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Background: A deep understanding of the causes of liability to SARS-CoV-2 is

essential to develop new diagnostic tests and therapeutics against this serious

virus in order to overcome this pandemic completely. In the light of the

discovered role of antimicrobial peptides [such as human b-defensin-2

(hBD-2) and cathelicidin LL-37] in the defense against SARS-CoV-2, it

became important to identify the damaging missense mutations in the genes

of these molecules and study their role in the pathogenesis of COVID-19.

Methods: We conducted a comprehensive analysis with multiple in silico

approaches to identify the damaging missense SNPs for hBD-2 and LL-37;

moreover, we applied docking methods and molecular dynamics analysis to

study the impact of the filtered mutations.

Results: The comprehensive analysis reveals the presence of three damaging

SNPs in hBD-2; these SNPs were predicted to decrease the stability of hBD-2

with a damaging impact on hBD-2 structure as well. G51D and C53Gmutations

were located in highly conserved positions and were associated with

differences in the secondary structures of hBD-2. Docking-coupled
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molecular dynamics simulation analysis revealed compromised binding affinity

for hBD-2 SNPs towards the SARS-CoV-2 spike domain. Different protein–

protein binding profiles for hBD-2 SNPs, in relation to their native form, were

guided through residue-wise levels and differential adopted conformation/

orientation.

Conclusions: The presented model paves the way for identifying patients

prone to COVID-19 in a way that would guide the personalization of both

the diagnostic and management protocols for this serious disease.
KEYWORDS

COVID-19, SNPs, molecular dynamics, antimicrobial peptides, hBD-2
Introduction

The emergence of the novel coronavirus disease 2019

(COVID-19), which impacted global health deleteriously, has

attracted worldwide attention in terms of fighting this highly

transmissible virus (1). One basic point that is studied

continuously with any novel infective agent is the fighting

mechanism of the human immune system against this newly

emerged pathogen and how this mechanism could affect the

transmission and the complications (2). Human antimicrobial

peptides (AMPs) have been extensively studied for their roles in

fighting against several forms of pathogens such as bacteria and

viruses where several trials have been performed to incorporate

these peptides with antibiotics for fighting against bacteria (3).

Generally, AMPs have demonstrated antiviral activity through

different mechanisms where blocking the contact between the

virus itself and the human cellular target represented a major

mechanism. Human b-defensins (hBDs), a leading class of

AMPs, were found in several mucosal sites to perform an

innate immune defense mechanism against microbial

colonization (4). Recently, this potential mechanism was

studied specifically for hBD-2, which was able to bind to

SARS-CoV-2 RBD and inhibit the binding of this RBD to

hACE2, leading to the inhibition of the virus spreading, which

pointed out the role of this AMP in fighting against COVID-19

(5). In addition, a recent study found that patients who

developed severe COVID-19 had low serum levels of hBD-2

(6). Human cathelicidin LL‐37 is another example of AMPs that

possess antimicrobial activity through the neutralization of the

bacterial lipopolysaccharides (7). This AMP was also correlated

with COVID-19 where it was found that the deficiency of

vitamin D supplementation would negatively affect the level of

LL-37 and allow for viral propagation (8). In addition, the high

affinity of LL-37 to the RBD of this serious virus and its role in

fighting against COVID-19 has been confirmed as well (9, 10).
02
Single-nucleotide polymorphism (SNP) is a gene-specific

site variation that occurs in one base of the DNA nucleotide

where it represents the most abundant form of human genetic

variation (11). Generally, SNPs can be classified into different

forms where missense SNPs, which are characterized by an

amino acid substitution, can affect the development of

different diseases as well as the human response to that disease

progression (12, 13). This amino acid substitution may lead to

the generation of a new mutated protein with structural and

functional characteristics that largely deviated from the native

one. Consequently, the downstream signals and the roles of the

newly mutated protein would be significantly different from the

original one, an approach that results in a novel way of disease

development for cases that experienced that mutation (14, 15).

The downstream effect of a specific SNP can range from the

modification of a protein solubility or stability to the

deregulation of transcription controlling proteins, which, in

turn, affects the protein expression machinery in the cell (16).

Examples of the deleterious outcome of missense SNPs

include the effects of SNPs in defensin genes on the liability to

human immunodeficiency virus (HIV) infection (17), the effect

of KRAS SNP on cell division and tumor progression (18), the

role of rs4986790 SNP in the toll-like receptor 4 (TLR4) gene in

patients’ vulnerability to HIV-1 infection (19), and the impact of

AGER SNPs on diabetes complications and heart diseases (20).

It is noteworthy that the continuous development in sequencing

technology contributed largely to the elevation in the number of

reported SNPs for many studied genes. While that development

is advantageous, it became essential to study the implications of

those reported SNPs and filter out the pathogenic ones from

normal variants (21). As mentioned, the large number of

reported SNPs makes it difficult to analyze through wet lab

experiments and clinical studies, and alternatively,

bioinformatics tools, which witnessed a great revolution in the

last few years, make it feasible to access and filter a large number
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of reported SNPs and nominate the most deleterious ones in a

timely and cost-effective method (22, 23). These in silico

methods were widely used in recent years in various

immunological and medical aspects (24–26). Moreover, the

development in the structural biology field provides an

effective way for altered protein structural prediction where

the consequences of these structural modifications in the

mutated protein can be assessed through molecular docking

and molecular dynamics simulation approaches (27).

Hence, the current work aims to study the correlation

between the deleterious SNPs of two AMPs, namely, hBD-2

and LL-37, and the propagation of COVID-19. We planned to

retrieve the missense SNPs of these AMPs and nominate the

most deleterious ones after a filtration process. Additionally, we

investigated the functional and structural consequences of these

SNPs and studied the correlation with the spread of our target

virus, SARS-CoV-2. Altogether, these data would shed light on

the mechanisms of the inter-individual susceptibility to this

serious viral disease and contribute significantly to the field of

personalized medicine in the fight against this deadly virus.
Materials and methods

General information

The retrieval of general information related to defensin beta

4A gene (DEFB4A) and cathelicidin antimicrobial peptide gene

(CAMP) was performed using the National Center for

Biotechnology Information (NCBI) database as well as the

Ensembl database. Furthermore, Genecards.org’s database was

utilized to retrieve information about gene ontology with

compartments.jensenlab.org serving as the source for the data

on the subcellular localization.
The retrieval of DEFB4A and CAMP
gene variants

The retrieval ofDEFB4A gene SNPs and CAMP gene SNPs was

performed using NCBI databases depending on the variation viewer

(https://www.ncbi.nlm.nih.gov/variation/view/) with the selection

of dbSNP to be our source database. “DEFB4A” or 1673 [geneid]

was the used entry with theDEFB4A gene. “CAMP” or 820 [geneid]

was the used entry with the CAMP gene. The filtration of the

retrieved variants was performed and themissense SNPs were solely

chosen for the additional analysis.
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Predicting the SNPs with the most
deleterious impacts

Six various in silico tools were utilized to predict which SNPs

have the most deleterious impact on protein function for both

hBD-2 and LL-37. (1) SIFT (Sorting Intolerant from Tolerant)

employs the sequence homology as well as the physical

characteristics of amino acids to forecast how variations may

affect protein function (https://sift.bii.a-star.edu.sg/) (28). (2)

Polymorphism Phenotyping-2 (PolyPhen-2) assesses the effects

of substituting amino acids depending on physical approaches as

well as comparative techniques (http://genetics.bwh.harvard.

edu/pph2) (29). (3) PROVEAN utilizes blast hits and

generates the necessary score and prediction (http://provean.

jcvi.org/seq_submit.php) (30). (4) SNPs&GO utilizes a

functional annotation approach to determine the SNPs with

harmful impacts (https://snps.biofold.org/snpsand-go/snps-

and-go.html) (31). (5) PHD-SNP utilizes support vector

machines (SVMs) to forecast how the novel phenotype

resulting from the missense mutations is associated with

human illnesses (http://snps.biofold.org/phd-snp/phd-snp.

html) (32). (6) SNAP2 was also used with its distinct neural

network’s capacity to distinguish between effect SNPs and the

other neutral ones (https://rostlab.org/services/snap/) (33).

These mutations, which were found to be deleterious by at

least five tools, were designated as the most harmful ones. By

combining these distinct tools with various methodologies and

algorithms, we aimed at improving the precision of

our investigation.
The analysis of the variants’ effects on
the stability of the protein

I-Mutant 2.0 as well as Mu-Pro tools were utilized to

investigate how the selected mutations affected the stability

of the protein. I-Mutant 2.0 employs a support vector machine

to forecast the direction and the magnitude of the change in the

free energy (DDG) (https://folding.biofold.org/i-mutant/i-

mutant2.0.html) (34). The ProTherm database, with its

extensive experimental data on the change in free energy

associated with the stability of proteins affected by the

mutations, was utilized for testing I-Mutant 2.0 (35). Mu-Pro

employs a robust support vector machine approach showing

84% accuracy when applied to the cross-validation and the

verification process (http://mupro.proteomics.ics.uci.

edu/) (36).
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The recognition of the location of the
SNPs on protein domains

InterPro was utilized to find the sites of the deleterious

mutations on protein domains (https://www.ebi.ac.uk/interpro/).

The functional analysis performed by InterPro could reveal the

important domains and the key motifs of the chosen protein (37).
The investigation of the phylogenetic
conservation of protein residues

Utilizing ConSurf, the phylogenetic conservation of the

protein residues was examined (https://consurf.tau.ac.il). By

analyzing the homologous sequences for the existing

phylogenetic connections, ConSurf could examine the

sequences of the designated protein for phylogenetic

conservation (38, 39).
Secondary structure analysis

PSIPRED tool (http://bioinf.cs.ucl.ac.uk/psipred/) was

utilized to analyze the secondary structure of the selected

protein and determine the specific alignment for the altered

amino acids in the examined secondary structure. Furthermore,

the secondary structures in case of the damaging mutations were

analyzed as well. PSIPRED could analyze the secondary

structure related to a certain protein with the use of position-

specific matrices produced by PSI-BLAST (40).
Analyzing the effects of our variants on
the protein structure

Utilizing the HOPE bioinformatics server, the 3D structure

of the designed protein could be examined (https://www3.cmbi.

umcn.nl/hope/). HOPE utilizes numerous sources for gathering

the relevant information along with the production of homology

models with the help of the YASARA program in order to carry

out the needed functions (41).
Molecular docking studies

Prior to molecular docking simulations, proteins including

the native dimeric hBD-2 (PDB: 1FD3) as well as the constructed

SNP-variant dimers were independently prepared through the

removal of any bound ligands, crystalized solvent, as well as

ionic metals/salts, in addition to subsequent protein protonation

(42–45). Residues of hBD-2 were indexed starting from Gly24 to

Pro64, since the first 23 amino acids are reported as a signal
Frontiers in Immunology 04
sequence being removed via the proteolytic advent of signal

peptidases permitting the release and secretion of hBD-2 (46).

Crystallized SARS-CoV-2 spike (PDB: 6m0j) was also prepared

as described above to be only included within the subsequent

molecular dynamics simulations serving as a positive control

reference. Docking the native or variant hBD-2 dimers on the

receptor-binding domain (RBD) of SARS-CoV-2 spike protein

was performed using two online docking servers: ClusPro v2.0

(Boston and Brook Universities; https://cluspro.org/) (47–50)

and ZDOCK v3.0.2 (Massachusetts University; https://zdock.

umassmed.edu/) (51, 52).

Relying on the Fast Fourier Transform correlation protocol,

the ClusPro server predicted the hBD-2/RBD complex through a

multi-stage process including PIPER-based rigid docking,

interaction energy-based conformational filtration, pose

ranking based on clustering properties, and finally refinement

through energy minimization (48, 53). Interaction energy

adopted by ClusPro includes energy terms for van der Waals

(Eatt + Erep), electrostatic (Eelec), and pairwise structure-

dependent potentials (EDARS) resulting from Decoys as

reference state, while it lacks entropic energy terms (48, 53,

54). In this regard, it was suggested to utilize cluster ranking, in

terms of cluster populations where hBD-2 inbound with the

SARS-CoV-2 RBD site was utilized for hACE2 association,

rather than the obtained ClusPro interaction energies in order

to rank and identify the best-clustered structure complex (5).

Concerning docking with ZDOCK, the protocol was more

specific since docking constraints were applied to define the

spike RBD binding site with the residue range (Ser436-Tyr508)

as it depicted high solvent accessibility and reported enrollment

within the RBD/hACE2 complex association (5, 44, 55, 56).
Docking pose assessment and
interface analysis

Evaluation of the best docking pose for each bound spike

RBD/hBD-2 complex obtained from each docking server was

proceeded through macromolecular interface analysis using the

online PDBePISA v1.5.2 server tool (European Bioinformatics

Institute/EMBL-EBI; https://www.ebi.ac.uk/msd-srv/prot_int/

cgi-bin/piserver) (57, 58). This tool provided descriptions for

the sole and bound protein interface such as interface residues,

total solvent-accessible surface area (Å2), numbers/types of

binding interactions, and the gained solvation free energy

(DiG; kcal/mol), and its p-value (DiG p-value) (59). The last

two desc r ip tor s a re ind i ces for h igher in te r f ace

hydrophobicity/protein affinity (high negative DiG values) and

to how far would the protein–protein interface be interaction-

specific (p < 0.5) (57).

Additional protein–protein interface analysis was performed

using the Network Analysis of Protein Structures server (NAPS;
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International Institute of Information Technology, Hyderabad,

India; https://bioinf.iiit.ac.in/NAPS/). This server adopts the

network global analysis tool for representing the nodes and

backbone edges, in addition to residue–residue contact plots

between the hBD-2 and spike RBD monomeric units (60).

Moreover, an estimation of the spike RBD/hBD-2 binding

affinity for the predicted docked complex was performed using

the Molecular Mechanics energy-guided Generalized Born and

Surface Area (MM/GBSA; kcal/mol) calculations that are

implemented at the HawkDock server (Zhejiang University;

http://cadd.zju.edu.cn/hawkdock/) (61). The HawkDock

MM/GBSA calculation permits an estimation of the energy

term components including van der Waal, electrostatic, and

polar solvation, in addition to the dissection of these energy

terms down to the protein’s per-residue energy contributions

(62, 63).
All-atom molecular dynamics simulations

Best docked spike RBD-associated complexes, for the native

hBD-2 and each SNP variant, were subjected to 100 ns all-atom

molecular dynamics simulations under CHARMM36m

forcefield and using the GROMACS program (64). Protein

complexes were solvated at the TIP3P cubic box under

periodic boundary conditions, while maintaining the 10-Å

minimum distance between the protein atoms and box

boundaries. The net charge of the system was neutralized via

sufficient 0.15 M sodium and chloride ions. Systems were

subjected to the steepest-descent minimization for 0.05 ns,

followed by two-staged equilibration at standard thermo- and

barostats (Berendsen-temp for NVT ensembles, 1 ns at 310 K,

followed by the Parrinello–Rahmann barostat for the NPT

ensemble, 1 ns at 1 atm and 310 K) (43, 64). Molecular

dynamics were run for 100 ns under the NPT ensemble and

Particle-Mesh-Ewald algorithms for computing long-range

electrostatic interaction (65). For comparison, the prepared

spike RBD/ACE2 complex was used in the reference

simulation run adopting the same conditions being detailed.

Trajectory analysis was performed using root-mean-square

deviations (RMSDs; Å), the radius of gyration (Rg; Å), RMS-

Fluctuations (RMSFs; Å), and solvent-accessible surface area

(SASA; nm2) via the GROMACS in-house analysis scripts

relying on the protein’s backbone alpha-carbon atoms. Visual

Molecular Dynamics (VMD) software (Illinois University,

v1.9.3, Urbana-Champaign, United States) was used for

hydrogen bond analysis defining the hydrogen bond distance/

angle cutoffs at 3.0 Å and 20°, respectively, and representing the

time of formed particular hydrogen bond as % occupancy.

Conformational analysis and visualization of the simulated

complexes at specified timeframes were done using PyMOL

software (Schrödinger; v2.0.6, United States).
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The analysis of gene–gene interactions

By utilizing GeneMANIA, the network describing gene–

gene interactions was produced (http://www.genemania.org).

GeneMANIA could forecast the genes that have a strong

interaction with a selected gene using a variety of resources

and types of data (66).
Results

General information

Both DEFB4A and CAMP genes are protein-coding genes with

NCBI Gene IDs of 1673 and 820, respectively. The DEFB4A gene is

located at 8p23.1; it has two exons and a length of 2,040 nucleotides.

There is one transcript for the DEFB4A gene (ensemble.org). The

illustration of the subcellular localization of the DEFB4A gene is

shown in Figure S1A (Compartments.jensenlab.org/), while the

illustration of its gene ontology can be shown in Figure S1B

(Genecards.org). In addition, the CAMP gene is located at

3p21.31; it has four exons and a length of 1,991 nucleotides.

Moreover, the CAMP gene has two transcripts (ensemble.org).

The illustration of the subcellular localization of the CAMP gene

is shown in Figure S2A (Compartments.jensenlab.org/), while the

illustration of its gene ontology can be shown in Figure S2B

(Genecards.org).
Retrieving DEFB4A and CAMP
gene variants

A total of 897 single-nucleotide variations could be detected

in the DEFB4A gene (accessed 31 May 2022). Out of these SNPs,

52 were missense SNPs, 22 were synonymous SNPs, 611 were

intron SNPs, 25 were in the 5′ untranslated region (UTR), and

30 were in the 3′ UTR, besides the other downstream and

upstream variants. Meanwhile, for the CAMP gene, 831 single-

nucleotide variations could be detected (accessed 27 May 2022).

Out of these SNPs, 138 were missense SNPs, 78 were

synonymous SNPs, 466 were intron SNPs, 7 were in the 5′
untranslated regions (UTR), and 22 were in the 3′ UTR, besides
the other downstream and upstream variants.
Investigating the effect of the SNPs on
hBD-2 function

For hBD-2, among the 52 missense SNPs, 24 missense SNPs

were found in amino acid sequence from position 24 to position

64 that correspond to hBD-2 as the first 23 amino acids

represent a signal peptide (https://www.uniprot.org/uniprot/
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O15263). These 24 missense SNPs were investigated for their

effect on protein function using six in silico tools (SIFT,

PolyPhen-2, SNAP, PROVEAN, PHD-SNP, and SNP&GO).

Only three SNPs [rs1173728551 (P44L), rs867101800 (G51D),

and rs1585735110 (C53G)] were found to be deleterious by at

least five tools. Table 1 shows the detailed results for all these 24

SNPs in hBD-2 with the various used tools.
Investigating the effect of the SNPs on
LL-37 function

For LL-37, 27 missense SNPs were found in amino acid

sequence from position 134 to position 170 that correspond to

the mature LL-37 (https://www.uniprot.org/uniprot/P49913).

These 27 missense SNPs were investigated for their effect on

protein function using six in silico tools (SIFT, PolyPhen-2,

SNAP, PROVEAN, PHD-SNP, and SNP&GO). None of these

SNP was found to be deleterious by at least five tools. Table S1

shows the detailed results for all these 27 SNPs in LL-37 with the

various used tools.
The analysis of the variants’ effects on
the stability of hBD-2

The analysis of the variants’ effects on the stability of hBD-2

was performed using the I-Mutant 2.0 tool in addition to the

Mu-Pro tool. All the three SNPs were found to decrease the

stability of hBD-2 by both I-Mutant 2.0 and Mu-Pro tools.

Table 2 shows the detailed results and the values of the analysis.
The recognition of the location of the
SNPs on hBD-2 domains

The analysis of hBD-2 by InterPro showed the existence of a

domain called Beta/alpha-defensin, C-terminal domain

(InterPro entry: IPR006080). The investigation of the locations

of our three variants was performed, and the three SNPs were

shown to be located in this domain (Table 3).
The investigation of the phylogenetic
conservation of hBD-2 residues

The residues of the hBD-2 protein were analyzed for their

phylogenetic conservation using the ConSurf tool. Two SNPs

(G51D and C53G) were found to be positioned in highly

conserved locations while the other SNP (P44L) was found to

be positioned in a variable location (Table 3).
Frontiers in Immunology 06
Secondary structure analysis

The PSIPREDmethod was used for predicting the secondary

structure of hBD-2 as shown in Figure 1A. The secondary

structures at residues 44, 51, and 53 were found to be coil,

strand, and strand, respectively, as shown in Table 3.

Furthermore, the secondary structures of hBD-2 were

predicted with our mutations as shown in Figure 1. On one

side, P44L was not found to lead to changes in the secondary

structure of hBD-2 (Figure 1B). On the other side, G51D and

C53G mutations were found to be associated with differences in

the secondary structures of HBD-2; both mutations were

associated with loss of the strand structure at the end of the

protein as shown in Figures 1C, D, respectively.
Analyzing the effects of our variants on
hBD-2 protein structure

The analysis was extended to study the effects of our variants

on hBD-2 protein structure using the HOPE tool. The structural

effects in hBD-2 protein with the substitution of the amino acids

are described in detail in Table 4. Figures 2A–C illustrate the

replacement of the wild-type residue with the mutant one for

P44L, G51D, and C53G, respectively.
Molecular Docking and binding
pose prediction

Both employed docking servers illustrated relevant binding

of the four different hBD-2 dimers (one native and three SNP

variants; SNP1 to SNP3) at the spike RBD interface. For

simplicity, the hBD-2 SNP-variant dimers, P44L, G51D, and

C53G, would be referred to as SNP1, SNP2, and SNP3,

respectively, within the forthcoming context. Examining the

top complexes obtained from each server revealed comparable

protein arrangement based on the RMSD alignment analysis

with values of 0.780 Å, 0.730 Å, 0.934 Å, and 0.816 Å for the

native, SNP1, SNP2, and SNP3 docked complexes, respectively

(Figure 3). Analyzing the complex interfaces via PDBePISA

illustrated a larger interface solvent-accessible area as well as

interaction contacts (# hydrogen bonds and # salt bridges) for

the complexes obtained from the ZDOCK server over those from

ClusPro (Table 5). The depicted preferentiality of the ZDOCK-

generated complex was reasonably translated into higher

negative D1G scores as well as lower D1G p-value implying

profound interaction specificity for the hBD-2 towards the

spike RBD interface surface being of higher hydrophobicity

than would-be-average for given structures. Based on the

above findings, ZDOCK-obtained complexes were considered
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TABLE 1 Prediction and scores of deleterious missense SNPs by six in silico tools in hBD-2.

SNP ID AA change SIFT PolyPhen-2 PROVEAN SNP&GO PHD-SNP SNAP2

ction Score Prediction RI score Prediction RI score Prediction Score

l −1.575 Neutral 6 Neutral 7 Effect 34

l −1.879 Neutral 6 Neutral 7 Effect 36

l −0.423 Neutral 7 Neutral 7 Effect 33

l 3.17 Neutral 9 Neutral 8 Effect 4

l −0.689 Neutral 6 Neutral 7 Effect 66

ious −3.942 Disease 2 Neutral 6 Effect 73

l −0.392 Neutral 8 Neutral 8 Effect 16

l −1.597 Neutral 5 Disease 3 Effect 43

ious −3.663 Neutral 4 Neutral 6 Effect 56

l 2.195 Neutral 8 Neutral 5 Neutral -11

l 2.705 Neutral 9 Neutral 6 Neutral 0

ious −6.617 Neutral 6 Disease 2 Effect 71

ious −5.217 Neutral 2 Neutral 4 Effect 43

rious −6.65 Neutral 5 Disease 1 Effect 9

l −1.273 Neutral 2 Neutral 0 Effect 33

l 0.625 Neutral 6 Neutral 0 Effect 36

l −0.849 Neutral 1 Disease 1 Effect 24

ious −3.902 Neutral 7 Neutral 8 Effect 41

ious −3.667 Disease 6 Neutral 4 Effect 79

rious −7 Disease 5 Disease 1 Effect 91

rious −12 Disease 6 Disease 2 Effect 93

l −0.592 Neutral 9 Neutral 9 Effect 59

ious −3.133 Neutral 5 Neutral 6 Effect 83

ious −2.82 Neutral 9 Neutral 8 Effect 70

l −1.262 Neutral 10 Neutral 8 Effect 46
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Prediction Score Prediction Score Pred

1 rs1819008468 G24S Tolerated 1 Benign 0.000 Neutr

2 rs1819008558 G24A Tolerated 1 Benign 0.001 Neutr

3 rs1250045369 I25V Tolerated 0.51 Benign 0.141 Neutr

4 rs1187934232 D27N Tolerated 1 Benign 0.000 Neutr

D27H Deleterious 0.02 Benign 0.025 Neutr

5 rs1585735067 T30P Deleterious 0.02 Possibly damaging 0.575 Delete

6 rs867028308 L32I Tolerated 0.38 Benign 0.025 Neutr

7 rs1207680444 L32R Tolerated 0.34 Possibly damaging 0.790 Neutr

8 rs867852480 S34C Tolerated 0.06 Probably damaging 0.963 Delete

9 rs868395018 S34N Tolerated 1 Possibly damaging 0.787 Neutr

10 rs1238855923 A36G Tolerated 1 Probably damaging 0.918 Neutr

11 rs771000730 P40L Tolerated 0.19 Probably damaging 0.975 Delete

12 rs1819009406 P44S Tolerated 0.26 Probably damaging 0.960 Delete

13 rs1173728551 P44L Deleterious 0.05 Probably damaging 0.975 Delete

14 rs1819009507 R45T Tolerated 0.57 Benign 0.218 Neutr

15 rs867423555 R46G Tolerated 0.43 Benign 0.117 Neutr

16 rs1819009626 R46T Tolerated 0.59 Benign 0.088 Neutr

17 rs1819009676 Q49H Deleterious 0.03 Benign 0.005 Delete

18 rs1819009719 I50F Tolerated 0.06 Possibly damaging 0.494 Delete

19 rs867101800 G51D Deleterious 0 Probably damaging 0.989 Delete

20 rs1585735110 C53G Deleterious 0 Possibly damaging 0.849 Delete

21 rs867683988 T58A Tolerated 0.05 Benign 0.075 Neutr

22 rs1161262387 K59Q Deleterious 0.05 Probably damaging 0.937 Delete

23 rs866179345 K63N Deleterious low confidence 0.04 Benign 0.003 Delete

24 rs866773137 P64A Deleterious low confidence 0 Possibly damaging 0.811 Neutr

Bold font represents the selected most harmful SNPs.
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more significant for further interface evaluation and to be used

for subsequent molecular dynamics simulation studies.

A general binding affinity trend has been illustrated with the

ZDOCK-generated complexes where both DiG and # polar

interface interactions were more favored for the binding

affinity of the native hBD-2 dimer as compared to the SNP

variants (Table 5). This trend was quite consistent with complex

structural network analysis findings obtained from the NAPS

server since # nodes (residues) and edges (bonds) were reduced

with the SNP variants as compared to the native hBD-2 form

(Figure 4; left panels). Applying 7 Å as the upper threshold and
Frontiers in Immunology 08
one residue for separation index, the estimated node:edge ratios

were 282:1,149, 277:1,030, 276:1,116, and 277:1,120 for the

native hBD-2, SNP1, SNP2, and SNP3 bound complexes,

respectively. Generally, the reduction within the edge numbers

would correlate to compromised protein–protein binding

interactions as well as less favored complex stability (60, 67).

Generated inter-/intra-molecular contact plots showed lower

interaction patterns with the hBD-2 SNP variants in relation

to those exhibited by the native congruent form (Figure 4;

middle panels). These latter patterns were delineated by circle

highlights placed on Figure 4 where these circle highlights show
A

B

C

D

FIGURE 1

The analysis of secondary structure as produced by the PSIPRED tool. (A) The analysis of the secondary structure of hBD-2 (wild type). (B) The
analysis of the secondary structure of hBD-2 with P44L SNP. (C) The analysis of the secondary structure of hBD-2 with G51D SNP. (D) The
analysis of the secondary structure of hBD-2 with C53G SNP.
TABLE 2 Effects on hBD-2 stability with missense mutations.

SNP Id AA change I-mutant 2 MU-pro

I-mutant 2 prediction Reliability Index (RI) DDG value (kcal/mol) Prediction delta delta G

rs1173728551 P44L Decrease 6 −0.99 Decrease stability −0.12301499

rs867101800 G51D Decrease 8 −1.24 Decrease stability −0.80760408

rs1585735110 C53G Decrease 6 −0.42 Decrease stability −1.441339
TABLE 3 Locations of the selected residues on hBD-2 domains, ConSurf conservation analysis, and predicted secondary structure.

SNP Id AA change Location on protein ConSurf conservation analysis Secondary structure

rs1173728551 P44L Beta/alpha-defensin, C-terminal domain (IPR006080) Variable position Coil

rs867101800 G51D Highly conserved Strand

rs1585735110 C53G Highly conserved Strand
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A B

C

FIGURE 2

Impacts of SNPs on hBD2 3D structure as produced by the HOPE bioinformatics tool. (A) Impacts of SNPs on hBD-2 3D structure with P44L
SNP. (B) Impacts of SNPs on the hBD-2 3D structure with G51D SNP. (C) Impacts of SNPs on the hBD-2 3D structure with C53G SNP.
TABLE 4 The predicted SNPs’ impacts on the hBD-2 structure by the HOPE server.

SNP ID AA
change

Amino acid properties Location/Structure SNP’s impact on the
protein

rs1173728551 P44L The mutant amino acid has a bigger size than the wild-type one;
being at the surface of the protein, the mutation of this residue could
lead to disturbance in the interactions of the protein.

The rigidity of the wild-type proline
is responsible for a specific backbone
conformation; therefore, this
mutation could lead to disturbance
in this conformation. In addition,
this mutation is very adjacent to a
cysteine bond, which could be
affected by this mutation.

The mutated residue is found
at the surface of the main
domain of this protein.
However, the conservation
analysis suggests the absence
of a damaging effect on the
protein with the mutated
residue.

rs867101800 G51D The introduced charge by the mutant amino acid could cause
repulsion between this amino acid and the adjacent ones. Moreover,
the mutant amino acid has a bigger size than the wild-type one; being
at the surface of the protein, the mutation of this residue could lead
to disturbance in the interactions of the protein. In addition, as
glycine with its flexibility is important to the unusual torsion angle,
this mutation could lead to inappropriate conformation and
disturbance in the local structure.

The mutation will lead to the loss of
the flexibility of glycine, which could
be important to the function of the
protein.

The mutated residue is found
at the surface of the main
domain of this protein. In
addition, the wild-type residue
is a highly conserved one, so
that the mutation is expected
to be a damaging one.

rs1585735110 C53G The mutation will lead to the occurrence of empty space inside the
core of this protein due to the smaller size of the mutated residue. In
addition, the hydrophobic interactions at this position could be lost
due to this mutation.

The mutation will lead to the loss of
the cysteine bridge (formed by the
wild-type cysteine) and will cause
serious damage to the protein’s
structure consequently. Moreover,
the flexibility of the mutant-type
glycine could disturb the needed
rigidity.

The mutation could disturb
the core structure of the
domain as it is buried in the
core of this domain. In
addition, the wild-type residue
is a highly conserved one, so
that the mutation is expected
to be a damaging one.
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higher native spike RBD/hBD-2 molecular interactions as

compared to those of SNP variants.

Key binding residues at the interface between the spike RBD

and investigated hBD-2 dimeric forms are shown in Figure 4

(right panels). Several common polar residues involved in spike

RBD binding with native and SNP1 hBD-2 interface include

spike Thr478, pro479, Asn481, and Glu484, which mediated

hydrogen bond interactions with hBD-2 residues His39,

Arg45, Arg46, and/or Tyr47 belonging to either protomer A,

protomer B, or both (Table 6; spike residue will be written in

italic formate from here forward). On the other hand, amino

acids such as Tyr351, Asn450, Tyr453, Phe490, Gln493, and

Gly502 were significant for both SNP2 and SNP3 hBD-2

complex stabilities as they furnished hydrogen bonding with

Arg45, Arg46, Tyr47, Lys63, and Pro64 of either one or both

protomers. Interestingly, binding with spike Tyr449 was

common for all four complex interactions where it mediated
Frontiers in Immunology 10
strong polar hydrogen bond interactions with Lys59 of native

and SNP1 hBD-2 proteins. On the other hand, spike Tyr449 was

significant for Arg45–hydrogen bond association at SNP2 and

SNP3 proteins. The latter spike–Tyr449 direct polar interactions

were directed towards the hBD-2 protomer A chain, rather than

the protomer B one. Moreover, hBD-2 protomer A Arg46 and

protomer B Arg45 and Pro64 amino acids were the most

frequent residues involved with spike RBD interface

interaction and binding. As these residues were in close

proximity to SNP residues (P44L, G51D, and C53G), this

could highlight the influence of these mutated residues on the

conformation of their neighboring key interacting residues and,

thus, in turn, the binding pose, orientation, and affinity of the

simulated hBD-2.

On similar bases, multiple salt bridges between spike Glu484

at one side and His39 and Lys63 of either hBD-2 protomer were

almost consistent across the four ZDOCK-generated docked
TABLE 5 Descriptors of the spike RBD/hBD-2 interface analysis predicted via PDBePISA server.

Dock
Sever

hBD-2
genotype

Spike RBD hBD-2 Interface

Interface
Residues

Interface
Surface a (Å2)

Interface
Residues

Interface
Surface a (Å2)

Interface
Surface b (Å2)

# H-
bonds

# Salt
Bridges

DiG c

(kcal/
mol)

DiG p-
Value d

ClusPro Native 30 19,868 24 5,652 930 10 3 −8.6 0.701

SNP1 27 20,192 20 5,818 967 8 2 −5.7 0.508

SNP2 38 20,066 28 5,715 1,077 9 1 −6.3 0.628

SNP3 37 19,924 22 5,579 1,060 9 0 −6.0 0.647

ZDOCK Native 30 20,192 23 5,735 1,112 12 4 −10.2 0.426

SNP1 35 19,938 25 5,882 1,002 9 2 −8.2 0.470

SNP2 40 20,192 22 5,946 1,124 9 2 −9.6 0.571

SNP3 40 20,192 27 5,951 1,092 8 2 −6.7 0.581
fron
a Solvent-accessible surface area within squared angstrom units for each bound protein.
b Interface area denotes the difference in accessible surface areas of isolated and interfacing structures divided by two.
c D1G denotes the gained solvation-free energies through interface formation. Higher negative values imply hydrophobic interfaces and positive protein affinity.
c D1G p-value denotes the p-value of the gained solvation-free energies. It measures the probability of getting a lower D1G than the observed D1G when the interface atoms are randomly
picked from the protein’s surface. D1G p-values below 0.50 imply that the interfaces of high hydrophobicity are even higher than would-be-average for given structures, which further
implies that the interface surface could be interaction-specific. # means number of.
A B C D

FIGURE 3

Aligned structures obtained from different docking servers for the docked hBD-2 dimeric forms at the SARS-CoV-2 RBD interface. Docked
hBD-2 dimers generated from ClusPro (green cartoon) and ZDOCK (yellow cartoon) were aligned at the binding interface of the SARS-CoV-2
RBD (blue cartoon). (A) native hBD-2 model, (B) P44L hBD-2 mutant model SNP1, (C) G51D hBD-2 mutant model SNP2, and (D) C53G hBD-2
mutant model SNP3.
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A

B

C

D

FIGURE 4

Interface analysis for the ZDOCK-obtained spike RBD/hBD-2 dimer complexes using NASP sever. (A) Native hBD-2 model, (B) SNP1 hBD-2
mutant model, (C) SNP2 hBD-2 mutant model, and (D) SNP3 hBD-2 mutant model. Left panels illustrate the network between edges (inter-/
intra-molecular bonds as yellow and gray colors, respectively) and dots/nodes (amino acids; orange for spike RBD and blue/green for the hBD-
2 dimers). The middle panels illustrate the contact plots for the residue–residue interactions between the monomeric units of spike RBD
(residue index 1–194) and hBD-2 (residue index 195–276). Circle highlights are shown to pinpoint the contact interfacing residues between
spike RBD and hBD-2 proteins, as well as hBD-2 protein monomers. Right panels illustrate the interface key polar interactions as predicted by
the PDBePISA docking server. Protein backbones are depicted as a transparent cartoon colored red, blue, and green for spike RBD, hBD-2
protomer A, and hBD-2 protomer B, respectively. Key residue pairs are presented as lines, colored depending on their location within the
proteins, and numbered according to their respective residue sequence. Spike RBD residues are presented in bold and italic. Bonds of polar
interactions are black dashed lines.
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complexes. Besides polar interacting residues, hydrophobic

interface residues at spike RBD showed significant closeness

and relevant non-polar contacts with neighboring hBD-2 amino

acids. Spike residues such as Val483, Phe490, Leu452, and Ile472

depicted ≤5.0 Å distances from the respective Tyr47, Phe42, and

Val41 amino acids at native and SNP1 hBD-2 protomers.

Notably, spike Val583 showed hydrophobic contact with

native Pro44 and its SNP1 variant residue, Leu44, with a much

closer distance toward the earlier native residue (3.9 Å versus 4.5

Å aC distance). Regarding both SNP2 and SNP3 variants,

residues such as Pro64, Phe42, His39, Ile37, Tyr47, and Val41

illustrated potential hydrophobic interaction with Ile472,

Val483, Tyr489, Tyr449, Tyr505, and/or Val445 of the spike
Frontiers in Immunology 12
protein. For translating all the above preferential per-residue

interactions into respective binding energy terms, the MM/

GBSA binding energy calculations were applied for the top

four spike RBD/hBD-2 complexes. Higher binding energy was

assigned for the native hBD-2 complex as compared to its SNP

variants. As expected, higher residue-wise energy contributions

were assigned for the key interacting residues of both spike RBD

and hBD-2 proteins (Table 6). Focusing on the mutant hBD-2

SNP residues, the residues were of lower negative energy

contributions than their native amino acids (Pro44 −2.39 kcal/

mol vs. Leu44 −1.35 kcal/mol in SNP1; Gly51 −0.13 kcal/mol vs.

Asp51 0.21 kcal/mol in SNP2; Cys53 −0.14 kcal/mol vs. Gly53

0.02 kcal/mol in SNP3). Interestingly, mutant residues at SNP2
TABLE 6 Key interface per-residue polar interactions via PDBePISA and predicted MM/GBSA binding energies.

hBD-2 genotype Polar interactions MM/GBSA calculations (kcal/mol)

Hydrogen bonds Salt bridges Total binding energy Per-residue contributionsa

(≥1.50 kcal/mol)

RBD hBD-2

Native Gln493[NE2] A:Pro40[O] 3.54Å
Glu484[OE2] A:His39[NE2] 2.11Å
Gly482[O] A:Arg46[NE] 2.67Å
Tyr449[O] A:Lys59[NZ] 3.68Å
Phe486[N] B:Arg46[O] 2.06Å
Tyr489[OH] B:Pro64[O] 2.33Å
Asn481[OD1] B:Arg45[NH1] 2.72Å
Asn481[OD1] B:Arg45[NH2] 2.80Å
Thr478[OG1] B:Arg46[NH1] 2.38Å
Pro479[O] B:Arg46[NH2] 2.04Å
Glu484[OE1] B:Tyr47[OH] 2.92Å
Cys488[O] B:Tyr47[OH] 3.59Å

Glu484[OE2] A:His39[ND1] 3.95Å
Glu484[OE1] A:His39[NE2] 3.01Å
Glu484[OE2] A:His39[NE2] 2.11Å
Glu484[OE1] B:Lys63[NZ] 3.27Å

−53.16 Glu484
Tyr489
Phe490
Phe486
Tyr449
Ans481
Val483
Glu471

A:Phe42
A:Pro56
A:Arg45
A:Val41
A:His39
B:Tyr47
B:Pro64
A:Pro44
B:Lys63
B:Arg45

SNP1 Glu484[OE2] A:His39[NE2] 2.74Å
Gly482[O] A:Arg46[NE] 3.68Å
Tyr449[O] A:Lys59[NZ] 3.21Å
Asn481[O] B:Arg45[NH2] 3.48Å
Cys480[O] B:Arg45[NH2] 3.07Å
Thr478[OG1] B:Arg46[NH1] 3.59Å
Pro479[O] B:Arg46[NH1] 2.19Å
Cys480[O] B:Arg46[NH2] 2.60Å
Asn481[OD1] B:Arg46[NH2] 3.71Å

Glu484[OE2] A:His39[NE2] 2.74Å
Glu484[OE1] B:Lys63[NZ] 3.99Å

−40.18 Tyr449
Phe490
Pro479
Val483
Glu484
Glu471
Phe486
Thr470
Ile472

A:Phe42
A:Pro56
A:Arg45
A:Val41
A:Leu44
B:Lys63
B:Arg46B:Tyr47A:His39

SNP2 Gln493[NE2] A:Tyr47[OH] 2.85Å
Tyr449[O] A:Arg45[N] 2.46Å
Asn450[O] A:Arg45[NH1] 3.06Å
Tyr351[OH] A:Arg46[NH2] 2.13Å
Phe490[O] A:Lys63[NZ] 2.91Å
Gln498[NE2] B:Gly35[O] 3.83Å
Tyr453[OH] B:Arg45[O] 3.64Å
Gly502[N] B:Pro64[OXT] 2.34Å
Leu455[O] B:Arg45[NH2] 2.93Å

Glu484[OE2] A:Lys63[NZ] 3.55Å
Glu484[OE1] A:Lys63[NZ] 3.10Å

−14.23 Tyr449
Tyr505
Asn501
Gly502
Phe490
Asn450
Leu452
Leu455
Phe497

A:Phe42
B:Tyr47
A:Arg45
A:His39
A:Pro44A:Val41

SNP3 Gln493[NE2] A:Tyr47[OH] 2.81Å
Tyr449[O] A:Arg45[N] 2.45Å
Asn450[O] A:Arg45[NH1] 3.06Å
Tyr351[OH] A:Arg46[NH2] 2.11Å
Phe490[O] A:Lys63[NZ] 2.89Å
Gly502[N] B:Pro64[OXT] 2.35Å
Leu455[O] B:Arg45[NH2] 2.90Å
Ser494[O] B:Tyr47[OH] 3.87Å

Glu484[OE2] A:Lys63[NZ] 3.55Å
Glu484[OE1] A:Lys63[NZ] 3.10Å

−17.54 Tyr449
Tyr505
Asn501
Gly502
Asn450
Leu452
Phe490
Leu455

A:Phe42
B:Tyr47A:Arg45
A:Pro44
A:His39
A and B denote hBD-2 protomer A and B, respectively.
aPer-residue MM/GBSA energy contributions that are listed in descending order.
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and SNP3 depicted positive repulsive energy contributions

rather than favored attractive ones.
All-atom molecular dynamics simulation
and thermodynamic stability

The RMSD trajectories of both spike RBD and hBD-2

proteins were monitored across the 100-ns all-atom simulation

runs in reference to the alpha-carbon atoms (aC) of their

respective initial structure. The spike RBD aC-RMSD showed

deferential tones based on the ligand-bound protein (Figure 5A).

The steadiest RMSD tones were depicted for the RBD in

complex with the native hBD-2 ligand as compared to any

other simulated RBD proteins. Despite limited fluctuations
Frontiers in Immunology 13
around 25- to 35-ns timeframes, native-bound RBD was

maintained around an average RMSD value (2.49 ± 0.59 Å)

for more than half the simulation time. On the other hand, RBD

bound with hBD-2 SNP variants were at higher RMSD values

(SNP1 3.09 ± 0.65 Å; SNP2 8.27 ± 3.23 Å; SNP3 3.75 ± 1.32 Å)

with shown fluctuations across the simulation times. Across

different hBD-2/RBD models, the highest fluctuations were

assigned to the SNP2-bound RBD reaching up to 11.25 Å at

the end of the simulation run.

Interestingly, the RMSD trajectories of spike RBD in

complex with the crystallized hACE2 protein showed higher

and more fluctuating tones (4.34 ± 1.17 Å) as compared to the

native hBD-2 model. Moreover, the unliganded/apo spike RBD

protein was of steady RMSD trajectories till 70 ns (2.16 ± 0.30

Å), after which they significantly increased and leveled off
A B

C

D E

FIGURE 5

Stability analysis of the simulated spike RBD/ligand complexes across the molecular dynamics simulations. (A) Spike RBD Ca-atom RMSDs;
(B) ligand Ca-atom RMSDs, as a function of the simulation times (ns). (C) Overlaid spike RBD/hBD-2 complex snapshots at 0 and 100 ns for
native, SNP1, SNP2, and SNP3 ligand proteins from the left to the right side, respectively. Proteins are represented as cartoons and colored red,
blue, and green for respective spike RBD, hBD-2 protomer A, and hBD-2 protomer B domains. Initial and final extracted frames were
represented in faint or dark colors, respectively. (D) Complex Rgs; (E) Complex BSAs, as a function of the simulated times (ns).
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around 3.74 Å till the end of the simulation run reaching higher

values than the native hBD-2/bound RBD. Monitoring the

ligand RMSDs of either the bound hBD-2 or hACE2 proteins

has shown comparable patterns in regard to their respective

bound spike RBD proteins (Figure 5B). Both the native hBD-2

dimer and hACE2 protein units depicted the steadiest tones for

more than 50-ns run times (4.24 ± 0.39 Å and 3.59 ± 0.51 Å,

respectively). Higher fluctuating RMSD tones were assigned for

SNP hBD-2 dimers showing SNP2 with the highest fluctuating

values, followed by SNP3 and SNP1 proteins (15.39 ± 6.04 Å,

9.26 ± 6.39 Å, and 4.82 ± 1.35 Å, respectively). Notably, the aC-
RMSD tones of bound ligand proteins (hBD-2) were almost 1.5-

fold higher than those of their bound spike RBD proteins, except

for hACE2 where the latter showed steadier RMSD tones than its

bound spike RBD protein.

Conformational analysis through aligning the starting and

final spike RBD/hBD-2 complex structures illustrated

differential orientations for the bound ligand at the spike RBD

interface (Figure 5C). Visually observed as well as correlated to

the obtained RMSD trajectories, limited conformational and

ordination changes were observed for the spike RBD/native

hBD-2 complex in regard to its SNP variant models. A slight

conformational shift was depicted for the native hBD-2 location

and secondary structure showing minimal rotations of its

flexible loops (aligned RMSD 1.44 Å). The SNP1 variant

showed significant conformational rotation at almost 90° in

regard to its initial structure, yet the whole protein was

maintained at its same starting location (aligned RMSD 1.93

Å). The SNP1 conformational changes were associated with

significant conformational alteration of the spike interface loop

(residue range Ala475–Cys488) adopting a more elongated

hairpin-like conformation. On the contrary, a more dramatic

conformational and orientational shift was assigned to the SNP2

protein showing a significant drift of ~20 Å far from the spike

RBD interface and towards the solvent side (aligned RMSD 8.85

Å). Such dramatic alterations caused the spike RBD interface

loop (residues Ser469–Pro491) to adopt a different orientation

being directed towards the solvent side in a way that appeared to

track the drifted SNP2 protein. Regarding the last hBD-2 variant,

SNP3 ligand protein was persistent at the spike interface, yet

with inverted orientation (180° rotation) regarding its whole

structure. Being dimeric, a moderate aligned RMSD value of 1.65

Å was assigned for the SNP3-bound system. Notably, these

conformational changes were with minimal influence on the

spike RBD conformation where the interface loop showed

limited rotations at the end of the simulation being of a

similar fashion to that observed for RBD in complex with

native hBD-2 protein.

Tracking the above conformational changes was pursued

through estimating the Rgs of spike RBD/hBD-2 complexes in

relation to their gathered central masses. Following half of the

simulation runs, both native and SNP1-bound complexes were

of the lowest steady Rg tones (22.79 ± 0.57 Å and 22.36 ± 0.32 Å)
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till the end of the timeframes (Figure 5D). This was not

consistent with the other simulated hBD-2 SNP variants,

where SNP2 depicted a continuous uprising of Rg values from

20 to 50 ns before it leveled off at approximately 26.00 Å till

reaching 100 ns. The SNP3-bound complex depicted significant

Rg fluctuations up to 26.00 Å across the 70- to 90-ns timeframes.

Concerning Rgs of the spike RBD/hACE2 complex, steady but

higher tones (31.70 ± 0.31 Å) were depicted across the whole

simulation run the thing that would be consistent with the

hACE2 large mass (~110 kDa). Further conformational

analysis was done by monitoring the amount of solvent-

accessible surface areas being buried at the interface between

both bound proteins across the simulation times.

Buried surface area (BSA; Å2) for each simulated complex

was estimated using the following equation adopting the

individual SASA of each bound protein (SASARBD and

SASAhBD-2) as well as that of the whole bound complex; BSA

= 0.5*(SASARBD + ASAhBD-2 – SASAcomplex) (5). Simulated spike

RBD/hACE2 complex showed the highest BSAs fluctuating

around an average value of 831.55 ± 81.85 Å2, which was

consistent with its larger size as compared to the investigated

hBD-2 proteins (Figure 5E). Steady comparable BSA values were

depicted for the simulated native and SNP1 hBD-2 complex

systems (~600 Å2). Notably, both systems illustrated increased

BSA beyond the 50-ns time window where they reached few

hundreds just below the BSA of the RBD/hACE2 complex. On

the other hand, the SNP2 variant complex was seen with greater

fluctuations at initial frames and ended with a low BSA average

(502.61 ± 82.27 Å2) across the last 40-ns timeframes, indicating

fewer areas being covered. Much higher BSA fluctuations were

depicted with the SNP3 system reaching down to the lowest BSA

values (~8.00 Å2) around the 80 ns before the BSA values were

raised to 738.15 Å2 at the end of the simulation. Findings from

RMSDs, Rgs, and BSAs conferred that SNP3 left the spike RBD

interface across the 80 to 90 ns and finally returned to its initial

location, where it adopted an inverted orientation.

For highlighting the differential contact interfaces for the

simulated hBD-2 proteins towards their bound spike RBD target,

the per-residue occupancy for each protein across the run frames

was estimated, where residues achieving contact distances of

≤5.5 Å were highlighted and visually represented (Figure 6A).

Interestingly, higher contact distance occupancies were assigned

for the native hBD-2 dimer depicting more red-colored residues

as compared to the SNP proteins. Highlighted residues (Val41,

Pro44, Arg45, Arg46, Pro56, and Gly57) from native dimeric

units depicted high contact distance occupancies towards two

main spike RBD interface regions (I: Leu441–Asn450 and II:

Gly476–Phe486). The SNP1 variant residues (Val41, Phe42,

Arg45, Tyr47, and Pro56) depicted relevant contact distance

occupancies with both spike RBD interface residues, yet with

lower occupancy values. On other hand, residues of SNP2

protein (Lys33, Val41, Phe42, Pro56, Gly57, Lys59, and

Lys63), mostly at its protomer B, depicted preferential contact
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A

B

FIGURE 6

Dynamics of the simulated spike RBD/ligand complexes across the molecular dynamics simulations. (A) Per-residue contact distance occupancy
analysis. Complexes of native hBD-2, SNP1, SNP2, SNP3, and hACE2 (upper left, upper right, middle left, middle right, and bottom panels,
respectively) are represented as cartoons highlighting residues (sticks) with relevant occupancies exhibiting contact distance at ≤5.50 Å from
bound protein. Data are mapped to the residue sticks with a spectrum color bar indicating the range of 0.00 to 1.00, transitioning through 0.50
occupancies (blue, white, and red, respectively). Highlighted residues are numbered according to their respective residue sequence, while spike
RBD residues are presented in bold and italic. (B) Spike RBD and hBD-2 RMSF of individual protein residues in respect to their C-alpha, as a
function of the simulated times (ns). Shaded regions of spike RBD and hBD-2 residues are common regions for binding the two proteins and are
thoroughly described in the above context.
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distance occupancies with the spike RBD interface region II.

Such SNP2 preferential contact pattern is consistent with the

dramatic conformational/orientation shift across the simulation

run being illustrated via the above dynamic analysis parameters.

Despite depicting relevant contacts with the two main spike RBD

interface regions, residues of the SNP3 protein (Val41, Phe42,

Pro44, and Arg45) as well as contacting spike ones illustrated fair

contact distance occupancies, which emphasized the ligand drift

from the RBD interface throughout the simulation run.

Spike interface residue Tyr449 was shown to be significant

for hBD-2 ligand binding as it depicted one of the highest

occupancies, being the highest for native hBD-2, throughout

each respective simulated complex. Notably, all simulated hBD-2

systems depicted negligible contact distance occupancies

towards the anti-parcel b-sheets and the connecting loops

(Tyr451–Lys458 and Pro491–Gly496) at the spike RBD

interface region being present midway between the spike’s two

high occupancy regions I and II. Concerning the contact

distance occupancies for the spike RBD/hACE2 complex,

preferential binding towards the RBD regional interface

residues was also depicted with negligible values for the

midway anti-parcel b-sheets. Nevertheless, some subtle

contacting residue shifts were shown with hACE2 where the

RBD residues Ala475–Thr478 and Asn501–Tyr505, rather than

Leu441–Asn450 and Gly476–Phe486, respectively, were

associated with hACE2 and not with hBD-2 dimers. Higher

occupancies were for the hACE2-associated regions Asn501–

Tyr505 of the bound spike RBD, while Leu441–Asn450 residues

are more significant for hBD-2 binding.

Thermodynamic behaviors of different hBD-2 and hACE2 in

relation to spike RBD protein were further evaluated down to

their constituting residue levels via monitoring each respective

RMSF fluctuation tones. As expected, the above-described

contact residue ranges were of lower RMSFluctuations only for

native and hACE2-bound RBD proteins rather than those in

complex with the hBD-2 SNP mutants (Figure 6B). The highest

RBD RMSF tones were assigned for binding with SNP2, followed

by SNP3 and SNP1, while those inbound to native hBD-2 and

hACE2 were of almost comparable immobility tones. On the

other hand, differential RMSF tones were depicted for the

contact interface residue ranges between the most stable holo

RBD (i.e., in complex with native hBD-2 or hACE2) and those

being unliganded at their apo state. The high-occupancy contact

residue range Gly476–Phe486 was of higher flexibility (up to 9.50

Å) at its apo state as compared to those inbound with native

hBD-2 or hACE2 (~3.00 Å). On the contrary, the contact residue

range Leu441–Asn450 and Asn501–Tyr505 were of more

immobility patterns at the apo state as compared to the holo

ones (~1.30 Å versus ~2.10 Å, respectively). Nevertheless, the

holo/apo RMSF differences within the two latter spike RBD

residue ranges were of a lower extent (0.5-fold) as compared to

those obtained at the Gly476–Phe486 residue range (>2-fold).

Interestingly, only the spike RBD Asn501–Tyr505 residue range
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was with less flexibility RMSF tones on hACE2 bounding than

either the native hBD-2-bound or even apo spike proteins. The

latter highlights the significance of the spike RBD Ala475–

Thr478 residue for hACE2 rather than hBD-2 binding. Moving

towards the RMSF of the simulated hBD-2 proteins, higher

values were assigned for the simulated SNP2 and SNP3 hBD-2

mutant proteins (Figure 6B).

Comparable RMSF trajectories were depicted for each

protomer of the hBD-2 dimer structure, except for the SNP2

variant where its protomer A was assigned with the highest

observed RMSF values (17.95 ± 1.59 Å) among all hBD-2

monomeric units and even those of bound spike RBD

proteins. Notably, four hBD-2 core residue regions (A: Asp27–

Cys31, B: Lys33–Ile37, C: Cys43–Lys48, D: Gly54–Thr58)

showed higher RMSF tones as compared to the remaining

core residues of each respective protein. The first two regions

(A and B) correspond to the protein’s N-terminal a-helix and b-
loop secondary structures where their depicted RMSFs were

much higher in SNP2 and SNP3 variants as compared to both

SNP1 and native forms. Both site A and site B were observed far

from contact with the spike RBD site throughout the simulation

time conferring their negligible role in hBD-2/RBD stability and

in turn their respective high RMSFs. On the other hand, the last

two hBD-2 regions (C and D) showed significant contact with

the spike RBD site; however, high contact distance occupancies

were only assigned for the native and SNP1 simulations (see

Figure 6A). The latter could reasonably explain why sites C and

D were of lower RMSFs at native and SNP1 proteins as

compared to the other variants.

The MM/PBSA calculations revealed negative average free

binding interaction energies for the native hBD-2/spike RBD

complex being only second to the hACE2 simulated system

(Figure 7). The average free binding energies of SNP mutant

proteins were almost half that of the spike RBD/hACE2 system.

Dissecting the total free energy into its constituting energy terms

revealed a dominant contribution for Coulomb’s electrostatic

potentials over those of the hydrophobic ones. Notably, the polar

solvation penalty was significantly higher in mutant SNPs as

compared to the native protein, the thing that could have

compromised the mutant complex stabilities since binding is

considered a solvent-displacement process. Among the

simulated hBD-2 proteins, the native form was depicted with

the highest electrostatic energy contributions, which were

further illustrated by monitoring the number of formed

hydrogen bonds between the proteins across the simulation

runs (Figure 8A).

The average number of protein–protein intermolecular

hydrogen bonds was higher at native hBD-2 (1.52 ± 1.22) in

relation to its mutant variants (SNP1; 1.18 ± 0.93, SNP2; 0.62 ±

0.82, SNP3; 0.70 ± 0.82), but the earlier was only second to the

hACE2-associated complex (2.19 ± 1.29). Within the native

hBD-2:RBD complex, high hydrogen bond occupancies were

assigned for Lys63-Side : Glu484-Side (38%), Arg45-Side :
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Glu484-Side (34%), and Arg46-Side : Glu484-Main (22%). For

SNP1, hydrogen bond pairs such as Arg46-Side : Glu484-Main

(18%), Arg45-Side : Glu484-Side (17%), Arg46-Main : Asn487-

Main (13%), and Lys48-Main : Asn487-Side (20%) were of lower

occupancies as compared to the native protein. For the less stable

SNP mutant complexes, only Arg45-Side : Glu484-Side (11%)

and Lys63-Side : Glu484-Side (31%) hydrogen bond pairs at

SNP2 and SNP3 complexes, respectively, were assigned with

occupancies just ≥10%.

Notably, the above-described native and SNP1 hydrogen

bond pairs were of reduced persistency at SNP2 and SNP3

complexes; the thing that was proposed correlated to the

dramatic conformational dynamic behaviors of these latter

variants. Regarding the reference complex, preferentiality of

hACE2 towards the spike Ala475–Thr478 and Asn501–Tyr505

residue ranges were further highlighted since several high-

frequency hydrogen bond pairings were depicted across these

regions and vicinal residues: Tyr505-Side : Glu37-Side (48%),

Gly502-Main : Lys353-Main (60%), Ser19-Side : Ala475-Main

(29%), Lys417-Side : Asp30-Side (20%), Tyr83-Side : Asn487-

Side (35%), Tyr453-Side : His34-Side (19%), and Lys31-Side :

Gln493-Side (13%).

Exploring the residue-wise free binding energy contribution

for the simulated complex was highlighted in Figure 8B. Higher

negative-value energy contribution was assigned for native hBD-

2 over its mutant proteins. Preferentiality for hBD-2 to bind to

spike regional I and II residues was illustrated since several

constituting and vicinal residues depicted relevant negative-

value energy contributions: Asp442 (−104.91 to −141.30 kJ/

mol), Glu465 (−95.13 to −128.11 kJ/mol), Asp467 (−118.48 to

−163.76 kJ/mol), Glu471 (−126.07 to −198.34 kJ/mol), and

Glu484 (−163.67 to −200.00 kJ/mol). In contrast, residues of

the spike’s anti-parcel b-sheets and midway loops (Tyr451–
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Lys458 and Pro491–Gly496) were assigned with positive

repulsive energy contributions; Arg454 (42.61 to 56.26 kJ/mol),

Arg457 (33.41 to 49.60 kJ/mol), and Lys458 (44.60 to 55.64 kJ/

mol) highlighted their unfavored binding with hBD-2 ligands.

Per-residue energy contribution at hBD-2 proteins was

significant for Lys33 (−8.96 to −11.25 kJ/mol), Phe42 (−2.88

to −10.97 kJ/mol), Pro44 (−4.57 to −17.11 kJ/mol), Arg45 (−6.78

to −13.16 kJ/mol), Lys59 (−9.29 to −24.48 kJ/mol), and Lys63

(−7.05 to −16.08 kJ/mol).

Focusing on comparative mutant residues with their native

form, replacing Pro44 at native hBD-2 with Leu44 in SNP1

lowered the residue-wise energy contribution from −17.11

to −4.57 kJ/mol as well as the vicinal residue Arg45 from

−13.16 to −6.78 kJ/mol. Regarding SNP2, replacing native

hydrophobic Gly51 with polar Asp51 increased energy

contribution (−2.03 to −14.10 kJ/mol), contributing to the

dominant electrostatic potential of the ligand binding.

Nevertheless, Asp28 possesses increased residue-wise size that

might have contributed to steric clashes with spike residue for

unfavored binding and SNP2’s depicted conformational shift.

Finally, C53G SNP3 has associated more positive energy

contribution in regard to its native form (1.47 versus 0.19 kJ/

mol, respectively). All the above electrostatic preferentiality and

comparative hydrogen bond occupancies were consistent with

the obtained contact distance occupancy analysis as well as the

preliminary docking results where polar residue pairs were much

assigned to the native hBD-2 complex.
The analysis of gene–gene interactions

The analysis of the gene–gene interaction of the DEFB4A

gene was performed using the GeneMania tool, leading to the
FIGURE 7

Free binding and individual energy terms for the simulated spike RBD/ligand complexes. Values are estimated in terms of kJ/mol ± SE; error
bars are hidden for clarity.
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identification of the 20 genes with the closest connection to the

DEFB4A gene (Figure S3). Among these genes, the defensin beta

103A gene (DEFB103A) occupied the first rank. After that, the

C–C motif chemokine receptor 6 gene (CCR6) occupied the

second rank.
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Discussion

In addition to the well-known role of hBD-2 and LL-37 in

combatting different invading microbes and viruses (68, 69),

recent studies have found an important role for hBD-2 and LL-
A

B

FIGURE 8

Binding interaction analysis for the simulated spike RBD/ligand complexes across the molecular dynamics simulations. (A) Number of furnished
hydrogen bonds by the simulated complexes of native hBD-2, hACE2, SNP1, SNP2, and SNP3 ligands (upper left, upper right, bottom left-to-
right panels, respectively), as a function of the simulated times (ns). (B) Per-residue MM-PBSA free binding energy contributions for spike RBD
and ligand proteins.
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37 in defending the human body against COVID-19 infection

(70). Biophysical experiments and biochemical studies

performed by Zhang and colleagues confirmed the ability of

hBD-2 to bind the RBD of SARS-CoV-2 and inhibit the binding

of this RBD to hACE2 (5). These results confirmed the in silico

findings regarding the ability of hBD-2 to bind to the RBD of

SARS-CoV-2 (5). Similar results were found with LL-37 and

confirmed the high affinity of its binding to the RBD of this

serious virus (9, 10). The damaging missense SNPs could have

serious effects on protein structure and function (71), raising

questions about the fate of this preventive role against COVID

infection in these cases. Therefore, we aimed to find the

damaging missense SNPs for hBD-2 and LL-37 and study the

impact of these damaging mutations on the susceptibility to this

serious disease.

Beginning from 897 SNPs in the DEFB4A gene, 24 missense

SNPs were found in the sequence corresponding to hBD-2.

These mutations were applied to analysis with six

bioinformatics tools with various approaches and algorithms

to ensure the robustness of the analysis. As a result, three SNPs

were predicted to be disease-causing and deleterious. On the

other side, beginning with 831 SNPs in the CAMP gene, 27

missense SNPs were found in the sequence corresponding to LL-

37. However, by applying the same six bioinformatics tools, none

of these SNP was found to be deleterious by at least five tools.

Consequently, none of the LL-37 SNPs was selected for further

analysis and only the damaging mutations with the DEFB4A

gene were selected for further investigation.

Due to the importance of protein stability for maintaining

the functions and the structure of the protein (72), the

consequences of the selected mutations on the stability of

hBD-2 were analyzed by I-mutant 2 and MUpro tools. All

three mutations were predicted to decrease the stability of the

protein by both tools. Moreover, the functional analysis of the

protein was performed to determine its important domains

depending on the InterPro tool. The analysis revealed the

presence of a domain called (Beta/alpha-defensin, C-terminal

domain), on which all the three mutations were located. After

that, the phylogenetic conservation was analyzed using the

ConSurf server showing that G51D and C53G SNPs were

positioned on highly conserved residues while P44L SNP was

positioned on variable residue. As the functionally and

structurally important amino acids usually display high

phylogenetic conservancy (38), the occurrence of SNPs in

these conserved residues is expected to have an impact on the

structure or function of the protein. In addition, using PSIPRED

to analyze the secondary structure revealed the presence of

changes in the secondary structures of hBD-2 with G51D and

C53G mutations. The importance of the secondary structure of a

protein is manifested in its essential roles in the structure and the

folding of the protein (73). The effects of the three SNPs on hBD-

2 structure were analyzed by the HOPE server showing the
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damaging effects of the three mutations on hBD-2 structure, in

particular with G51D and C53G SNPs.

Molecular docking-coupled dynamic simulations

demonstrated significant binding for native hBD-2 being just

lower than the reference hACE2/spike RBD complex. The

simulated native hBD-2 ligand showed overlapped binding at

the spike RBD interface surface being similar to that for the

reference hACE2 complex. Binding to spike RBD is proposed to

be residue-wise dependent since differential stability, fluctuation

patterns, and binding energy contributions were assigned for each

protein down to its amino acid level. Herein, we adopted the spike

Ser436–Tyr508 external loop domain for hBD-2 ligand anchoring

as being significant for hACE2 recognition and binding (5, 44, 55,

56). Reported studies showed preferential recognition of the spike

RBD towards the N-terminal subdomain-1 of hACE2 through

predominant polar interactions (concentrated hydrogen bonding

and salt bridges) between several hydrophilic residues along

distinctive annealing regions (sites I and II) (74). Wang et al.

showed that a hydrophobic stacking patch coexists for Tyr489

and Phe486 of RBD against Phe28, Leu79, Met82, and Tyr83 of

hACE2, yet does not greatly contribute to virus-receptor

engagement since a single L353A mutation was sufficient to

abolish such interactions (56). Therefore, polar anchoring of

ligands at RBD/hACE2 connective interface, with any of the

interface polar residues, would probably impact both subdomain

binding affinities or even alter the RBD conformation to be

uncleavable via the host protease, TMPRSS2 (75, 76). Both

suggested scenarios would halt the crucial stage of COVID-19

infection which is the virus–host membrane fusion and

subsequent release of viral payload RNA into the host cytoplasm.

To our delight, both MM/GBSA and MM/PBSA binding

energy calculations for respective docked and molecular

dynamics complexes illustrated the predominance of

electrostatic potentials and polar residue energy contributions

for hBD-2 towards the spike RBD site. Greater negative values,

suggesting stronger binding affinities, were consistent with the

reported results of other research groups (5, 77). We decided to

study the dimeric form of hBD-2, rather than their monomeric

ones since these ligands exist at non-covalent hydrophobically

bonded dimers within high concentrations (46, 78). Despite that,

the reported hBD-2 dimerization could be quite modest and

binding to spike RBD could stabilize the hBD-2 proteins at their

oligomeric levels (5, 46). This was the case with the study by

Zhang et al., where long ns all-atom simulation of dimeric hBD-

2 showed higher free binding energies, greater hydrogen bond

frequencies, and larger contact distances being maintained via

both protomers as compared to the monomeric form (5).

Preferential binding of native hBD-2 over its SNP variants,

being only second to the reference hACE2/spike RBD complex,

was demonstrated through a multi-level stability analysis. The

RMSD analysis was significant for showing limited

conformational changes and superior relative stability of the
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native hBD-2 complex depicting steady tones across the

simulation times. On general bases, RMSD trajectories provide

accurate measurement regarding a molecular deviation from its

reference structure at the beginning of the molecular dynamics

simulations (79). High-protein RMSDs usually correlate to

significant conformation alterations and instability, while for

ligands, they confer compromised ligand-target affinity and

ligand-pocket accommodation (80). Both Rgs and BSAs were

translated well for the RMSD findings, since these parameters

depicted inherited stability, compactness, and larger contact

distances for the native hBD-2 complex in relation to its SNP

proteins. Generally, lower Rg values with limited fluctuations

suggested optimum structural compactness in terms of favored

inter- or intra-molecular interactions (81). In contrast, larger

BSA across the simulation timeline is correlated with a bigger

protein–protein contact interface denoted as the buried surface

area between both molecules (82).

It is worth noting that the here-simulated hACE2 and hBD-2

complexes were in dynamic motion at the spike RBD interface,

which was consistent with the reported thermodynamic

behavior of various protein–protein complexes (83–85).

However, hBD-2 was more dynamic than hACE2, which was

suggested to furnish less unfavored entropy on binding than

those obtained with complexes where both or either one partner

is significantly rigid (5, 86). This was consistent with our MM/

PBSA energy term contribution findings where hBD-2

complexes were of lower polar solvation entropy, which would

favor ligand binding since the latter is considered a solvent-

displacement process (87). Moreover, flexible peptide-based

blocking strategies were suggested as beneficial to circumvent

mutations that could compromise hBD-2 blocking affinities (88).

Nevertheless, thermodynamic flexibility could be double-bladed

since higher conformational changes seen with SNP proteins

compared to the native form were suggested with ligand drifting.

Additionally, depicted SNP dynamic behaviors were likely

accompanied by indirect hydrogen bonding with water

molecules at or even near the interface bridging such polar

interactions, which would underestimate the electrostatic

binding potential and further increase polar solvation entropic

penalties resulting from displacing highly ordered water

molecules at interacting protein surfaces. The latter was seen

with several protein–protein complexes where one partner had

more solvent exposure (22, 24, 89).

Notably, SNP mutant residues at hBD-2 were proposed to

influence ligand binding and conformation, which was

confirmed here through lower per-residue free binding energy

contributions, reduced contact distance occupancies, and/or

significant steric clashes with congruent protein interface being

in concordance with current literature data (90–92).

Computational analysis through molecular docking and

dynamics studies revealed the detrimental impact of SNP at

hBD-1 gene on the stability and protein function to bind with

the bacterial phosphatidylinositol-4,5-bisphosphate (PIP-2)
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protein target. Some of the depicted SNPs were associated

with a PIP-2 binding interface and compromised binding

energies (93). Another study by Teng et al. evaluated the

binding free energies of more than 260 protein–protein

complexes with known SNPs via CHARMM forcefield/

continuum electrostatic calculations where they revealed that

these SNPs tend to destabilize the binding energy electrostatic

components (94). Additionally, a study by Ranjith-Kumar et al.

investigating the impact of SNP on Toll-like receptor-3

structure, expression, and function showed through molecular

modeling that two relevant SNPs would alter the receptor

conformation, particularly its leucine-rich repeated motifs,

which was also correlated with defective receptor activation

activity (95).

The engagement with gene–gene interactions became very

important when investigating the disease–gene relationship as it

was confirmed that various genetic loci show interactions between

them (96). Using GeneMANIA showed that the DEFB103A gene

and CCR6 gene showed the closest connection with the DEFB4A

gene. These genes with a close connection to DEFB4A may be

affected by DEFB4A damaging SNPs as well.

Overall, our analysis showed the existence of three damaging

missense mutations in hBD-2. These SNPs were predicted to

affect the stability and the structure of hBD-2. Moreover, G51D

and C53G mutations were located in highly conserved positions

and had effects on the secondary structures of hBD-2.

Furthermore, all-atom molecular dynamics simulations and

free binding energy calculations assured that the native form

has a preferential hBD-2 binding with the SARS-CoV-2 spike

interface over the SNP mutant forms. Our results could increase

our understanding of the genetic factors associated with

COVID-19, which could improve the prevention as well as the

management guidelines of such a serious disease (97, 98).
Conclusion

The revealed role of hBD-2 in fighting against SARS-CoV-2

raised questions about the effects of the damaging missense

mutations on this protective role against COVID-19. Our

comprehensive investigation showed that three mutations in

hBD-2 have the most damaging impact: P44L, G51D, and C53G

SNPs. These SNPs showed decreasing effects on the stability of

hBD-2 and damaging effects on the structure of hBD-2. G51D

and C53G SNPs also had high conserved positions and showed

alterations in hBD-2 secondary structures. Furthermore, our

computational model showed preferential hBD-2 binding, for

the native over the SNPs mutant forms, at site I and site II of the

SARS-CoV-2 spike interface guided by predominant

electrostatic binding potentials. This was confirmed by all-

atom molecular dynamics simulations and free binding energy

calculations. The further implementation of experimental

procedures could pave the way for the identification of
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patients prone to COVID-19 and the development of new

diagnostics and procedures for the management of this serious

infectious disease.
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