). Calibration curves showed that the

CRD risk score did not deviate significantly from the actual value

in predicting one-, three-, and five-year patient survival (Figures

S6B–D, respectively). These results suggest that the CRD risk

score is a suitable indicator for monitoring HCC patient survival.
B

C D E

F

A

FIGURE 4

Mutation differences between the high-CRD and low-CRD groups. (A) Mutational landscapes of high-CRD and low-CRD groups. (B) Forest plot
of differentially mutated genes in high-CRD and low-CRD patients. (C) Lollipop chart of TP53 protein mutation sites. (D) Lollipop chart of
ARID1A protein mutation sites. (E) Kaplan–Meier survival curves for patients in high-LiverCRD and low-LiverCRD groups in relation to ARID1A
mutation. (F) Mutation co-occurrence and difference in mutually exclusive patterns between high-CRD and low-CRD groups.
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Discussion

Circadian rhythm disruptions affect the metabolism of tumor

cells and control the progression of tumor development by

interacting with non-clock transcription factors, ultimately

affecting cell differentiation and proliferation (9–11). As the

circadian clock is intimately involved in regulating the metabolism

in peripheral tissues, and because most metabolite levels in the liver

and serum are controlled in a cyclical manner (44), the regulation of

CRD and cancer metabolism has become a research hotspot. Meta-

analysis has revealed widespread misexpression of clock genes in

multiple human cancers (14). Notably, the abnormal expression of

clock genes appears to correlate strongly with the stage or

aggressiveness of various cancers. In this study, we employed a

computational method to calculate and assess intratumoral CRD in

liver cancer cells using a single-cell transcriptomic dataset. CRD

scores predicted tumor responses to ICB therapy and can guide

targeted strategies for chemotherapy. Furthermore, a LASSO-Cox

regression model based on 14 CRD genes was used to predict overall
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patient survival across multiple datasets. Through systematic

analysis, we aimed to determine the role of circadian rhythm

disruption in tumor progression and prognosis. Targeted drug

prediction analysis can provide new therapeutic strategies for

combination antitumor therapy.

Our results suggest that circadian rhythm disruptions regulate

the activity of various metabolic pathways, such as bile acid and fatty

acid metabolism. We also observed abnormal perturbations of the

MYC and the p53 signaling pathways. The MYC protein has been

reported to play an essential role in regulating rhythmic metabolism

in cultured U2OS human osteosarcoma cells (12). The oncogenic

potential of MYC is due to its ability to activate gene expression

related to cell survival and proliferation (45). Ectopic MYC

expression disrupts circadian gene expression (46). The MYC

protein activates the negative transcriptional arm of the circadian

clock and stimulates metabolic sensing pathways such as AMPK,

ultimately leading to increased glucose and glutamine consumption

(12). p53 is a transcription factor that regulates cell cycle arrest and

apoptosis through activation (47). Important cell-cycle checkpoint
B C

D E F

G H

A

FIGURE 5

Evaluation of the prognostic value of CRDs. (A, B) Parameters of the LASSO-Cox regression model after 1,000 permutations and cross-
validation. (C) CRD risk scores in relation to patient survival. (D) Receiver operating characteristic curves of patients in the high-risk and low-risk
groups of the Cancer Genome Atlas (TCGA) dataset. (E) Kaplan–Meier survival curves of patients in the high-risk and low-risk groups of the
TCGA dataset. (F) Forest plot of the LASSO-Cox analysis of the TCGA and three validation datasets. (G) Forest plot of the LASSO-Cox analysis of
the TCGA dataset based on CRD risk scores and clinical variables. (H) Time-dependent area-under-the-curve value of the TCGA and three
validation datasets.
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functions are provided by p53-mediated arrest. p53 protects

chromosomal integrity and increases cell longevity by halting cells

in the G1 phase and enabling time for the repair of possibly lethal

double-strand breaks. p53 also regulates a series of genes involved in

DNA recombination and repair (48). After ionizing irradiation, p53-

null cells display impairments in the repair of double-strand breaks

in heterochromatin and have worse long-term survival (49). These

results illustrate that oncoproteins disrupt circadian function and

subsequently affect cellular functions.

We found that cells with a high CRD score were enriched in

various metabolic signaling pathways. In contrast, cells with a low

CRD score were significantly enriched in signaling pathways such

as cell junctions. In the low-CRD group, the accumulation of CCL5/

CCR5, CCL5/ACKR1, and CXCR3/CCL20 suggests the

accumulation of CD8(+) T cells, which indicated that the low-

CRD group may have had a higher level of immune infiltration.

Interestingly, metabolic reprogramming occurs frequently in cancer

cells, which induce a reprograming of tumor microenvironment

(50). The significantly enriched pathways in high-CRD group, such

as fatty acid metabolism and TCA cycle, were proved to induce a

immunosuppression environment. These results provided a

potential insight of circadian rhythm disruption in regulating

tumor microenvironment reprogramming. This study also

provided further evidence suggesting that CRD may inhibit T cell

aggregation by inhibiting the expression of CCL5 (51). This

chemokine regulates T cell entry into the TME and may thus

play a crucial role in T cell infiltration in solid tumors (52). This also

explains why immunotherapy in the high-CRD group was not

viable. Our subsequent analysis provided potential chemotherapy

regimens for this type of tumor, including MDM2, MEK, and

mTOR inhibitors. Notably, mTOR inhibition slows the circadian

clock and suppresses clock oscillations, whereas mTOR activation

accelerates and enhances clock oscillations (53). Lastly, MEK

inhibitors are critical for regulating circadian clock activity (54).

We also found that ARID1A mutations lead to different

survival outcomes in different subgroups, which is indeed an

interesting discovery. ARID1A mutations were found in over 30%

of various cancer types (55, 56). Previous studies found that the

majority of ARID1A mutations are inactivating mutations, which

lead to loss of ARID1A expression (57, 58). In ARID1A-deficient

tumors, the cell cycle checkpoint proteins ATM/Chk2 axis is

inhibited (59), thereby alters the expression of key cell cycle

regulators (60). Therefore, we speculate that ARID1A mutations

may exacerbate circadian rhythm disruption, which lead to different

survival outcomes. What’s more, a fourteen-gene based LASSO-

Cox regression model was used to predict overall patient survival

across multiple datasets. The most correlated gene hypoxia-

inducible lipid droplet-associated (HILPDA) is differentially

expressed in various tumors (61). HILPDA could act as an

oncogenic factor modulating cell cycle pathway, which represent

a novel biomarker of tumorigenesis (62).

However, limitations still exist. The data we used all rely on

public datasets, and it is necessary to measure our own
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sequencing data for analysis in the future. Furthermore, our

conclusions are mainly obtained by bioinformatics analysis and

lack critical experimental validation. Although we performed

cross-validation on multiple datasets to evaluate the robustness

of the model, immunohistochemical validation of the expression

of these modeled genes was necessary. Finally, we expounded the

function and clinical significance of CRD in liver cancer, but the

molecular mechanism is still lacking. We need to carry out

exhaustive verification of our analysis results in the future to

clarify the biological mechanisms of CRD in liver cancer.

In conclusion, we systematically analyzed the carcinogenesis

mechanism of CRD and assessed the intratumoral CRD level of

liver cancer based on single-cell transcriptome data. A LASSO-

Cox regression model constructed based on 14 genes was

accurately predicted the overall survival of patients in multiple

datasets, suggesting that CRD can potentially be used as a

prognostic indicator. These results form a basis for regulating

tumor progression and guiding potential targeting strategies.
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