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Background: The transcytosis of polymeric immunoglobulins, IgA and IgM, across

the epithelial barrier to the luminal side of mucosal tissues is mediated by the

polymeric immunoglobulin receptor (pIgR). At the luminal side the extracellular

ligand binding regionof pIgR, the secretory component (SC), is cleaved and released

bound to dimeric IgA (dIgA), protecting it from proteolytic degradation, or in free

form, protecting the mucosa form pathogens attacks. The pIgR was first cloned for

rabbit in early 1980’s and since then has been described for all vertebrates, from fish

to mammals. The existence of more than one functional pIgR alternative-spliced

variant in the European rabbit, the complete pIgR as other mammals and a shorter

pIgR lacking two SC exons, raised the questionwhether other lagomorphs share the

same characteristics and how has the PIGR gene evolved in these mammals.

Results: To investigate these questions, we sequenced expressed pIgR genes

for other leporid genus, Lepus spp., and obtained and aligned pIgR sequences

from representative species of all mammalian orders. The obtainedmammalian

phylogeny, as well as the Bayesian inference of evolutionary rates and genetic

distances, show that Lagomorpha pIgR is evolving at a higher substitution rate.

Codon-based analyses of positive selection show that mammalian pIgR is

evolving under strong positive selection, with strong incidence in the domains

excised from the rabbit short pIgR isoform. We further confirmed that the hares

also express the two rabbit pIgR isoforms.

Conclusions: The Lagomorpha pIgR unique evolutionary pattern may reflect a

group specific adaptation. The pIgR evolution may be linked to the unusual

expansion of IgA genes observed in lagomorphs, or to neofunctionalization in

this group. Further studies are necessary to clarify the driving forces behind the

unique lagomorph pIgR evolution.
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Introduction
The polymeric immunoglobulin receptor (pIgR) is a

transmembrane glycoprotein required for the transcytosis of

polymeric IgA (pIgA) and to a lesser extent polymeric IgM

(pIgM) across mucosal epithelial cells (1). pIgR is composed by

an N-terminal ligand binding domain, a single membrane

spanning region and a short cytoplasmic C-terminal tail.

Polymeric immunoglobulins (pIg) produced by plasma cells

located in the lamina propria underlying the epithelium can

covalently bind to pIgR expressed in the basolateral surface of

epithelial cells. pIgR alone or attached to the pIg and pIg-

containing immune complexes is endocytosed and

transcytosed through a series of intracellular vesicles to the

apical surface. At the mucosal surface the ligand binding

portion of the pIgR, known as the secretory component (SC),

is cleaved off and released in a free form or as part of the complex

with the pIg (1). The complex pIg-SC is known as secretory

immunoglobulin, and the presence of secretory IgA (SIgA) in

respiratory secretions is essential for mucosal immunity (2). The

transcytosis of pIgA by pIgR ensures a continuous delivery of

SIgA to the epithelial surface and mucosal secretions, together

with intracellular neutralization and excretion of antigens and

pathogens (3). Besides that, the SC has several N-glycans able to

bind bacterial and host factors, reducing infection and

inflammation (4, 5).

Association of SC with IgA has been shown to enhance the

stability and effector function of pIgA, especially by providing

protection from proteolytic degradation by bacterial proteases

(6, 7). A SC-like polypeptide is also seen associated to the

polymeric IgT in rainbow trout, the polymeric IgX in Xenopus,

and the polymeric IgA in birds, suggesting that all vertebrate

pIgRs participate on the transport of pIgs into external

secretions (8–10).

The pIgR is the most ancient Fc receptor in vertebrates (8–

10). While the mammals’ pIgR has five extracellular Ig-like

domains, the most primitive form of pIgR found in teleost fish

has only 2 extracellular domains, homologous to domains 1 and

5 of mammalian pIgR, and the pIgR from amphibians and birds

lacks the homolog of domain 2, showing only 4 extracellular

domains (11–13). Regarding mammals, only rabbits and bovines

were shown to express an alternative-spliced variant lacking

domains 2 and 3, which interestingly are expressed by a single

exon (exon 4), unlike the other Ig-like extracellular domains

which are encoded by individual exons (14–16). The first

domain seems to be essential for binding polymeric IgA and

IgM, containing similar complementarity-determining regions

(CDRs) to the immunoglobulin variable domains (17). The

interchange of these regions between human and rabbit

showed a similar efficiency at binding to pIgA, however, the

human CDR2 region is required to bind to pIgM (18). In some

species, such as humans and cows, pIgR participates in the
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transport of both pIgA and IgM, while in other species, such as

the rabbit and rodents, only pIgA is transported. The presence of

the charged residue Glu at position 53 on the CDR2 is shared by

several species besides humans, including orangutan, cow and

pig, while species whose pIgR binds pIgA exclusively have a

polar, uncharged residue at this position (Asn in mouse and rat)

or a deletion (in rabbit) (1, 18).

The order Lagomorpha includes two families, Leporidae

(rabbits and hares) and Ochotonidae (pikas), and is the sister

group to Rodentia. These two orders, which have diverged at

approximately 82 million years ago (mya) (19), constitute the

superorder Glires, the sister group of the superorder Euarchonta

that includes Primata, Scandentia and Dermoptera (20). The

rabbit immune system has been widely studied revealing some

uniquenesses such as the preferential usage of only one variable

heavy chain (VH) gene in VDJ rearranjements (21) or having at

least 15 immunoglobulin’s A (IgA) (22), characteristics that

seem to extend to other Lagomorphs (23–26). The existence of

more than one functional pIgR alternative-spliced variant in the

European rabbit, raised the question whether other lagomorphs

share this same characteristic and of how has the PIGR gene

evolved in these mammals.
Material and methods

RNA extraction, PIGR amplification
and sequencing

Total RNA was extracted from gut tissue samples stored in

RNAlater at -20°C from European rabbit (subspecies Oryctolagus

cuniculus cuniculus and Oryctolagus cuniculus algirus) and two

species of hares (Lepus europaeus and Lepus timidus); one

individual for each rabbit subspecies and hare species was used.

These samples belong to the CIBIO/InBIO, Vairão, Portugal, tissue

collection and have been previously used for the successful

amplification of other expressed genes (27, 28). Total RNA was

extracted using the RNeasy Mini Kit (Qiagen, Hilden, Germany)

according to the manufacturer’s protocol, followed by first-strand

cDNA synthesis with the SuperScriptTM III Reverse Transcriptase

Kit (Invitrogen) using 1 mg RNA. The PIGR coding region was

amplified by PCR using primers designed on the

available European rabbit sequence (NM_001171045.1):

Forward 5’ GCAGCCCAGGCCTAGTG 3’ and Reverse 5’

CTAGGCCTCCTTGGGGCCATC 3’, located to the 5’ UTR and

3’ UTR regions, respectively. PCR amplification was performed

using Phusion with annealing temperature of 60°C for 15 sec

extension, for 35 cycles. PCR products were purified (NucleoSpin

Gel and PCR Clean-up kit, Macherel-Nagel, Germany) and cloned

into the pGEM-T Easy vector system II (Promega. Madison. WI,

USA). For each species, at least fifteen clones were selected.

Sequencing was performed on an ABI PRISM 310 Genetic

Analyser (PE Applied Biosystems).
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Phylogenetic analysis

Publicly available sequences for mammalian PIGR were

obtained from GenBank (http://www.ncbi.nlm.nih.gov/

genbank/). In total, 96 species representative of Artiodactyla,

Cetacea, Perissodactyla, Carnivora, Chiroptera, Primata,

Rodentia, Lagomorpha, Marsupialia and Monotremata, were

included in the analyses (Table 1;- accession numbers are

given in Supplementary Material: Table 1). The sequences

obtained for the leporid PIGR coding region were aligned with

the mammalian PIGR sequences using CLUSTAL W (29) as

implemented in BioEdit v7.2.5 (30), and corrected manually as

to respect the exon boundaries. The obtained alignment is given

in Supplementary Material: Data 1.

MEGA version X software (31) was used to construct a

Maximum likelihood (ML) phylogenetic tree and to calculate

genetic distances. The phylogenetic tree was constructed using

the GTR+G+I model of nucleotide substitution, determined to

be the best fitting model to our dataset by the Model Selection

option in MEGA version X software (31). Node support was

determined from 1000 bootstrap replicate trees. This software

was also used to calculate the nucleotide distances using the

maximum composite likelihood method, uniform rates among

sites, heterogeneous rates among lineages and pairwise deletion

of gaps options. N-linked glycosylation sites were estimated

using the online tool NetNGlyc 1.0 Server, with + indicating a

potential to reach the 0.5 threshold, and ++ to reach the 0.75

threshold (32). The nucleotide substitution rate variation among

different pIgR domains from Leporidae and Ochotonidae was

estimated in DnaSp version 6.12 (33). Sliding window analysis

were performed with a window length of 250 nucleotides and a

step size of 12 nucleotides along the nucleotide sequence
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alignment and plotting the differences as averages. Sites with

alignment gaps were not counted.
Nucleotide evolutionary rates

The evolutionary rates were further inferred using the

Bayesian method implemented in BEAST v1.10.4 (34) under

an uncorrelated relaxed clock model with a lognormal

distribution (35). This relaxed clock allows variation of

evolutionary rates across lineages. These analyses were

calibrated using normally distributed priors for 14 dates of

most recent common ancestors of monophyletic groups

retrieved from TimeTree (36), with a standard deviation of 2:

Mammalia (180 Mya), Theria (160 Mya), Placentalia (99 Mya),

Boreotheria (94 Mya), Euarchontoglires (87 Mya), Glires (80

Mya), Scrotifera (79 Mya), Ferae (78 Mya), Afrotheria (78 Mya),

Marsupialia (78 Mya), Euungulata (75 Mya), Certatiodactyla (64

Mya), Lagomorpha (51 Mya) and Monotremata (47 Mya).

Posterior probabilities were determined using the Yule tree

prior and a GTR+I+G nucleotide substitution model.

Independent runs of 50,000,000 generations were performed,

and convergence was assessed using Tracer v1.7 (37). Final

estimates were based on the combined results of three

replicate runs, discarding the first 10% as burn-in.
Codon-based analyses of positive
diversifying selection

To evaluate the incidence of positive selection on the

mammalian pIgR evolution, we compared the rate per-site of

nonsynonymous substitution (dN) to the rate per-site of

synonymous substitutions (dS) in a maximum likelihood (ML)

framework using three different methods. As each method

employs unique algorithms, and hence has advantages and

drawbacks, we only considered those codons identified by a

minimum of two of the ML methods as being positively selected

codons (PSC) (38–40). The obtained ML phylogenetic tree was

constrained as to reflect the accepted mammalian phylogeny

(41) and used as working topology in these analyses.

Using the CODEML program (PAMLX) (42, 43) we

compared two alternative models—M8, which allows for

codons to evolve under positive selection (dN/dS > 1) and M7,

which does not (dN/dS ≤ 1). The analyses were performed with

the F3x4 model of codon frequencies and were run twice to

guarantee convergence. The models were compared using a

likelihood ratio test with 2 degrees of freedom (44, 45).

Codons under positive selection for model M8 were identified

using a Bayes Empirical Bayes approach (46) and considering a

posterior probability of more than 90%.

We then used four methods for detecting positively selected

codons available on the DataMonkey web server (47): the Single
TABLE 1 Number of species for each mammalian lineage used in
this study.

Mammalian lineage Number of species

Artiodactyla 6

Carnivora 16

Cetacea 6

Chiroptera 7

Marsupialia 5

Monotremata 2

Lagomorpha 6

Perissodactyla 4

Pholidota 1

Primata 24

Proboscidae 1

Rodentia 16

Sirenia 1

Tubulidentata 1
The full list of species and sequence accession numbers are given in Supplementary
Table 1.
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Likelihood Ancestor Counting (SLAC) model, the Fixed Effect

Likelihood (FEL) model, the Mixed Effects Model of Evolution

(MEME) and the Fast Unbiased Bayesian Approximation

(FUBAR). Each method was run three times to ensure

consistent results. The best fitting nucleotide substitution

model was first determined by the automatic model selection

tool available on the server.

To verify that recombination was not providing a false

assumption of positive selection (48–50), we used the GARD

method from the DataMonkey web server (47) to screen the

dataset. The results did not show evidence of recombination.
Results

The existence of different rabbit pIgR transcripts has been

known for a long time, and it was well established that they are

the product of alternative splicing of a unique gene. In the

shorter rabbit pIgR transcript the lack of domains 2 and 3, both

encoded by the rabbit PIGR exon 4, does not affect binding to the

pIgA, while the deletion of those domains abrogates the

interaction between the pIgA and the human pIgR. This

indicates a possible species adaptation, allowing the rabbit

pIgR to be functional in the absence of these domains.

However, few species were shown to express an alternative-

spliced variant of the pIgR, raising the doubt if close related

species to the European rabbit share this characteristic, and of

how has the rabbit pIgR evolved.
Mammalian pIgR evolution

The PIGR coding region was amplified from extracted

mRNA from different leporids, including European rabbit

(subspecies Oryctolagus cuniculus cuniculus and Oryctolagus

cuniculus algirus), and hare (Lepus europaeus and Lepus

timidus) and further sequenced. The obtained leporid

sequences were aligned with pIgR sequences from

representatives of major mammalian orders, including two

pika species (Ochotona princeps and O. curzoniae), and

phylogenetically analysed. The obtained pIgR ML phylogeny

generally conforms to the accepted mammalian phylogeny (41)

with one notable exception (Figure 1). Instead of grouping with

the Rodentia as in the mammalian phylogeny (41), the

Lagomorpha group appears as a basal branch to the Eutherian

mammals (Figure 1; 100% bootstrap). Additionally, the

Lagomorpha two families, Leporidae and Ochotonidae,

ancestral branches are longer compared to the other Eutherian

mammals’ groups (Figure 1). These results suggest that the

Lagomorpha pIgR has evolved at a higher substitution rate

compared to other mammalian orders.

To evaluate the incidence of positive selection on

mammalian pIgR evolution we compared two disparate
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models implemented in CODEML. The model that allows

sites to evolve under positive selection (M8) showed a

significantly better fit than the model that did not (M7) (lnL

M7/lnL M8 =−59437.14/−59246.86; −2DlnL = 380; a < 0.001;

Supplementary Material Table 2), revealing evidence for

positive selection to be acting on mammalian pIgR.

Comparing the sites recognized by each of the five employed

methods led to the identification of 43 PSCs. Of these 43 PSCs,

37 are located in the Ig like domains, with a greater incidence on

Ig like domain 2 (16 PSC’s), 5 in the linker spacer and one in the

cytoplasmic tail (Figure 2). Curiously, the two Ig like domains

found to be under greater incidence of positive selection are

excised from rabbit and cow pIgR short isoforms (14, 16).
Lagomorph pIgR evolution

To confirm our hypothesis, that the Lagomorpha pIgR has

evolved at a higher substitution rate compared to other

mammalian orders, we conducted a Bayesian inference of

evolutionary rates for all studied mammalian lineages. This

analysis showed that the Lagomorpha, Ochotonidae and

Leporidae ancestral branches have substantially higher

substitution rates than the other Eutherian mammals’ groups

or even Monotremata (Lagomorpha 0.0072 substitutions/site/

million years, Ochotonidae 0.0083 substitutions/site/million

years, Leporidae 0.0053 substitutions/site/million years,

substitutions/site/million years; 0.0034 substitutions/site/

million years Monotremata) (Figure 3).

The calculated nucleotide genetic distances for the pIgR

sequences also suggest that the Lagomorpha pIgR is evolving

at a higher rate than other mammals. The Lagomorpha pIgR

genetic distances to other Eutherian mammals’ orders range

between 0.2409 and 0.3862 (Table 2) while genetic distances

between Eutherian mammals’ orders range between 0.0655 and

0.2898 (Table 2). The Lagomorpha is the sister group to

Rodentia, having diverged at approximately 80 mya (36).

Together, these groups constitute the superorder Glires, which

diverged from Primata at approximately 89 mya (36).

Nonetheless, the genetic distances obtained between

Lagomorpha pIgR and Rodentia or Primata pIgR (0.2409 and

0.2693, respectively) were two to three-fold higher than the

genetic distance obtained between Rodentia and Primata pIgR

(0.1009; Table 2).

The calculated genetic distances among Lagomorpha species

are also indicative of a high mutation rate for the Ochotonidae

and Leporidae pIgR. The genetic distances between rabbit or

hares and pikas pIgR (0.3881 to 0.4045; Table 3), species that

diverged at approximately 50 mya (36), are five-fold higher than

the genetic distances between rabbit and hares pIgR (0.0722 to

0.0779; Table 3), members of the Leporidae family which

diverged at approximately 12 mya (36). Concurrently, the

nucleotide identity between European rabbit or hares pIgR and
frontiersin.org
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Ochotona pIgR is of 58% and amino acid homology is of 32%. As

for the leporid pIgR it is conserved, with nucleotide identity of

92% and amino acid homology of 86% between European rabbit

and the hare species pIgR.

The high divergence between Leporidae and Ochotonidae

pIgR raised the question of whether the rabbit and Ochotona

pIgR proteins could be the product of alternatively spliced

variants. To clarify this question, we aligned the full genomic

sequences of European rabbit, hare and pika and found that the

encoded pIgR sequence is flanked by conserved introns across

lagomorphs (Supplementary Material: Data 2). Thus,

the divergence observed between Leporidae and Ochotonidae

pIgR is truly the product of high substitution rates in the

coding sequence.

Next, we asked which pIgR regions are experiencing

higher substitution rates. The analysis of the nucleotide

diversity along the pIgR domains shows that, overall, this

parameter is higher for Ochotonidae than for Leporidae

(Figure 4). The average number of nucleotide substitution

per site between Leporidae and Ochotonidae, is, for the Ig like

domains and linker spacer approximately the double than that
Frontiers in Immunology 05
for the conserved transmembrane and cytoplasmic tail

domains with peaks in the linker spacer and Ig like domain

2 (Figure 4), showing that these domains are the regions where

the divergence between Leporidae and Ochotonidae pIgR

is occurring.

Focusing only on non-synonymous sites shows a similar

pattern, a higher nucleotide diversity for Ochotonidae, with a

peak for Ig like domain 2. The non-synonymous sites nucleotide

divergence between Leporidae and Ochotonidae for the Ig like

domains and linker spacer is, on average, approximately four

times higher than that observed for the transmembrane and

cytoplasmic tail and shows peaks in the Ig like domain 2 and

linker spacer domain (Figure 4). This analysis shows that a high

proportion of the nucleotide substitutions between Ochotonidae

and Leporidae are non-synonymous and confirms that the

Ochotonidae and Leporidae pIgR amino acid sequence is

highly divergent for the Ig like and linker spacer domains

while being identical in the transmembrane and cytoplasmic

tail. (see Supplementary Material: Data 3 for an alignment

of Leporidae, Ochotonidae and Human pIgR amino

acid sequence).
FIGURE 1

Phylogenetic tree of mammalian pIgR gene. Maximum likelihood (ML) method and the GTR+G+I model of nucleotide substitution were used to
obtain the pIgR phylogenetic tree. Mammalian orders are highlighted in different colors. Bootstrap values are indicated near most relevant
branches. For Lagomorpha sequences the last letter in the name identifies the long and short isoform that we sequenced, L identifies the long
isoform and C the short isoform.
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FIGURE 3

Branch-specific evolutionary rates (substitutions/site/million years) for PIGR estimated using BEAST v1.10.4 (34). The median of the high
posterior density distribution is mapped onto the mammalian phylogenetic tree. The thickness and color of branches vary according to the
inferred rate. The mammalian orders are indicated in different colors in a vertical bar to the right of the tree.
FIGURE 2

Alignment of leporid and human pIgR amino acid sequences. Shown are the pIgR amino acid sequences for the two European rabbit subspecies
(O.c. cuniculus and O.c. algirus), the two studied hare species (L. europaeus and L. timidus) and Human (H. sapiens); for leporids, 1L identifies
the long isoform and 1C the short isoform. The deletion of Ig like domains 2 and 3 in the leporids short isoforms is indicated between > and <.
The PSC’s identified for the mammalian pIgR are highlighted in red rectangles. Protein domains are shaded in different colors: Ig like domains in
two alternating blue accents, the linker spacer in grey, the transmembrane domain in yellow and the cytoplasmic tail in orange. The Ig like
domain 1 CDRs are within red boxes. Conserved Cys residues are marked with * above the alignment. N-glycosilation sites are marked above
the alignment: # indicates European rabbit glycosylation sites (51) and $ shows the rabbit and hare glycosylation site.
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Leporid pIgR characterization

Our PCR’s of leporids pIgR yielded two products of

approximately 2400bp and 1700bp for each analysed

individual. Sequencing confirmed that the two products

correspond to the two described European rabbit transcripts,

the long, full pIgR gene, and the short transcript, lacking Ig like

domains 2 and 3, for both subspecies of European rabbit and the

two hare species (Figures 1, 2), evidencing that these short

transcripts have evolved at least in a leporid ancestor.

All the cysteine residues involved in structurally important

disulfide bonds are conserved in leporid species, and the CDR

regions of domain 1 are well conserved (Figure 2). The

prediction for N-glycosylation sites showed that, while the

European rabbit has three sites for N-linked glycosylation sites

the hares have one or no sites for N-glycosylation (419 NGTF +

for L. europaeus and none for L. timidus) (Figure 2).
Discussion

The European rabbit immune system has some uniqueness

among which are the existence of 15 IgA’s (22) and the

expression of two functional pIgR alternative-spliced variants,

one full length and a shorter isoform lacking Ig like domains 2

and 3 (14). In this study, we asked how has the mammalian pIgR

evolved and additionally we verified if other leporids would

share the two European rabbit isoforms.

Our analyses of positive selection evidenced that

mammalian pIgR is evolving under strong positive selection as

many immune system genes are (38–40, 52). The domain with

more sites under positive selection is Ig like domain 2 (16 out of

the 43 PSC’s). This is not entirely surprising as domains 1, 4 and

5 have been described as highly conserved in mammals (1). This

result does highlight that Ig like domain 2 should be particularly

important in the function or conformation of the pIgR in

mammals and raises the question of how has the lagomorph

pIgR evolved to express a shorter isoform lacking this domain.

The combined deletion of domains 2 and 3 of human pIgR

eliminated binding and transcytosis of pIgA across transfected

MDCK cells. This suggests that Ig like domains 2 and 3 may be

necessary for maintaining the correct orientation of Ig like

domain 5 and allow disulfide bonding with the Ca3 domain of

IgA (53–55). On the other hand, Ig like domain 1 of rabbit pIgR

was found to bind pIgA with equivalent affinity to the full-length

SC, and the deletion of Ig like domains 2 and 3 did not diminish

binding to pIgA (56, 57). These species-specific differences in

pIgA-pIgR interactions may provide a functional explanation for

species-specific differences in alternative splicing of the exon

encoding Ig like domains 2 and 3 in pIgR mRNA, since both the

full-length rabbit pIgR and the alternative-spliced variant

lacking the Ig like domains 2 and 3 can bind and lead to

transcytosis of IgA dimers in vitro (58, 59).
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The phylogenetic tree of the mammalian pIgR further

suggested that the Lagomorph pIgR has been evolving at a

higher substitution rate than other mammals. To confirm this

later hypothesis, we ran a Bayesian inference of evolutionary

rates for all studied mammalian lineages and calculated the

nucleotide genetic distances. The obtained results concur to

show that the ancestral Lagomorpha pIgR has a higher

substitution rate than other eutherian mammals, and that this

acceleration in the substitution rate persists in the Ochotonidae

and Leporidae branches. Among vertebrate Fc receptors, the

pIgR is the most evolutionary ancient. A primitive pIgR emerged

in bony fishes (60–62), and probably evolved by duplication of

the Ig-like domains that constitute the extracellular region (60).

While the mammals pIgR has five extracellular Ig-like domains,
Frontiers in Immunology 08
the most primitive form of pIgR found in teleost fish has only 2

extracellular domains, homologous to domains 1 and 5 of

mammalian pIgR, and the pIgR from amphibians and birds

lacks the homolog of domain 2, showing only 4 extracellular

domains (11–13). Phylogenetic studies support the coevolution

of PIGR and the mucosal IGH genes, for instance, the distance

between the trout IgT and the frog IgX is similar to the distance

between the trout and the frog pIgR, suggesting an adaptation of

the pIgR to the transition from IgT to IgX as the dominant

mucosal Ig isotype (60). Considering that Lagomorpha uniquely

have multiple IgA copies (23) and that the unique acceleration of

the substitution rate of the pIgR occurred before the

Lagomorpha radiation, it is tempting to associate both events.

Thus, the IgA expansion would have driven the acceleration in
TABLE 3 Nucleotide genetic distances between pIgR alleles of studied Lagomorpha species.

O. princeps O. curzoniae L.europaeus_2L L.timidus_1L L.europaeus_1L O.c.cuniculus_2L O.c.cuniculus

O. curzoniae 0.0906

L.europaeus_2L 0.3988 0.4045

L.timidus_1L 0.3979 0.4044 0.0086

L.europaeus_1L 0.3988 0.4044 0.0103 0.0121

O.c.cuniculus_2L 0.3908 0.3928 0.0703 0.0698 0.0707

O.c.cuniculus 0.3936 0.3940 0.0765 0.0751 0.0779 0.0232

O.c.algirus_1L 0.3881 0.3884 0.0722 0.0739 0.0736 0.0179 0.0109
These were calculated in MEGA X software using the maximum composite likelihood method, uniform rates among sites, heterogeneous rates among lineages and pairwise deletion
of gaps options.
BA

FIGURE 4

Sliding window along the pIgR nucleotide sequences showing the nucleotide diversity for Leporidae and Ochotonidae for (A) all sites and
for (B) nonsynonymous sites. All Lagomorph sequences used in this study, except the Leporidae short transcripts, were used in this
analysis. The analysis was performed in DnaSP version 6.12 with a window length of 250 nucleotides and a step size of 12 nucleotides. The
pIgR domains are indicated.
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the pIgR substitution rate or vice-versa. However, known pIgR

functions make it difficult to establish this association, so we

cannot exclude the possibility that the pIgR has acquired a new

function that could be related to the IgA expansion. Further

studies are necessary to understand what has driven the

acceleration in the substitution rate of Lagomorpha pIgR.

Interestingly, other immune system genes, like TLR5 gene is

also evolving at higher rate in lagomorphs than other

mammalian orders (63). The TLR5 recognizes flagellin, the

major protein of bacterial flagella, and triggers the

immunologic responses for the clearance of the pathogen (64)

among which is a TLR5 dependent IgA response (65, 66).

The high divergence between the Leporidae and

Ochotonidae pIgR was also somewhat surprising. Since the

two lagomorph families uniquely have multiple IgA copies

(23), it would be interesting to compare the divergence

between Leporidae and Ochotonidae pIgR and Leporidae and

Ochotonidae IgA’s but, unfortunately, there are no available IgA

sequences for pikas. Should the two families’ IgA divergence

parallel the divergence we found for pIgR, then it would be a

support for the hypothesis that the two genes are coevolving in

this mammalian group. However, other immune system genes

also seem to present significate evolutionary differences between

leporids and ochotonids, the CCL16 is pseudogenized in

Leporidae but not in Ochotonidae (67) and the IL17 seems to

present a higher than expected divergence between Ochotonidae

and Leporidae (68), and so this may be a regular pattern.

By sequencing the PIGR in leporids, we confirmed that, like

the European rabbit, hares express the two pIgR isoforms,

suggesting that this feature should have appeared at least in a

Leporidae ancestral. Ig like domains 2 and 3 were shown to be

essential for the human pIgR to bind pIgA. Their absence in the

low molecular weight rabbit pIgR was, however, proven harmless

regarding pIgA binding, since rabbit pIgR domain 1 alone

efficiently binds dIgA (53, 56, 58). A smaller transcript, equally

lacking Ig like domains 2 and 3, was identified in bovine, however,

this shorter form is far less abundant than the full length bovine

pIgR (16). On the contrary, the two rabbit transcripts are nearly

equally expressed in different tissues, suggesting that the

alternative splicing is not tissue specific (14), which might also

apply for other leporids, remaining only unclear what controls the

expression of the different transcripts. The leporids PIGR shows a

high degree of nucleotide similarity and an equally high

percentage of amino acid identity, presenting a high

conservation of residues important for the structure and

function of pIgR. The number of possible N-linked

glycosylation sites for the European rabbit was previously

determined, and only three sites were identified, whereas seven

sites were identified in the human pIgR (51, 69). Some of the sites

for N-glycosylation identified for the rabbit pIgR vary depending
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on the allotype analyzed, however the degree or site of

glycosylation does not significantly affect the binding of Ig like

domain 1 to dIgA (69). In light of this observation, the very low or

absence of glycosylation level seen for the hare pIgRmay not affect

its function.

pIgR proteins with fewer extracellular domains are found in

other distant species, including teleost fish, amphibians and

birds, however, those are not generated by alternative splicing,

but simply have a shorter extracellular portion with domains

that might represent the ancestral mammalian domains (11–13,

70). It is intriguing that the evolution of the mammalian pIgR

lead to the formation of five extracellular Ig-like domains,

followed by further adaptation in the leporid lineage that

allowed the successful expression of a smaller but fully

functional transcript. Therefore, further studies are necessary

to determine the biological significance of the two forms of plgR

found in these species.
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