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Microglial cells: Sensors for
neuronal activity and
microbiota-derived molecules
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Rome La Sapienza, Rome, Italy, 2IRCCS Neuromed, Pozzilli (IS), Italy
Microglial cells play pleiotropic homeostatic activities in the brain, during

development and in adulthood. Microglia regulate synaptic activity and

maturation, and continuously patrol brain parenchyma monitoring for and

reacting to eventual alterations or damages. In the last two decades microglia

were given a central role as an indicator to monitor the inflammatory state of

brain parenchyma. However, the recent introduction of single cell scRNA

analyses in several studies on the functional role of microglia, revealed a not-

negligible spatio-temporal heterogeneity of microglial cell populations in the

brain, both during healthy and in pathological conditions. Furthermore,

the recent advances in the knowledge of the mechanisms involved in the

modulation of cerebral activity induced by gut microbe-derived molecules

open new perspectives for deciphering the role of microglial cells as possible

mediators of these interactions. The aim of this review is to summarize the

most recent studies correlating gut-derived molecules and vagal stimulation,

as well as dysbiotic events, to alteration of brain functioning, and the

contribution of microglial cells.
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Introduction

Microglia are multitasking cells that naturally respond to pathogens and maintain

central nervous system (CNS) tissue integrity and functionality throughout life (1, 2). In

the last decade, many studies deeper investigated on microglia phenotyping and

functioning with new straightforward techniques in healthy and diseased brain (3, 4).

In parallel, an increasing number of new data displayed the ability of gut microbiota in

modulating microglia functions in healthy as well diseased conditions. Intrinsic and

extrinsic factors such as host genetics, diet, lifestyle and drug use can significantly impact

the gut microbiota, shaping both the microbial community and the pools of microbiota-
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derived metabolites (5–8). Here, we firstly summarize relevant

studies on microglia identity and functions; then, we collected

information on how microbiota-derived signals such as short

chain fatty acids (SCFA), lipopolysaccharide (LPS), tryptophan

derived molecules, vagal nerve stimulation and microbiota

alteration affect the microglial phenotype and functions during

steady-state and pathological conditions.
Microglia: The brain
resident macrophages

Microglia control cerebral homeostasis

Microglia are the resident macrophages of the CNS that

contribute to the innate immune surveillance of the brain and its

homeostasis (9–11). Microglial cells derive from erythro-

myeloid yolk sac precursors and before the maturation of the

blood-brain barrier (BBB), they colonize the mouse brain at

embryonic day 9.5 (12). Here, these cells proliferate and

distribute throughout the CNS becoming the only myeloid

cells in the healthy brain parenchyma (13); other myeloid

cells, derived from the bone marrow, reside in the peri-

parenchymal regions (perivascular and meningeal spaces) (14),

or enter the brain only in pathological conditions (15). Microglia

account for about 10% of brain cells, with some regional

differences (16–18) and, together with astrocytes and

oligodendrocytes, contribute to the non-neuronal part of the

brain that supports the CNS environment (19). Microglial cells

can be identified by specific markers, such as Transmembrane

Protein 119 (TMEM119), Purinergic Receptor P2Y12 (P2RY12),

and the Spalt-like transcription factor (SALL1) (20), however

many of them are shared with macrophages (3). Alteration of

certain markers such as the triggering receptor expressed on

myeloid cells 2 (TREM2) and the Colony Stimulating Factor-1

receptor (CSF-1R) correlates with neurodegenerative diseases

(21) and leukodystrophy (22) respectively indicating the

important role played by these cells in the homeostatic control

of CNS. Microglia continuously patrol cerebral parenchyma

through their cellular processes and quickly react to

pathological signals derived from acute and chronic injuries,

neurodegenerative processes, or physiological aging (9, 11, 23).

Microglial response to insults is often referred to as “activation”

and includes migration or process extension to the damaged site,

cell proliferation, phagocytosis, and production of soluble

molecules (19); however, it must be mentioned that

“activation” does not identify unique microglial phenotypes or

functions. In particular, microglia may assume an ameboid-like

or highly ramified shape upon different stimuli, increase or

reduce its phagocytic activity and produce a number of

cytokines, chemokines, and growth factors that may affect

other glial or neuronal cell activities.
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Microglia secrete trophic and
repair factors

According to the homeostatic role of microglia, these cells

are able to secrete molecules that participate in the immune

surveillance of the brain and produce neurotrophic factors

important to neuronal homeostasis. In particular, microglial

brain-derived neurotrophic factor (BDNF), is one of the main

factors that regulates synaptic plasticity and spines density (24–

26). Other evidence supports the involvement of microglia in the

maturation and functioning of other brain cells. For instance,

microglia-conditioned media pursue the differentiation program

of neural stem/precursor cells (NSPCs) and oligodendrocyte

precursor cells (OPCs) into astrocytes (27) and mature

oligodendrocyte (28), respectively. Among the roles played by

microglial cells to maintain cerebral homeostasis, tissue repair is

one of the most prominent. As mentioned above, microglia

constantly monitor the cerebral parenchyma, controlling

neurons and their activity, performing a rapid response against

intruders, and eliminating debris present throughout the

cerebral environment. However, after injury or neural damage,

microglia are also involved in tissue repair, through the release of

molecules such as BDNF, tumor necrosis factor-alfa (TNFa),
and Arginase-1 (29) that promote recovery from damage.

Myelination is one important aspect of the recovery processes

that involve microglia; this process requires iron, an important

co-factor for oligodendrocytes (30), and microglia are the

principal suppliers of this metal. Microglia also affect the re-

myelination of damaged neurons with the release of molecules

that promote the proliferation and differentiation of

oligodendrocyte progenitor cells (OPC) (31). Re-myelination is

a regenerative process that occurs even upon diseases such as

multiple sclerosis (MS) but often fails in the progressive phase of

the pathology (32). Tissue repair is a process that occurs after a

natural immune response; however, an excessive phagocytic

activity could damage tissues (33). To understand the role of

activated microglial cells in tissue repair after an injury, Cunha

and colleagues performed experiments in zebrafish and mice

deleted from myeloid differentiation primary response gene 88

(MyD88), an adapter protein involved in cell-mediated immune

response. In particular, they highlighted the importance of the

pro-inflammatory phenotype in microglial cells to induce

degradation and clearance of phagocytic myelin and to

increase oligodendrogenesis (34). It has been widely accepted

that regenerative properties are linked to the activity of immune

cells; this is due initially to the activation of the pro-

inflammatory phenotype that increases the proliferation of

OPCs and, later, during the late phase of the immune

response, microglial cells acquire an anti-inflammatory

phenotype that releases growth factors that promote OPC

differentiation (35). These results show the functions of

microglia, from development to adult life, indicating not only
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the immune activity performed by these cells but also their roles

in the maintenance of cerebral homeostasis
Microglia promote neural circuits
development and function

Another function performed by microglia in the CNS is to

control the formation of neuronal circuits. In particular, brain

circuits need microglia for proper development, functioning and

maintenance of their plasticity. Microglia cells, similarly to

macrophages, exhibit phagocytic activity, a receptor-mediated

process that recognizes, engulfs and eliminates dead cells, bacteria

or cellular debris. Among the receptors involved in this process are

the toll-like receptors (TLR) that recognize microbial pathogens

and TREM2, activated against apoptotic cells (36). During

development, neuronal cells move to reach their final destination,

but a high number of newborn cells will be eliminated before,

during, and after the journey has been completed. This elimination

mainly results frommechanisms of programmed cell death (PCD)

(37). In vivo experiments indicated thatmicroglia playanactive role

in this process and that the alteration of microglial activity deeply

influences the elimination of neural precursor cells (NPCs) (38). It

has been demonstrated that mice lacking the fractalkine receptor,

C-X3-CMotif Chemokine Receptor 1 (CX3CR1), highly expressed

on microglial cells, showed an increase in the number of apoptotic

neurons in layer V of the cerebral cortex (39); this effect can be

related to the activity of insulin-like growth factor 1 (IGF-1) a

trophic factor implicated in NPC survival which is reduced in

CX3CR1-deficient mice (40, 41). The connection between

microglia and neural circuits, in addition to the normal building

of the brain network, sees these cells also involved in the formation

of memory. Synaptic plasticity is the neuronal event involved in

long-term potentiation (LTP), one of the molecular mechanism

that better explain the processes of learning and memory (42).

Elimination of microglia cells with clodronate affects LTP in the

hippocampal CA1 area, highlighting the role of these cells in the

organization and preparation of circuits for memory formation

(43). This key role is also observed during development, whenmice

lacking CX3CR1 show a reduction in both excitatory postsynaptic

currents and glutamate release (44). Another important aspect of

microglia in memory formation concerns the consolidation of the

engrams (45). The role of microglia in the maintenance of

memories is due to phagocytic activity and trogocytosis (46) that

eliminates synapses (47). Eliminating thenumber ofmicroglial cells

with CSF-1R inhibitors, or reducing their phagocytic activity

improves long-term effects on memory consolidation in mice

(45). According to these data, microglia may play important roles

in modulating neuronal elimination, The elimination of debris is

important for correct neuronal networking: blockade of microglial

CSF-1R affects their removal and neuronal connectivity (48).

Moreover, the correct formation of the mouse visual system

requires microglial activity for the pruning, which consists of the
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elimination of weaker or excessive synaptic connections, through

the activation of the CR3 complement receptor in the

retinogeniculate system (49). The pruning activity in this brain

region is not mediated by CX3CR1 (50), which, however,

contributes to the pruning of the barrel cortex and hippocampus

(51, 52), indicating a spatial functional heterogeneity of microglia

for the same activity. The application of high-throughput

approaches for the study of single-cell RNA-seq led to the

identification of microglial sensoma (53), common to a number

of degenerative neurological conditions, but also to the discovery of

spatially and temporallydifferentmicroglial clusters that opensnew

perspectives for amore precise understanding ofmicroglial roles in

the brain (54).
Identity and spatial heterogeneity

Microglial cells are characterized by dynamic changes from the

earlydevelopmentuntil adult life, transferring fromtheyolksacand

then migrating into the CNS (12), where they proliferate and

distribute to different areas (55); This activity highlights the

presence of intrinsic changes in microglia both at the

transcriptomic and functional levels, which ensure rapid

adaptation to the environment. These changes can not only be

related to the state of rest or activated microglia but highlight the

presence of time- and space-dependent molecular programs.

Recently, the use of advanced tools to study the gene expression

programs of cells allowed to highlight the differences induced by

space and time on myeloid cells (56). Matcovitch-Natan and

colleagues, using RNA sequencing (RNA-seq) studied microglia

geneexpression fromthe embryonic stageuntil the adult brain (57).

They described three microglial stages: the first, where microglia

express genes related to the cell cycle such as minichromosome

maintenance complex component 5 (Mcm5), and Disabled-2

(Dab2), the second, of pre-microglia, typical of the last

embryonal stage, characterized by genes related to neuronal

development such as Csf1, C-X-C Motif Chemokine Receptor 2

(Cxcr2) and, the last adult stage where microglia increase the

expression of genes such as Cluster of Differentiation 14 (Cd14),

Prostate transmembrane protein, androgen induced 1 (Pmepa1)

(57). Recent work further improved this RNA-seq analysis,

grouping the transcriptomic subpopulation of microglial cells

through an independent component analysis (58). With this type

of analysis Hammond and colleagues identified nine different

microglial clusters in mice, with some genes predominant at

specific ages, others common to all stages (Complement C1q A

chain, C1qa; FC receptor-like S, Fcrls; Trem2) and others only

transiently expressed (59). During the first stages of development,

they observed the greatest variety of gene expression, which is

reduced with time, becoming similar in the juvenile and adult

phases. A similar description of microglial gene expression at the

single cell level was obtained by Masuda (54). The spatial

heterogeneity of microglia in different brain regions is not new
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(60); however, inMasuda’swork, this type of investigation has been

extended to microglia under both physiological and pathological

conditions. The homeostaticmicroglia have been classified into ten

clusters segregated into two main groups belonging to the

embryonic (C1-C6) and postnatal (C7-C10) stages. In the

embryonic stage, these microglia groups are segregated in the

embryonic CNS, as well as after birth where clusters are divided

both spatially and temporally. In particular, in youngmice, the C10

cluster of microglia was present in both the cortical region and in

the hippocampus, whereas the C7 cluster was predominantly

present in the cerebellum and corpus callosum of the adult (54).

These data acquire a particular interest because they describe the

different subtypes of microglia not only during the developmental

phase but also in adult life, where the spatial distribution plays an

important role in the characterization ofmicroglia subpopulations.

Interestingly, after an injury, specific microglia subtypes were

recruited after three (C11) and fourteen (C12-C13) days, again

indicating the presence of time-dependent phenotypes (54).

Although they found several transcriptional models of gene

expression in microglia, it is difficult to say whether these

changes are related to different clusters, or rather they could

represent a microglial adaptation to the environment. Microglia

clustering is not a prerogative of the brain, but it has been also

described in the spinal cord. This was confirmed by Tansley and

colleagues by single-cells RNA sequencing (scRNA-seq) in both

male and female mice in a nerve injury model. Interestingly, they

confirmed the existence of several subpopulations of microglia,

mostly belonging to six clusters; however, the situation changes

after nerve lesions in different sexes. Male mice were characterized

by a large transcription of pro-inflammatory genes, but the same

intensitywasnot found in females, indicating an intrinsic difference

between the two sexes to painful reactions. However, despite the

different initial pro-inflammatory intensity, the immune response,

after the injury, followed the natural course towards an anti-

inflammatory transcriptional program (61). In addition, to

confirm a different transcription program between the two sexes,

they foundanactivated immunecluster (C9)only inmalemiceand,

in females, a less intense proliferation program (61). Collectively,

these papers, summarized inTable 1, have highlighted the existence

of different microglial subpopulations that share common

transcriptional programs, but that can quickly change based on

different temporal and spatial signals from the environment or by

the host.
Microglia functions in the brain

Microglia in healthy brain

Microglia represent the resident myeloid cells that inhabit

the cerebral parenchyma and contribute to its surveillance and

maintenance. Among the homeostatic functions of microglial

cells, their neuromodulatory properties have been deeply
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documented (62). These activities are made possible by the

presence of several receptors on microglial cells, among them,

purinergic receptors which recognize adenosine triphosphate

(ATP) and their metabolites, signals commonly used by neurons

to communicate with microglia (63). Bidirect ional

communication between microglial cells and neurons is also

important to stimulate the movement of microglial cells towards

neurons to modulate their activity (63). Recently, ATP-

dependent microglia activation has been correlated to an

inhibitory program to reduce excessive/dangerous neuronal

activity (64). This stimulation of purinergic receptors increases

the release of BDNF, which plays an important role in brain

neuromodulation; in particular, this neurotrophic factor is

implicated in both neuronal differentiation and synaptic

plasticity (65); specific depletion of BDNF from microglia does

not modify its brain levels but reduced the formation of new

synapses in the cerebral motor cortex and the motor learning

abilities in mice (66). Among the physiological activities of

microglia, it has been recently shown that these cells

participate in the regulation of sleep, in mice. It has been

described that the accumulation of ATP during the sleep

phase reduces the microglial expression of CX3CR1 and that

microglial depletion increases the duration of NREM sleep

during the wake phase, with a simultaneous reduction of the

hippocampal excitatory neurotransmission in mice (67).

Altogether, these data indicate that, under physiological

conditions, microglia participate both in the homeostatic

balance and synaptic activity of the brain microenvironment.
Microglia in brain diseases

Considering the fundamental role of microglial cells in the

brain, it is not surprising that they also participate in brain

disorders, as well as inflammatory diseases of the brain.

Alzheimer’s disease (AD) is a progressive neurodegenerative

disorder characterized by general cognitive impairment and with

two distinctive pathological signs: extracellular plaques

composed of amyloid b-peptide (Ab) and intraneuronal

tangles composed of hyperphosphorylated tau proteins. Both

patients and animal models of this pathology are characterized

by microglial cells with altered phagocytic activity around the

amyloid plaques (68). In animal models of AD, extensive

genome-wide association studies (GWAS) have identified

many immune-related genes associated with high-risk factors

for this pathology, which are highly expressed in microglial cells

(48). Among these genes, mutated forms of TREM2 represent a

pivotal risk factor for this neurodegenerative disease (69).

TREM2 controls the activity of microglial in synapses, and the

elimination or mutations on this receptor contribute to the

deposition of amyloid plaques in mice brains (70) as well as to

an energy imbalance that increases microglial cell dysfunction

(71). These data, in agreement with others, attribute to
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TABLE 1 Microglia identity and spatial heterogeneity: Recapitulation of expressed markers and functions of clustered microglia in different
temporal and spatial conditions.

(Hammond et al.,2019) Uniquely expressed genes Upregulated genes Functions

Youngest ages
Microglia
(E14.5- P4/5)

C1 Trem2; C1qa;
Fcrls

Arginase 1 (Arg1)

C2a Ribonucleotide reductase M2 (Rem2)

C2b Ubiquitin-conjugating enzyme E2C
(Ube2c)

C2c Centromere protein A (Cenpa)

C3 Fatty acid binding protein 5 (Fabp5) Participate to cell growth, motility,
inflammation, and immunomodulation

C4 Osteopontin (Spp1) One major microglia state- participate to
Axon Tract-Associated Microglia

C5 Heme oxygenase 1 (Hmox1)

C6 Membrane-spanning4-domains,
subfamily A, member 7 (Ms4a7)

Transmenbrane chemosensors that participate
to immune cell function

Juvenile (P30) and Adult (P100)
Microglia

C7a Not defined by the expression of unique
genes

C7b

C7c

Adult (P100) and youngest (P5)
Microglia

C8 Chemokine (C-C motif) ligand 4 (Ccl4)

White matter Injury Microglia C9 Interferon, alpha-inducibile protein 27
like protein 2A (Ifi27l2a)

(Matcovitch-Natan et al., 2016) Upregulated genes Functions

Yolk sac Y1 Lyz2; Pf4; Mcm5; Dab2; F13a1;
Ifit3

Cell cycle and brain development

Early
Microglia
(E10.5-14)

E1 Dab2; Mcm5; Cdk1; Mbd2; Tpi1

E2 Hdac2; Dnmt1; Rad21;

Pre-Microglia
(E14-P9)

P1 Cxcr2; Scd2; Psat1 Synaptic Pruning

P2 Fcrls; Crybb1; Csf1

Adult
Microglia
(4 weeks-onward)

A1 P2ry13; Cx3cr1; Csf1r; Sall1 Immune surveillance

A2 Selplg; MafB; Pmepa1; CD14

(Masuda et al.; 2019) Upregulated genes Functions

Embryonic microglia C1 Ctsb; Ctsd; Lamp1; Apoe

C2 Ctsb; Ctsd; Lamp1

C3

C4 Apoe

C5 Apoe

C6 Tmsb4x; Eef1a1; Rpl4;

Post-natal Microglia C7 Tmem119; Selplg; Slc2a5 Microglia Homeostatic genes

C8 Tmem119; Selplg; Slc2a5

C9 Tmem119; Selplg; Slc2a5; Cst3;
Sparc

C10 Tmem119; Selplg; Slc2a5; Cst3;
Sparc

Microglia
After demyelination and unilateral
facial nerve axotomy, (FNX)

C11 Ctsc;

(Continued)
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microglial cells an active role in fighting AD since it is possible

that wrapping the amyloid plaques helps to form a protective

barrier that reduces the neurodegeneration process progression.

In different neurodegenerative diseases, such as Parkinson’s

disease characterized by motor impairment, microglia behave

differently, contributing to neuroinflammation and speeding up

neurodegeneration. For instance, mutations in leucine-rich

repeat kinase 2 (LRRK2) are associated with different forms of

PD (monogenic and sporadic) in an age-dependent manner

(72). LRRK2 is a serine/threonine kinase (73), and mutations in

this protein increase kinase activity and contribute to

neurodegeneration in PD (74). LRRK2 increases the pro-

inflammatory phenotype in a-synuclein-treated microglia (75),

whereas in LRRK2-deficient rats the inflammatory phenotype

mediated by this fibrillar aggregate is reduced (76). Even if the in

vivo effects of this mutated protein on microglial cells are

controversial, the relationship between inflammation and

LRRK2 on resident brain macrophages is defined. In

particular, exposure of microglia to LPS increases the

inflammatory phenotype and the level of LRRK2, while

inhibition of LRRK2 reduces the production of pro-

inflammatory cytokines (77). In addition, LRRK2 appears to

regulate microglial motility, reducing its migration (78) and

favoring the local inflammation state. Together, these data

strengthen the knowledge of the role of LRR2 in

neurodegeneration and the effect of microglial cells as

operators of the inflammatory state observed in PD. Among

diseases affecting the brain, synchronized hyperactivation of

neural cells causes epilepsy, a neuropsychiatric disorder that

occurs when excitatory activation of neurons exceeds the

inhibitory (79). Changes in microglia were also observed after

seizures: in the hippocampus of mice treated with kainic acid,

microglial cells showed an activation that persists even 24 hours

after injections as a side effect of hyperactivity (80, 81). Other

evidence support the contribution of microglial cells to brain

hyperactivity due to inflammatory response. In particular, the

release of cytokines stimulates neuronal activity, favoring

epileptogenesis (82) The activation of TLRs, which promote

microglial activity, affects seizures: mice lacking the TLR3 or

mice treated with TLR4 antagonist show an attenuation of

recurrent spontaneous seizures after injections of pilocarpine

(83) and kainate (84), respectively. Neuroinflammation is a

common condition in brain diseases, and since microglia are

the main cells that direct inflammation in the brain, it is not
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surprising that they are involved in many neural disorders.

Among mental illnesses, depression is a condition that affects

people and causes emotional suffering; the events that can

generate the depressive state are many, however, a common

condition is the inflammatory state of the brain. Interferon-

gamma (IFN-g) is a cytokine that promotes microglial

activation: Zhang and colleagues demonstrated that

intracerebroventricular injection of IFN-g impaired

hippocampal neurogenesis and induced depressive-like

behaviors in mice, effects reduced using minocycline to inhibit

microglia (85).The works described until now, clearly

demonstrated that microglia have distinct roles in a healthy

brain, organizing the functions to maintain homeostatic balance;

however, there are clear proofs supporting the contribution of

microglial cells even in brain disease, when these cells can

improve or worsen disease progression. Together, these

evidence suggest that microglial cells could represent a

promising therapeutic target for brain diseases.

Gut microbiota-derived molecules
controlling microglia in healthy and
diseased brain

Microbiota is the term used to describe all the

microorganisms (bacteria, yeasts, archaea, protozoa and

viruses) living on the epithelial barriers of the human body

(nose, eye, skin, lungs, gastrointestinal, genital and urinary

tract). The human gut is the natural habitat for more than 100

trillion of microorganisms. The intestinal microbiome, i.e. the

totality of the genetic heritage owned by the intestinal

microbiota, encodes over three millions of genes and produces

thousands of molecules important for host health. These

molecules exert both local and peripheral effects maintaining

the homeostasis of intestine and distant organs. Small molecules,

such as the short chain fatty acids (SCFAs), lipopolysaccharide

(LPS) or tryptophan (trp) metabolites are produced in the colon

and largely absorbed by the colonocytes; part of them reach the

systemic circulation, playing key roles in microbiota-gut-brain

cross-talk (Figure 1). A second route for gut-brain

communication is represented by signal through the vagal

nerve. It ensures bidirectional communication, using both

neurotransmitters such as serotonin and glutamate and, gut

hormones (Figure 1). Healthy gut microbiota is fundamental for
TABLE 1 Continued

(Hammond et al.,2019) Uniquely expressed genes Upregulated genes Functions

C12 Fam20c; Cst7; Ccl6; Fn1; Ank;
Psat1; Spp1

C13 Cybb; Cd74; H2-Aa; H2-Ab1
amd MHC class II genes
The letter in the table are the name of the clusers defined by each author in each paper revisioned. As described in a note next to the table, a column titled clusters is needed in the table.
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maintaining normal host functioning; indeed, alteration of the

gut microbiota and its metabolites, defined as gut dysbiosis, can

induce harmful effects on the host. The imbalance in microbiota

composition leads to a wide range of inflammatory and

metabolic pathologies including brain diseases (86–89). In the

following paragraphs the most studied gut microbiota-derived

molecules, vagal nerve stimulation and their effects on microglia

will be reviewed.
SCFAs and microglia

The fermentation of fibers contained in the food by colon

microbes produces bioactive molecules. Among them, the short-

chain fatty acids (SCFAs; e.g., formate, valerate, acetate,

propionate, and butyrate) which are small molecules ranging

from 1 to 4 atoms of carbon. It has been shown that SCFAs can
Frontiers in Immunology 07
act through either G-protein-coupled receptors (GPCRs) or

histone deacetylases (HDACs) (90, 91).

One of the first evidence showing the role of microbiota-

derived molecules on microglia was obtained in germ-free (GF)

mice by Erny and colleagues in 2015. The authors showed that

GF mice displayed global defects in microglia, with altered cell

shape and immature phenotype, leading to impaired innate

immune responses. Classical SCFAs supplementation to GF

mice reverted microglial phenotype and lipopolysaccharide

response (92).

Later, the same authors identified microbiota-derived acetate

as critical driver of microglia maturation and regulator of the

homeostatic metabolic state in germ free mice. Further, they also

show the ability of acetate to modulate microglial phagocytosis

and disease progression in one murine model of Alzheimer’s

disease (93). Recently, it has been observed that SCFAs can

reverse the age-related pro inflammatory state of microglia. In
FIGURE 1

Gut-brain axis follows bidirectional communication routes: vagal nerve, immune system pathways and circulating small molecules produced by
bacteria (tryptophan derived metabolites, short chain fatty acids and lipopolysaccharides) reaching the brain through the circulation.
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aged mice, the supplementation of inulin, a prebiotic

fermentable fiber, increased the endogenous levels of SCFAs

and reduced the expression of many inflammatory genes, as

demonstrated by scRNA-seq on microglial cells. In addition,

microglia from aged mice spontaneously secreted more TNF-a
than microglia from adults and this effect was reduced in

microglia of aged mice fed with inulin (94). On the other

hand, a fiber-deprived diet altered gut microbiome, reducing

SCFAs and inducing cognitive impairment in mice. In

particular, dietary fiber deficiency for 15 weeks correlated with

microglia-mediated synaptic loss in the hippocampus,

suggesting that fiber intake could represent a nutritional

preventive strategy to reduce the risk of cognitive decline and

neurodegenerative disease (95). In mouse models of Alzheimer’s

disease, the expression of the synapse-associated proteins

(Postsynaptic Density protein- 95-PSD-95; Synaptophisyn-

SYP; N-methyl-D-aspartate receptor 2 B -NR2B) are reduced

and the pro-inflammatory cytokines (TNF-a, IL-6, IL-1b) are
increased. These alterations could be reversed treating mice

daily, for 2 weeks, at early stage of disease, with sodium

butyrate by intraperitoneal injection. In particular, SCFA

treatment suppressed the over-activation of microglia and the

accumulation of Ab in AD mice (96). It has been shown by

Sadler and colleagues that stroke alters the gut microbiota

composition, inducing dysbiosis and a plasma decrease of

SCFAs. The authors showed that c lass ica l SCFAs

supplementation in drinking water for 4 weeks improved the

behavioral outcome after stroke, reducing brain microgliosis and

the expression of the phagocytosis marker CD68 in the

ipsilateral hemispheric cortex (97). Housing rodents in an

enriched environment (EE), a condition characterized by

abundant social interactions, and cognitive, sensory, and

motor stimulations could improve their learning and memory

abilities (98). Recently, it has been shown that housing mice in

an EE affects their gut microbiota and metabolome composition,

elevating the concentration of specific SCFAs, with effects on

synaptic plasticity processes (99). In the same year, Lupori and

colleagues showed that classical SCFAs (acetate, propionate and

butyrate) treatment changed microglia morphology in the visual

cortex toward a hyper-ramified condition characteristic of high

plasticity, similar to EE, favoring ocular dominance plasticity

process (100). On the other hand, in a model of neuropathic pain

induced by chronic constriction injury (CCI), Zhou and

colleagues observed signs of mechanical and thermal pain, and

an increased expressions of microglia (Iba1, CD11b) and pro-

inflammatory markers (CD68, IL-1b, and TNF-a) both in the

hippocampus and the spinal cord. These phenomena were

accompanied by increased level of SCFAs in the gut.

Antibiotic treatment reversed microglia activation but its

action was blocked by SCFA administration, suggesting these

molecules as key player in the pathogenesis of neuropathic pain

(101). Recently, in a-synuclein overexpression and MPTP (1-

methyl-4-phenyl-1,2,3,6-tetrahydropyridine) models of
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Parkinson’s disease (PD), the oral supplementation with

SCFAs (mixture of acetate, propionate and butyrate or

butyrate alone) worsened the disease progression, increasing

microglia activation and TNF-a release (102, 103). Further

researches are needed to clearly define the role of SCFAs,

considering both the beneficial and detrimental effects

described above on microglia and neuroinflammatory diseases.

As reviewed above, authors mainly described the effect of

SCFAs mixture in vivo. In contrast, Wenzel and colleagues

described the effect of single or combined treatment on human

microglia cell line THP-1 with acetate, propionate, butyrate,

formate, and valerate at an approximate physiological

concentration ratio. They found that the SCFA mixture, as

well as single SCFAs (at the highest concentrations used in the

mixture, i.e. from 15 to 236 mM), decreased the secretion of IL-

1b, MCP-1, TNF-a, and cytotoxins induced by LPS stimulation.

In addition, formate and valerate reduced the phagocytic activity

of LPS-stimulated THP-1 cells. Formate, but not valerate, also

inhibited the N-formylmethionine-leucyl-phenylalanine

(fMLP)-induced respiratory burst of HL-60 cells, reducing the

production of reactive oxygen species (ROS) (104).

Altogether, these researches identify SCFAs as the key soluble

links along the gut-brain axis and propose them as potential

therapeutic tools to target microglia-related brain diseases.
LPS and microglia

Changes in the gut microbiota leading to the expansion of

gram-negative bacteria increase the release of microbial LPS, a

bacteria cell wall component. LPS activates the TLRs, membrane-

spanning receptors expressed in microglial cells, which recognize

common damage- or pathogen-associated molecular-patterns

(DAMPS, PAMPs) (105). LPS can stimulate host immunity and

the immunological response depends on the origin of the

microbial species. Indeed, the lipid A portion of LPS is variable

and contains the endotoxic component, thus contributing to the

structural and functional diversity of LPSs among microbial

species (106). In this regard, an in vitro study showed that

exposure of rat neonatal microglia to LPS from Cyanobacterium

Oscillatoria sp . resulted in a concomitant release of

proinflammatory and anti-inflammatory mediators (107). In

contrast, a study that treated rat microglia with LPS from

Cyanobacterium Microcystis aeruginosa described the induction

of a classical (or M1-like) microglia state and the release of pro-

inflammatory mediators (108).

It has been shown that stress decreases the level of

Lactobacillus and Bifidobacterium and increases the gram-

negative bacteria, with an increase of LPS (109, 110). Chronic

LPS re l ease ac t iva te s sys temic inflammat ion and

neuroinflammation, both effects being crucial for the

pathogenesis of neurodegenerative and psychiatric disorders

(111). Indeed, elevated levels of LPS are observed in
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1011129
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


D’Alessandro et al. 10.3389/fimmu.2022.1011129
amyotrophic lateral sclerosis (112), AD (113) and severe

autism (114).

Neuroinflammation, indeed, mainly comprises the over

activation of microglia cells that can became harmful for

brain parenchyma.

It has been shown that intraperitoneal injection of LPS

increases the number of Iba-1 positive cells in different brain

region, in a dose-dependent manner in conventional mice, but

not in GF mice (115, 116) underlying the key role of microbiota

in driving LPS-mediated effects.

As reviewed, several factors can alter the abundance of LPS

in the host; however, the actual role of microbiota derived -LPS

in activating microglia remains to be investigated.
Tryptophan-derived ligands of aryl
hydrocarbon receptor and microglia

In addition to SCFAs, it has been recently demonstrated that

aryl hydrocarbon receptor (AhR) ligands secreted by gut bacteria

can influence microglia. Tryptophanase-expressing bacteria

catalyze the conversion of dietary tryptophan to indole, the

precursor for the synthesis of AhR agonists (indoxyl-3-sulfate

and indole-3-propionic acid). Rothhammer and colleagues

showed that AhR activation by dietary tryptophan (Trp)

metabolites suppressed the microglial expression of NF-kB
dependent transcripts such as Tnfa and regulated microglial

expression of Tgfa and Vegfb in a mouse model of multiple

sclerosis, the experimental autoimmune encephalomyelitis (EAE)

(117, 118). The same effects were shown in human microglia,

activating AhR by the tryptophan metabolite indoxyl-3-sulfate

(I3S). AhR activation suppressed the expression of pro-

inflammatory and neurotoxic genes (TNFA, IL6, IL12A, NOS2)

and boosted the expression of anti-inflammatory IL10; AhR

activation also induced TGFA and reduced VEGFB expression in

human microglia (118). The dietary metabolites and other AhR

ligands, such as indirubin-3′-oxime, were also shown to inhibit the

inflammatory phenotype of microglial cells in rat brain (119). On

the other hand, in a model of mouse middle cerebral artery

occlusion (MCAO), Tanaka and colleagues showed that AhR

expression increased in microglia during ischemia. Pre-treatment

with an AhR antagonist, CH223191, significantly reduced the

expression of TNFa, IL-1b and cyclooxygenase-2 (COX-2) in the

cortex and striatum of MCAO mice (120). Altogether, these data

suggest that microbial tryptophan and other AhR ligands can

modulate microglia, adding new therapeutic targets for brain

diseases with inflammatory components.
Quorum sensing peptides and microglia

Among the bacterial derived molecules able to modulate

microglia, the quorum sensing peptides (QSPs) have been
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recently described. QSPs are oligopeptides produced by Gram-

positive bacteria to communicate with their peers in a cell-

density dependent manner. In particular, Janssens and

colleagues described the ability of an active heptapeptide

(SDLPFEH, named PapRIV) originating from members of

Bacillus cereus group. The authors showed that PapRIV is

present in mouse plasma and that can reach the brain,

crossing the brain blood barrier (121). In addition, they

described that PaPRIV has pro-inflammatory effects on the

microglial BV-2 cells, inducing the expression of IL-6 and

TNF-a, along with an increase of intracellular ROS. This is the

first evidence for a possible role of this bacterial quorum sensing

peptide in gut-to-brain signaling (121).
Vagal nerve stimulation and microglia

Vagal afferent neurons located in the nodose ganglion (NG)

innervate the gut and terminate in the nucleus of solitary tract

(NST) of the brainstem. Vagal afferent terminals are located

below the gut epithelium, where they sense signals derived from

the gut microbiota, with effects on host behavior. The NST is a

target for gastrointestinal signals modulating satiety, and

alterations in the gut-brain vagal pathway may promote

overeating and obesity. In rats treated with high fat diet

(HFD), the alteration of microbiota composition triggered the

reorganization of vagal afferents and the activation of microglial

cells in the NST (122). Similar data were obtained in rats fed with

low fat/high sugar diet (123). Kim and colleagues demonstrated

that HFD-induced dysbiosis, per se, decreased vagal innervation

and increased Iba1 positive cells in the NG of GF rats which

received fecal transplantation from HFD- (45 or 60% fat) or low-

fat diet- (LFD, 13% fat) treated rats (124). These studies

suggested that HFD-triggered shift in gut microbiome may

affect the vagal gut-brain communication resulting in

microglia activation and increased body fat accumulation.

It has been reported that the electrical stimulation of the

vagus nerve, in the presence of a peripheral immune challenge

may affect microglial cells, up-regulating anti-inflammatory

pathways in the brain (125, 126). Vagus nerve stimulation,

combined with LPS challenge, decreases microglial production

of the pro-inflammatory cytokines IL-6, IL-1b, and TNFa, an
effect abolished upon vagotomy (127). These data suggested that

vagus nerve activity reduces neuroinflammation. In line with

this observation, in a rat model of transient ischemia, berberine,

an alkaloid with weak antibiotic properties, decreased CD86-

positive and increased CD163-positive microglial cells in the

cerebral cortex, in a microbiota-dependent manner. The authors

show that the hydrogen sulfide (H2S) derived from microbiota

metabolization of berberine, stimulates the vagus nerve through

the transient receptor potential vanilloid 1 (TRPV1) and that a

cocktail of antibiotics blocked vagal activation, confirming the

necessity of a functional metabolizing microbiota (128).
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Recently, Yunpeng and colleagues showed that Lactobacillus

rhamnosus (JB-1) has anxiolytic effects and decreases Iba1+

microglial cells in mouse hippocampus. The authors also

demonstrated that the loss of vagal integrity, obtained by

subdiaphragmatic vagotomy, inhibited these effects, further

pointing to the important role of vagus nerve in the signaling

between the gut microbiota and the brain (129). Although

different studies performed in different models reported that

microglial cells are modulated by vagal activation, the

relationships between the vagus nerve and the immune

signaling, in microbiota-gut-brain communication, need

further investigation.
Gut microbiota modulation by
antibiotics in healthy and disease:
The effects on microglia

The use of antibiotics (ABX) to eliminate or unbalance the

gut microbiota is a useful tool to study the relationship of specific

bacterial cohorts and different brain functions in adult animal

models. At difference with the GF mice, which permit to study

the role of the gut microbiota during development, ABX,

especially the non-absorbable ones, open to the opportunity to

study the role of gut microbes and their associated molecules in

healthy mice or murine brain disease models.

In adult healthy mice, two-weeks of ABX treatment

influence hippocampal microglial density, reducing their basal

patrolling activity, and impairing process rearrangement in

response to damages (130). In addition, ABX treatment

induced a reduction of spontaneous postsynaptic glutamatergic

currents and in general, of synaptic connectivity (110).

Interestingly, in adult healthy mice, it has been

demonstrated (by RNA-seq of FACS-purified microglia) that

one-week of ABX treatment triggered transcriptomic changes in

microglia, in a sex dependent manner. In particular, Thion and

colleagues showed that ABX treatment induced different

expression of 92 microglial genes in male mice, and of only 40

genes in female mice, suggesting a sexually dimorphic impact of

microbiota on microglial transcriptomes (131).

A more prolonged (4 weeks) ABX treatment, aimed to fully

eradicate the gut microbiota, led to microglia activation, with an

increase of CD40 and MHC II expression, IL-6 and TNF-a
production, and more Iba1+ cells in the hippocampal CA3 and

CA1 regions (112). Theis treatment also induced a reduction in

the synaptic transmission measured as hippocampal cholinergic

gamma power osci l lat ions in the CA3, after ABX

treatment (132).

Recently, many reports showed that the intestinal

microbiota also influences the neurodevelopment, the

behavior, and contributes to brain disorders. On the other

hand, gut microbiota dysbiosis is observed in a number of
Frontiers in Immunology 10
brain disorders characterized by microglia dysfunction such as

autism spectrum disorders (ASD), schizophrenia, AD, major

depressive disorder, and PD (133–144)

In a murine model of Herpes simplex encephalitis (HSE), a

complication of herpes simplex virus type I infection, Li and

colleagues observed alterations in gut microbiota composition.

In these mice, the use of oral ABX aggravates the virus-induced

pathology, triggering the pro inflammatory activation of

microglia. The administration of another microbial derived

product, nicotinamide n-oxide, significantly diminished

inflammation in ABX-treated or untreated HSE mice (145).

In a murine model of familial ALS (hSOD1G93A mice), it has

been shown that a combination of 8 antibiotics (146) worsened

the motor functions and reduced survival, exacerbating the pro-

inflammatory phenotype of microglial cells in the spinal cord.

The authors found that ABX treatment reduced the relative

abundance of Akkermansia and of butyrate-producing bacteria

such as Clostridium g24, Ruminococcus, and genera in the

Lachnospiraceae family, that are triggers of anti-inflammatory

responses (147, 148). These data suggest that these microbes

could play a beneficial role at least in the familial form of ALS

(149). Similarly, in a murine model of AD (the APPS1 model)

the administration of Akkermansia muciniphila by oral gavage,

every day for 6 months resulted in a delay of the pathological

changes in the brain and ameliorated the spatial learning and

memory tests (150).

On the other hand, it has been shown that, in two

independent transgenic mouse models of AD (APPSWE/

PS1DE9 and APPPS1-21(APPSWE/PS1L166P mice), only

males showed reduced Ab amyloidosis and altered phenotypes

of plaque-associated microglia following administration of an

ABX cocktail. In particular, ABX treatment altered the levels of

selected microglial transcripts for homeostatic proteins in male

but not in female mice (151, 152). More recently, the same

authors showed that CSF-1R inhibitor-mediated depletion of

microglia in ABX-treated male mice failed to reduce cerebral Ab
amyloidosis. Thus, they demonstrated the key role of microglia

in bridging gut microbiota-mediated modulation of cerebral Ab
deposition (153). In a different mouse model of AD (5 x Familial

AD, 5xFAD), it has been recently shown that GF or ABX treated

mice differentially control the microglial mechanisms of Ab
clearance, preventing both neurodegeneration and cognitive

deficits. While both conditions attenuated hippocampal

pathological signs, only GF 5xFAD mice enhanced microglial

Ab uptake at early stages compared to ABX-treated 5xFAD

mice. These observations were supported by RNA-sequencing of

hippocampal microglia from control, GF and ABX-treated

5xFAD mice, that showed distinct profiles of microbiota-

dependent gene expression associated with phagocytosis and

altered microglial activation states (154). Different genetics and

ABX treatments lead to different outcomes in microglia

activation in the context of the same pathology, suggesting a

plastic role of gut microbiota-microglia axis in AD.
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In the last decade, the importance of gut microbiota in

multiple sclerosis (MS) has been highlighted: many studies

reported the presence of gut microbiota dysbiosis in patients

(155–157).

In a murine model of progressive MS triggered by

intracranial infection with Theiler’s murine encephalomyelitis

virus (TMEV), Mestre and colleagues treated mice with oral

ABX in the pre-symptomatic and symptomatic phases of the

disease. The cocktail of ABX prevented motor dysfunction and

limited axon damage in mice. In the spinal cord of TMEV mice

treated with ABX, microglia assume a round amoeboid

morphology associated to an anti-inflammatory gene profile

(increase of IL-4 and IL-10) (158). Similar results were

obtained in a different murine model of MS where a

pretreatment of either three or seven days with oral ABX

cocktail (Ampicillin, Metronidazole, Neomycin Sulfate, and

Vancomycin) protected mice from signs of EAE. In addition,

RT-PCR data on spinal cord tissue showed an upregulation of

Arg1, a gene associated with anti-inflammatory microglia/

macrophages and a downregulation of the pro-inflammatory

genes iNos and TNF-a (159).

ABX treatment resulted beneficial also in one murine model

of PD with a-synuclein (aSyn) overexpression, showing motor

dysfunction and gastrointestinal (GI) constipation. In these

mice, Sampson and colleagues reported that ABX treatment

resulted in milder aSyn-dependent motor dysfunction and an

increased GI function. Microglia showed morphological changes

that indicated an arrest in maturation and/or a reduced

activation state, suggesting that postnatal signaling between

the gut and the brain modulates the disease (102).

Recently, the effect of gut microbiota alteration was studied

also in brain tumor. Treating mice with two non-absorbable

ABX (gentamicin and vancomycin) for two weeks prior to

glioma transplantation in the brain reduced the cytotoxic NK

cell subsets and altered the expression of inflammatory and

homeostatic proteins in microglia. All these effects could

contribute to the increased growth of intracranial glioma

observed in ABX-treated mice (160).

In one rat model of major depression, where animals show

high anxiety-like behavior, lower microglial numbers in

prefrontal cortex and altered gut microbiota composition,

Schmidtner and colleagues demonstrated that three-week

treatment with oral minocycline, a broad-spectrum

tetracycline antibiotic, alleviated the depressive-like phenotype.

In addition, this treatment further reduced prefrontal microglial

density, exclusively in male rats, and reduced the plasma

concentrations of pro-inflammatory cytokines. These results

support the microbiome-gut-brain axis as potential target in

the treatment of depression (161).

The modulation of gut microbiota by antibiotics revealed

several unexpected gut-brain links in many pathologies, worth to

be further elucidated. However, ABX treatment could be also

considered a new therapeutic strategy to be used not only for
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infectious diseases, but also for brain disorders associated with gut

microbiota dysbiosis. Finally, it must be considered that there are

many other ways to modulate the microbiota and therefore the

microglia, not discussed here. These include, for example, fecal

microbiota transplantation, administration of pro/prebiotics (e.g.

sodium oligomannate) and/or live biotherapeutics.
Closing remarks

A number of recent studies demonstrated that the gut

microbiota is a powerful modulator of microglial phenotype and

functioning, in healthy and disease conditions. However, the

molecular mechanisms used by the gut microbiota and the

metabolome to impact host neuroimmune cells need further

investigations. The availability of new DNA sequencing

strategies, such as shotgun metagenomic sequencing and

metabolomics will allow the analysis of gut microbiome

composition at the level of species and will permit the

identification of specific microbe cohorts and their cross-

correlation with microbial metabolites in the different conditions.

Therefore,wepropose to investigatehow themodulationof specific

bacterial species or cohorts (by specifically depleting or enriching

them) might result in microglia alteration in the brain of healthy

and diseased murine models. Further, manipulation of

microbiota composition by pre-biotics, environmental stimuli,

dietary habits, and fecal transplantation might represent new

therapeutic strategies to for the treatment of brain disorders

involving microglia.
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