AUTHOR=Behairy Mohammed Y. , Soltan Mohamed A. , Eldeen Muhammad Alaa , Abdulhakim Jawaher A. , Alnoman Maryam M. , Abdel-Daim Mohamed M. , Otifi Hassan , Al-Qahtani Saleh M. , Zaki Mohamed Samir A. , Alsharif Ghadi , Albogami Sarah , Jafri Ibrahim , Fayad Eman , Darwish Khaled M. , Elhady Sameh S. , Eid Refaat A. TITLE=HBD-2 variants and SARS-CoV-2: New insights into inter-individual susceptibility JOURNAL=Frontiers in Immunology VOLUME=13 YEAR=2022 URL=https://www.frontiersin.org/journals/immunology/articles/10.3389/fimmu.2022.1008463 DOI=10.3389/fimmu.2022.1008463 ISSN=1664-3224 ABSTRACT=Background

A deep understanding of the causes of liability to SARS-CoV-2 is essential to develop new diagnostic tests and therapeutics against this serious virus in order to overcome this pandemic completely. In the light of the discovered role of antimicrobial peptides [such as human b-defensin-2 (hBD-2) and cathelicidin LL-37] in the defense against SARS-CoV-2, it became important to identify the damaging missense mutations in the genes of these molecules and study their role in the pathogenesis of COVID-19.

Methods

We conducted a comprehensive analysis with multiple in silico approaches to identify the damaging missense SNPs for hBD-2 and LL-37; moreover, we applied docking methods and molecular dynamics analysis to study the impact of the filtered mutations.

Results

The comprehensive analysis reveals the presence of three damaging SNPs in hBD-2; these SNPs were predicted to decrease the stability of hBD-2 with a damaging impact on hBD-2 structure as well. G51D and C53G mutations were located in highly conserved positions and were associated with differences in the secondary structures of hBD-2. Docking-coupled molecular dynamics simulation analysis revealed compromised binding affinity for hBD-2 SNPs towards the SARS-CoV-2 spike domain. Different protein–protein binding profiles for hBD-2 SNPs, in relation to their native form, were guided through residue-wise levels and differential adopted conformation/orientation.

Conclusions

The presented model paves the way for identifying patients prone to COVID-19 in a way that would guide the personalization of both the diagnostic and management protocols for this serious disease.