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Understanding AL amyloidosis
with a little help from
in vivo models

Gemma Martinez-Rivas, Sébastien Bender
and Christophe Sirac*

Contrôle de la Réponse Immune B et des Lymphoproliférations, CNRS UMR 7276 INSERM UMR
1262, Université de Limoges, Limoges, France
Monoclonal immunoglobulin (Ig) light chain amyloidosis (AL) is a rare but

severe disease that may occur when a B or plasma cell clone secretes an

excess of free Ig light chains (LCs). Some of these LCs tend to aggregate into

organized fibrils with a b-sheet structure, the so-called amyloid fibrils, and

deposit into the extracellular compartment of organs, such as the heart or

kidneys, causing their dysfunction. Recent findings have confirmed that the

core of the amyloid fibrils is constituted by the variable (V) domain of the LCs,

but the mechanisms underlying the unfolding and aggregation of this fragment

and its deposition are still unclear. Moreover, in addition to the mechanical

constraints exerted by the massive accumulation of amyloid fibrils in organs,

the direct toxicity of these variable domain LCs, full-length light chains, or

primary amyloid precursors (oligomers) seems to play a role in the

pathogenesis of the disease. Many in vitro studies have focused on these

topics, but the variability of this disease, in which each LC presents unique

properties, and the extent and complexity of affected organs make its study in

vivo very difficult. Accordingly, several groups have focused on the

development of animal models for years, with some encouraging but mostly

disappointing results. In this review, we discuss the experimental models that

have been used to better understand the unknowns of this pathology with an

emphasis on in vivo approaches. We also focus on why reliable AL amyloidosis

animal models remain so difficult to obtain and what this tells us about the

pathophysiology of the disease.
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variable domain; CL, constant domain; Cryo-EM, cryogenic electron microscopy; SAP, serum amyloid P

component; GAG, glycosaminoglycan; ApoE, apolipoprotein E; ROS, reactive oxygen species; NT-proBNP,

N-terminal pro-B-type natriuretic peptide; SORL1, sortilin-related receptor 1; ThT, thioflavin T; FLC, free

light chains; MGRS, monoclonal gammopathy of renal significance; LCDD, light chain deposition disease;

LCTP, light chain proximal tubulopathy; PCs, plasma cells; LMP2A, latent membrane protein 2A; HCDD,

heavy chain deposition disease; AAPOA2, amyloid ApoA2; ATTR, amyloid transthyretin; TTR,

transthyretin; MMP, metalloproteinase.
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Introduction

Immunoglobulin light chain amyloidosis, or AL amyloidosis,

is a hematological disease in which a plasma cell clone (or in rare

situations a B cell clone) (1) produces a monoclonal

immunoglobulin (Ig) light chain (LC), which aggregates into a

characteristic organized structure, called amyloid fibrils (2). These

amyloid fibrils accumulate in the extracellular compartment of

almost every organ such as the kidneys and the heart (75%),

leading in fine to their dysfunction. The general steps leading to

the formation of amyloid fibrils have been well characterized in

vitro, starting with a lag phase during which misfolded LCs slowly

aggregate to form non-fibrillar oligomers followed by the first

fibrils nuclei and protofibrils (2–4). When sufficient seeding is

reached, mature fibrils are rapidly formed by an autocatalytic

process involving surrounding amyloidogenic LCs (2). However,

the mechanisms leading to the initial misfolding of LCs and their

structural conversion from a soluble globular to a cross b-pleated
sheet flat structure are still poorly understood (5). One reason is

the uniqueness of every pathogenic LC, making AL amyloidosis a

heterogeneous disease that is difficult to study (6). In vitro

biochemical and structural studies, cellular models, and, more

recently, bioinformatic tools gave us some clues about the

unknowns of this disease and will be discussed in this review.

However, these techniques reproduce only partially the in vivo

context of this pathology, leaving aside the complex interactions

and environment of the LCs in tissues or circulation. However, the

recent improvements in patients’ amyloid deposit analyses

through mass spectrometry and cryogenic electron microscopy

(Cryo-EM) significantly advance our knowledge of AL

amyloidosis. But they also raised new questions about how and

why some LCs form fibrils and highlighted a new layer of

complexity and heterogeneity in AL amyloid structures and

composition. This review focuses on the difficulties of accurately

modeling such a complex disease and how some discrepancies

between in vitro experiments, in vivo models, and clinical

observations could help in understanding the pathophysiology

of AL amyloidosis.
To V or not to V?

The variable (V) and constant (C) domains, which are two

tandem Ig domains, compose LCs. As its name suggests, the V

domain alone bears the variability of the LCs. This variability is

due to the imprecise rearrangements between the variable (V)

and the joining (J) gene segments to form the V domain exon

and the subsequent somatic hypermutations during the

antigenic response (7), which makes each LC a unique protein.

However, amyloid deposition has been mainly associated with a

few V domains (hereafter called VL), such as gene segments

IGLV6-57, IGLV2-14, IGLV1-44, or IGKV1-33, and each VL

seems to have a tropism for one or more organs (8–14). For these
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reasons, the VL has been suspected for years to be responsible for

amyloid fibril formation in patients, coherently with the first

amino acid sequencing of AL fibrils (15, 16). Accordingly, many

crucial studies showed that mutations in the VL are responsible

for the destabilization of the protein leading to the structural

conversion from a soluble globular to a stacked flat structure.

Consequently, many laboratories working on the process of AL

fibrillogenesis have focused their attention on these domains,

often working with isolated recombinant VLs (10–12). However,

despite the multiple LC sequences available in the literature (9,

13, 14) or databases like AL base (https://albase.bumc.bu.edu), it

is still impossible to predict the amyloidogenicity of an LC solely

based on its amino acid sequence since each LC presents with

multiple combinations of mutations that can account for their

aggregation propensity. Several predictive tools have been

developed based on the physicochemical properties of protein

sequences (17–19) and, more recently, have been systematized

using machine learning approaches (20, 21), but they still fail to

predict all amyloid LC sequences. They also deserve to be tested

with other aggregation prone LCs (from light chain deposition

diseases, light chain proximal tubulopathy with crystals, etc.) to

determine if they predict specifically amyloidogenicity or just

instability of the LCs. Consequently, we cannot list in this review

all the mutations suspected to participate in their

amyloidogenicity, but we can try to draw a general outline of

the knowledge so far based on these in vitro studies: 1) AL LCs

can acquire a misfolded structure due to mutations in the VL

affecting their stability, their dynamic properties, and their

susceptibility to proteolysis (10, 22–27). 2) VLs are more

prone to form fibrils in vitro than their full-length

counterparts (26, 28, 29), at least under physiological

conditions (37°C and pH ~7) (28, 30, 31). 3) VL or full-length

LC dimers protect from misfolding and proteolysis, and

mutations affecting the dimer stability seem to be involved in

fibril formation (11, 12, 28), leading to the development of LC

dimer stabilizers to slow the amyloid cascade (32, 33). If there is

no debate about the role of the VL in amyloidogenesis of LCs, it

does not mean that the C domain is useless. Accordingly, few

biochemical studies showed that the full-length LCs could be

involved in the initial nucleation thanks to its stability which

serves as a platform for the subsequent elongation by unstable

VLs (34–36). These experimental results are in line with the

observations made by mass spectrometry both in diagnosis using

laser microdissection/mass spectrometry (LMD/MS) (37) and in

more careful analyses of deposited protein contents (38)

showing that a complete or partially degraded C domain is

always present in the amyloid deposits (39), and the degradation

patterns argue for a post-deposition proteolysis. Whether C

domain proteolysis occurs before or after aggregation and

contributes or conversely protects from amyloidogenesis in

vivo is still under debate (3, 39), but using the sole VL to

study amyloidogenesis of LCs in vitro is likely a reduced

approach that do not mirror the in vivo process.
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It is important to distinguish the amyloid fibril from the

amyloid deposits. In recent years, the crucial contribution of the

Cryo-EM demonstrated that the fibril core itself is only

composed of the VL (full or partially degraded), and all the

intermolecular interactions in the fibril are established by this

domain (40, 41). As expected by the variability of their amino

acid composition, each fibril structure is unique, adding a layer

of complexity to the understanding of AL amyloidosis formation

(42). It also means that the C domain could be considered as a

by-product of the fibril whose non-organized structure favors its

access to local proteases, while the packed structures of the fibrils

are resistant. Overall, it is still impossible from these studies to

resolve this egg-and-chicken problem. We cannot exclude that a

partial degradation, sufficient to destabilize the VL, allows the

initial nucleation, and then the full-length LC elongates the

fibrils in a self-catalytic process (43). For instance, a short

cleavage of a few amino acids in the C-terminal part of the C

domain is sufficient to remove the cysteine involved in the

dimerization of LCs. C domains sticking out of the core

structure would then be further degraded. Whether it could

play a role in stabilizing the fibrils, for example, by hijacking or

protecting the fibrils from proteolysis in a similar way as other

associated components of the amyloid deposits like serum

amyloid P component (SAP), glycosaminoglycans (GAGs), or

apolipoprotein E (ApoE) (43), remains an open question. Once

again, all these associated components are known to be involved

in in vivo amyloidogenesis, and the C domain could play a

similar role but is not amyloidogenic per se.
Amyloidogenic light chain: A toxic
relationship with cells and tissues

Another crucial question about AL amyloidosis is

understanding the origin of the toxicity for tissues in this

disease. There are currently two non-mutually exclusive

hypotheses: toxicity due to a mechanical constraint generated by

the presence of fibrils in the organs (amyloid burden) and direct

toxicity of the soluble or oligomeric LCs for cells that do not

require any accumulation of Congo red-positive material

(proteotoxicity). The mechanical constraints exerted by the

massive accumulation of insoluble and semi-rigid aggregates in

organs can easily explain typical clinical symptoms of the disease,

especially in contractile tissue like the heart or in the glomeruli, the

filtering units of the kidney. However, strong clinical data

challenge the unique role of the amyloid burden, especially for

cardiac involvement. Indeed, treatments leading to a significant

decrease of the circulating LCs lead to a rapid improvement of

cardiac biomarkers (especially NT-proBNP) without an apparent

decrease in the amyloid burden in the heart (44). Several

experimental studies conducted in vitro with cellular models are

in line with this clinical observation. The most studied cellular

models are cardiomyocytes and cardiac fibroblasts. The overall
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toxic effects of LC exposure observed on these cells are the increase

in reactive oxygen species (ROS) (45, 46), lysosomal dysfunction

and autophagy impairment (47), the activation of a non-canonical

p38 MAPK pathway (48, 49), and morphological damage of

mitochondria (50). This would lead to a lack of contractility of

cardiomyocytes and activation of cell death mechanisms (45, 46,

48, 49) when compared to non-amyloidogenic LCs or, more

interestingly, to non-cardiotropic AL LCs, highlighting a strong

specificity of LC cytotoxicity. Strikingly, although renal

involvement in AL amyloidosis is frequent, there are only a few

studies dealing with the toxicity of soluble AL LCs for renal cells,

and they mostly revealed phenotypic changes and extracellular

matrix remodeling, which are likely part of the overall toxicity of

glomerulopathic LCs (51). Studies from Guillermo Herrera’s

group, essentially working on mesangial cells exposed to non-

pathogenic or glomerulopathic purified LCs, showed that AL LCs

induce changes toward a macrophage-like phenotype (52), while

LCs from light chain deposition disease (LCDD), another

monoclonal gammopathy of renal significance characterized by

amorphous LC deposits, induce a myofibroblastic phenotype.

Consequently, AL LCs would be extensively internalized in

caveolae and transported to lysosomes where they meet the

conditions for rapid amyloidogenesis (proteolysis, denaturation,

and acidic pH). Amyloid aggregates would then be extruded from

the cells to invade extracellular spaces (53). A similar process was

also shown by the same group in vascular smooth muscle cells

(54), further emphasizing the role of lysosomes in AL amyloidosis

formation, and is consistent with previous observations in splenic

macrophages during the formation of AA amyloidosis (55).

Ultrastructural studies in patients’ biopsies should be carefully

reconsidered to confirm the presence of amyloid fibrils in

target cells.

The resulting question of AL LC proteotoxicity is how they

exert their effects on cells and tissues. In the kidney, sortilin-

related receptor (SORL1) was recently presented as the common

receptor for glomerulopathic LCs on mesangial cells using mass

spectrometry, immunofluorescence, and ultrastructural studies

(51). Functional studies with SORL1 knock-out cells are needed

to confirm the role of this receptor. However, the expression of

this receptor comes after the exposure of mesangial cells to

glomerulopathic LCs (51). Consequently, while SORL1 is likely

involved in the phenotypical changes of mesangial cells and the

late intracellular processing of the LCs, early molecular events at

the origin of this phenomenon are still unknown. In

cardiomyocytes, the interactions between AL LCs and cellular

components are even more elusive. No membrane receptor for

LCs has been identified so far, but a mechanism of

macropinocytosis of soluble proteins seems to allow the

internalization of LCs in lysosomal compartments of

cardiomyocytes and cardiac fibroblasts (31, 56–58). Interaction

of the LCs with intracellular components could then induce

cellular dysfunction as shown by Lavatelli’s group (46, 50).

Fibrils are also internalized by macropinocytosis, although to a
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lower extent, likely due to their size. Two interesting studies

showed that the internalization efficacy is size-dependent, with

VLs being better endocytosed than full-length LCs or fibrils (56,

58). In the same publication from Ramirez-Alvarado’s group,

they also showed that fibrillar species are far more toxic for

cardiomyocytes than soluble LCs (56). Their hypothesis is that

the presence of fibrils around the cardiomyocytes inhibits the

cell–cell contact, which results in a strong cytostatic effect (56)

and other cellular dysfunctions and microenvironment

remodeling (59), even at very low concentrations, undetectable

by ThT staining (56). This points out the issue of what is really

toxic for cells. Similarly to biochemical studies on

amyloidogenesis, it is difficult to summarize the proteotoxicity

of AL LCs since many different protocols (concentrations, LCs

purified from urines, and recombinant LCs produced in bacteria

or mammalian cells), amyloid species (VL, full-length LCs,

oligomers, and fibrils), cell types (primary or immortalized cell

cultures, fibroblasts or cardiomyocytes, etc.), and LC sequences

(degree of amyloidogenicity and organ tropism) have been used.

Despite these different experimental conditions, all these studies

agree about the direct proteotoxic effect of the amyloid precursor

other than mature fibrils such as soluble full-length LCs (50, 60),

partially degraded LCs, VLs (61), or oligomers (56) on cardiac

cells. This specific toxicity for cardiac cells and no other cells was

demonstrated by Lavatelli et al., who used human dermal

fibroblasts as controls (50). The molecular basis of this

specificity is not known, but one possibility is that the different

proteostatic networks of the various tissues may account for the

different susceptibility to light chain toxicity. Another concern

resulting from these studies is how we can be sure that soluble

LCs do not aggregate during the experiments. Most of the LCs

and VLs used are highly amyloidogenic and could form fibrils or,

at least, oligomers during the experiments, which can already be

toxic for cells but whose concentration is too low to be detected

by any test (4, 56). However, although it could easily explain the

toxicity of AL LCs compared to non-amyloidogenic ones, it

could not fully explain the specific toxicity of cardiotropic LCs

for the heart compared to other AL LCs that were elegantly

demonstrated (46, 50).

These in vitro experiments provided invaluable advances in

the toxicity of the different LC species, but the diversity of

experimental models used is a barrier to concluding on the

mechanisms of toxicity of AL LCs. In addition, AL is a systemic

and very complicated disease in which the diversity of LCs, the

microenvironment in the tissues, and likely the specificity of

each patient (6, 62) need to be taken into account. Further

studies need to be carried out with more amyloidogenic LCs,

VLs, and fibrils to establish the general toxicity of each type of

protein species. Additionally, there is a need to develop in vivo

models, reproducing as closely as possible the real

pathophysiology of the disease. Some of them have already

been used and their qualities and limits (Figure 1) are

discussed below.
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In vivo surrogates: Modeling AL
amyloidosis in non-mammal
organisms

Simple organisms, such as drosophila, zebrafish, or the

nematode Caenorhabditis elegans, have gained ground in

biology because they have some advantages (costs, rapidity,

and ethical concerns) over more developed models (e.g.,

rodents). Since several attempts have failed to create a reliable

AL model until now, as will be discussed later in this review, in

vivo studies have been carried out in these simple animal models.

Because its pharynx, with autonomous contractile activity, is

evolutionarily related to mammal hearts, C. elegans was used to

study the cardiac toxicity of LCs. Accordingly, different purified

or recombinant LCs from AL patients induced a diminution in

the pharyngeal pumping ability of these animals compared to

LCs from non-AL patients or AL patients with no cardiac

involvement (60). This effect was associated with ROS-related

oxidative damage, a reduced life span of the worms, and can be

counteracted by antioxidant agents (60, 63). These animals did

not display Congo red deposits, and the specific toxicity of

cardiotropic LCs argues for direct toxicity of the LCs with the

cautions cited above. In zebrafish, another in vivo model system

to study AL LC toxicity, injections of 100 µg/ml of AL LCs also

increased cardiac cell death resulting in fatal effects for the

animals, with a median survival of 5 days after the LC

injection (64). The injection of mRNA encoding for other AL

LCs to zebrafish embryos showed similar effects, with an

impairment of cardiac contractility and heart failure in more

than 50% of injected animals (65). These seminal data

encouraged Liao’s group to create a transgenic zebrafish model

(66). Using a liver-specific expression, they obtained a

production of about 125 µg/ml of an amyloidogenic LC, which

is consistent with the level of FLC in newly diagnosed patients.

They demonstrated a cytotoxic effect of the LCs for the cardiac

cells with increased apoptosis and autophagy, but without

affecting the general life span of the animals (66), which is in

sharp contrast with the data obtained in vitro or with short

animal exposure to AL LCs (64). They also observed increased

proliferating cells in the heart of the transgenic zebrafish, which

could explain that the cardiac toxicity of the AL LCs was

counteracted by the regeneration of the tissue. This result

reveals two limitations of this model, one specific to zebrafish

and another with more general consequences. First, zebrafish,

contrary to humans, have a striking capability of cardiac

regeneration, being able to repair injured cardiac tissues (67).

Consequently, the resistance to terminal cardiac dysfunction in

the transgenic zebrafish would likely not have been observed in

an animal model phylogenetically closer to humans. It remains

difficult to determine whether the molecular and cellular toxicity

of AL LCs in zebrafish fully mirrored that in human patients or

whether they are specifically due to zebrafish peculiarities.
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Second, short exposure of LCs obtained with transient

expression or the injection of a large amount of purified

proteins is quite remote from the pathophysiology of AL

amyloidosis, and the zebrafish model proved that it might

induce different outcomes in animals and organs than the

steady exposure to the protein observed in patients.

Finally, although these surrogate animal models are of

invaluable interest to better understand the mechanisms of LC

toxicity and possibly to evaluate new therapeutic approaches

limiting this toxicity, none of them reproduces the cardinal

feature of AL amyloidosis, the presence of Congo red-positive

deposits. Consequently, they might not be fully considered

models of AL amyloidosis since they reproduce only the

invisible part of the disease and not the consequences of

amyloid fibril accumulation on cellular toxicity and tissue

remodeling. This is why many researchers have focused for

years on the development of an AL animal model that could

recapitulate all the typical features of this pathology, including

amyloid fibril formation in organs similar to or close to human

ones. Such models could help decipher the origin of the toxicity

in this disease, and the earlier events resulting in the deposition

of fibrils, and also test the efficacy and safety of new treatments

that could improve patients’ outcomes. Mammals and more

specifically rodents were the most studied models, but the

difficulties in transposing in vitro observations to animals

were revealed.
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Of mice and men: The complicated
story of AL amyloidosis modeling in
rodents

In the line of sight: Attempts to create a
rodent AL model

The first attempts to induce AL amyloidosis in mice were the

“injection models” consisting of the intraperitoneal injection of

grams of purified Bence–Jones proteins, which resulted in deposits

in the blood vessel walls of mice’s kidneys (68, 69), but not in the

glomeruli. This poorly physiological model was then abandoned

for decades with few exceptions to evaluate the direct toxicity of

AL LCs (48). The resurgence of this approach appeared when

Herrera’s group used the penile vein for intravenous injections,

which seem to offer an unsuspected advantage for LC delivery to

kidneys. The injection of 1 mg per day of purified LCs from AL

patients’ urines did induce AL fibril deposits in the glomeruli (53)

and confirmed the in vitro observations of the group (see above)

(52, 70). However, the main drawback of the injection method is

the acute delivery of large quantities of LCs, which poorly reflects

human pathology, usually characterized by a regular production

of lower amounts of free LCs in serum (1). In addition, since mice

can develop an immune response to human proteins, studies

using repeated protein injections for more than 10 days should be
FIGURE 1

Strategies to model AL amyloidosis in animals. Transient models (left) were mostly used to evaluate the direct toxicity of amyloid LCs, but a few
of them were also used to evaluate some therapeutics or amyloidogenesis. Stable production of the pathogenic LCs can be used to better
mimic the pathology. However, the production of sufficient levels of circulating free LCs is an obstacle to obtaining spontaneous systemic
amyloidogenesis. Even in mouse models with a production of free LCs at levels exceeding those in patients, amyloidogenesis does not occur
spontaneously, highlighting a potential resistance of mice to AL amyloidogenesis. Understanding the factors that limit amyloidosis in mice could
be of invaluable importance. LCs, light chains.
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considered with caution (71, 72). Other models were generated by

injecting the so-called “amyloidomas”, which correspond to

amyloid material purified from AL patients, subcutaneously in

mice (72). This creates a mass of amyloidosis under the mice’s

skin. This model cannot be used to study the pathogenesis of the

disease, and its use in AL amyloidosis is limited to therapeutic or

imaging molecule-binding assays, including anti-fibril antibodies

(72–75). Some of them have been tested later in clinical trials

(76–78) validating the contribution of the amyloidoma model in

AL amyloidosis. Tumor graft models using monoclonal

pathogenic LC-producing cell lines have been successful in

reproducing in mice the initial lesions of monoclonal

gammopathy of renal significance (MGRS) like LCDD or light

chain proximal tubulopathy (LCTP) (79, 80). In contrast, this

method never resulted in AL amyloid deposits in our experiments

despite multiple attempts with different AL LCs. To our

knowledge, other groups have developed AL LC-expressing cell

lines, which also failed to reproduce AL amyloidosis in graft

models (81–83). The often-given reason is the high proliferating

properties of these cells that do not allow a sufficient accumulation

of the pathogenic LCs before the sacrifice of animals due to tumor

invasion. However, the fact that other LC-induced pathologies,

including some requiring high quantities of monoclonal LCs (i.e.,

myeloma cast nephropathy) (80), were efficiently reproduced

using tumor grafts refutes this sole explanation.

To avoid transient production of the pathogenic LCs that

do not mirror human disease, transgenic approaches have

also been employed to create reliable and more physiological

AL amyloidosis models. Ward et al. (84) developed transgenic

mice expressing an amyloidogenic l6 LC under the control of

the ubiquitous cytomegalovirus promoter. These mice were

the first to develop few AL deposits in the lumen of the gastric

glands of the stomach, probably due to the local expression of

the LCs in an acidic environment, favoring their unfolding

and fibrillogenesis. Levels of circulating human LCs were

estimated at 5–10 µg/ml by Western blotting, and no

deposit was detected in any other organs. Once again,

although this model did not reflect the pathogenesis of AL

amyloidosis, it was sufficient to demonstrate that doxycycline

treatment inhibited amyloid formation in vivo, and it was

recently useful to demonstrate the binding of a therapeutic

molecule to AL fibrils (85). Interestingly, no sign of cardiac or

renal toxicity due to the circulating LCs was found in these

mice. Another transgenic model was generated by Nuvolone

et al. (86), in which a human l LC was conditionally

expressed in all tissues (heart, kidney, lung, etc.). None of

these mice developed AL amyloidosis in any organ or

demonstrated any sign of toxicity.

All of these models seem to indicate that the level of

expression of the free LCs likely plays a more important role

in amyloidogenesis than previously thought. So far, none of the

transgenic models reached the level of circulating free LCs

needed to initiate systemic amyloid deposits.
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Another brick in the wall: Strategies to
increase the expression of the
pathogenic light chains in
transgenic mice

In contrast to the transgenic models presented above,

prioritizing a ubiquitous or liver-specific expression of the

transgenic LCs, our group developed almost exclusively B cell-

specific strategies. Plasma cells (PCs) represent the last stage of B-

cell development and are mainly characterized by their capacity of

secreting large quantities of antibodies. They are Ig factories able to

secrete up to 10,000 Ig per second and can secrete antibodies for

years. Consequently, we considered that they are the perfect cells to

produce and secrete transgenic Ig and that the Ig loci bear all the

necessary transcriptional enhancers to allow the best transcription

of our transgenes. We developed in the late 1990s a B cell-specific

transgenic mouse model using Ig transcriptional enhancers and

promoters to express a k LC from a patient with AL amyloidosis

(unpublished results). Despite a significant production of the

human LCs in serum (~1 mg/ml), we did not observe any

amyloidosis in these mice or signs of morbidity throughout their

life. In fact, most of the human LCs were associated with mouse

heavy chains, strongly limiting the circulation of the pathogenic free

LCs in serum, an issue that we recently solved (see below). More

recently, we adopted a knock-in strategy in the mouse Ig kappa

locus to develop several models of monoclonal Ig-related deposition

diseases (87–90). The first one was a model of LC-induced Fanconi

syndrome, in which the exon coding a VL from a patient was

inserted to replace the joining (J) segments of the kappa locus (87)

(Figure 2). During transcription, the human VL exon was naturally

spliced to the mouse C domain exon, forming a complete human/

mouse hybrid LC. The k LCs in mice were expressed in over 90% of

plasma cells closely mimicking the hematologic features of

monoclonal gammopathies. These mice presented circulating LCs

between 5 and 8 mg/ml. Even if LCs were mainly associated with

the heavy chains (HCs), the concentration of free LCs was sufficient

to reproduce crystal deposits in proximal tubular cells and typical

tubular dysfunction associated with human disease. This model also

provided proof that the VL is the only domain of the LCs involved

in the pathogenesis of LC-induced Fanconi syndrome. Since rats

appear as a suitable alternative to mice, as they are more sensitive to

pathogenic lesions, sclerosis, and organ failure (91), we created a

transgenic rat by the insertion in the rat immunoglobulin kappa

locus of a human k LC gene from an AL patient with strong kidney

deposits and low circulating FLC (~100 mg/L). This LC was

expressed in most B and plasma cells and circulated in blood at

high concentrations (~1 mg/ml) but, similar to our first transgenic

mice, most of the LCs were associated with rat heavy chains. In

contrast with the LC-induced Fanconi model, the level of free LCs

appeared to limit the trigger of amyloid deposits in the rats (92).

The toxicity of LCs was also studied in the kidneys of these animals

by measuring the creatinine level and the glomerulus histology, and

none of the rats showed any sign of renal dysfunction or other
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morbidities due to the LC. To increase the proportion of free LCs in

our transgenic models, we took advantage of the DH-LMP2A

model, previously characterized by Casola et al. (93) (Figure 2A).

To study the role of the Epstein–Barr virus latent membrane protein

2A (LMP2A) in infected B cells, they replaced the JH segments in

the IgH locus with the gene encoding LMP2A. LMP2A effectively

led to complete B-cell development in the absence of

immunoglobulin heavy chains. We further showed that LMP2A

mice also presented a striking accumulation of plasma cells, making

them the ideal model for the production of large amounts of free

LCs without any hematological disorder that could reduce the

lifespan of mice (94). We first used this model to backcross with

transgenic mice carrying a complete heavy chain from a patient

with heavy chain deposition disease (HCDD) (88) and more

recently with mice expressing a k VL domain from a patient with

LCDD (90). The homozygous strain produced only the human

pathogenic k free LCs, reaching ~1 mg/ml in the serum, which is

similar to the level observed in LCDD patients (95). This model

recapitulated the kidney lesions and dysfunctions of LCDD patients

and proved to be a reliable platform for therapeutic investigations

(Figure 2B). Additionally, we showed that plasma cells producing

the pathogenic LC activated specific transcriptional pathways

associated with endoplasmic reticulum stress associated with

higher sensitivity to proteasome inhibitors. This model thus

participated in the burgeoning field of research showing that

abnormal monoclonal Igs may interfere with plasma cell fate and

response to treatments (83).

A similar strategy was used to generate an AL amyloidosis

mouse model (89, 96). In that case, the full l LC (VL and CL
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domains) from a patient suffering AL amyloidosis with cardiac

and renal involvements, biopsy-proven amyloid deposits in the

kidney, and low FLC levels (<100mg/L) was introduced by knock-

in in the Jk locus of the mouse LCs. The amyloidogenicity of this

LC was confirmed by in vitro fibrilization experiments.

Unfortunately, and despite the secretion of about 400 µg/ml of

amyloidogenic free LCs, which is four times that observed in the

patient, these mice never developed amyloid deposits

spontaneously in any organ, even in old mice, and histological

analyses did not show any sign of organ impairment. This is in

stark contrast with other models of LC-related monoclonal

diseases. Circulating LC levels in LCDD or Fanconi patients are

usually higher than in AL patients, but the mice reproduced the

diseases in a few weeks or months (87, 90). It means that in

contrast to other LC-induced diseases, AL amyloidosis does not

spontaneously develop due to the sole LC and likely requires

additional events that remain to be determined (Figure 3). Mice

are indeed known to be a poor model for spontaneously forming

amyloidosis including systemic amyloidosis or Alzheimer’s

disease (98, 99). One reason could be a more effective

mechanism of clearance or a better chaperoning of misfolded

proteins than in humans as discussed later in this review

(Figure 3) (100, 101). However, another transgenic mouse

model reproduced perfectly human lesions of AAPOA2

amyloidosis (102), and cardiac ATTR deposits can be induced

in a transgenic model by overpassing the lag phase with a seeding

strategy (103), although the animals did not seem to present any

morbidity. This leads to the belief that the resistance to amyloid

formation is not complete and could be likely overcome to induce
A B

FIGURE 2

Transgenic strategy to increase the free pathogenic Ig production in mouse models to reproduce human Ig-related deposition diseases. (A) The
human pathogenic Ig (light chain or truncated heavy chain) sequence was obtained from patients with an Ig-related deposition disease (Fanconi
syndrome, LCDD, HCDD, or AL amyloidosis) and inserted by knock-in into the Ig kappa locus of mice. These mice were crossed with the DH-
LMP2A strain mice, which present a normal B-cell development without producing Ig heavy chains, to avoid the association between the
human pathogenic LC or HC and to increase its circulating concentration in transgenic mice. (B) Immunofluorescence (top) and electron
microscopy (bottom) analyses of kidney sections show that the levels of circulating free LCs in these mice are sufficient to reproduce the main
pathological features of human diseases. In the AL model, we did not observe Congo red amyloid deposits in the kidney (bottom) despite the
presence of numerous human LC reabsorbed tubular cells (top). No amyloidosis was observed in any other organs (not shown). LCDD, light
chain deposition disease; HCDD, heavy chain deposition disease; LC, light chain; HC, heavy chain.
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AL amyloidosis. With the amyloid lag phase being a long process,

we cannot exclude that the level of free LCs, despite being higher

than in patients, would need to be further increased to form

detectable amyloid deposits during the lifetime of the mice. We

are currently working on strategies to further improve the

production of pathogenic LCs (89). Since the level of circulating

free LCs was far above that observed in previous transgenic

models (including the zebrafish), we would have expected organ

dysfunctions due to the direct toxicity of the soluble AL LCs.

However, their follow-up years seem to indicate no differences in

the life span when compared to control mice, and they do not

present any signs of morbidity or organ dysfunction related to

their pathogenic LC expression. More careful investigations have

to be conducted at the cellular level, including ROS production,

apoptosis, or proliferation, but we do not believe that such

alterations, even at a low level, would not have affected the

survival of the animals, especially considering that the cardiac

regeneration in mammals is almost absent. This resistance to

spontaneous amyloidosis in either AL or ATTR mice models,

together with the apparent absence of morbidity in the later, raises

the interesting possibility that amyloid formation is in fact directly

linked to the cellular or tissue-based toxicity exerted by the

amyloidogenic protein. The absence of cellular toxicity in mice,

possibly due to a more effective clearance of misfolded proteins

compared to humans, could thus prevent the creation of favorable

conditions for the formation of amyloidosis.

Accordingly, recent preliminary data from our lab showed

that similar to the ATTR transgenic model (103), seeding with

injections of AL fibrils made up in vitro with the VL portion of

the transgenic LCs can lead to amyloid deposits in organs of our

AL transgenic mice, especially the heart, spleen, vessel walls, and,

to a lesser extent, kidney (104). Although these results have to be

confirmed in more mice and carefully interpreted, they could

represent a breakthrough in the modeling of AL amyloidosis.

Where are we and where are we
going: Could experimental models
help fill the gaps in AL amyloidosis?

Despite all the experimental studies on AL amyloidosis cited

in this review, which have considerably improved our

understanding of the disease, any current publication on the

subject will continue to start with this disappointing statement:

the mechanisms underlying the development of amyloidosis in

patients are still incompletely understood. The main barrier to

better delineating common mechanisms of amyloidogenesis is

the variability of the LCs, making each LC a unique molecular

model. The scientific community also needs to solve the

discrepancies observed between experimental approaches

(amyloid species used, concentrations, and human or
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recombinant origin) and models (type of cells and animals).

One of the main discrepancies is the difficulty to form amyloid

fibrils in vivo when compared to those obtained easily in vitro.

There is a clear gap in our understanding of the enhancing or

inhibiting role of the microenvironment in in vivo

amyloidogenesis (i.e., cellular interactions, glycosaminoglycans,

local pH, and extracellular matrix composition) (51, 105–108)

that cannot be solved in vitro, at least on simple cellular models,

and requires a still missing reliable animal model (89). Such a

model should provide clues about the involvement of LC

proteolysis in the process of fibril formation (Figure 3).

Whether before or after deposits form, the role of proteases in

the degradation of the non-fibrillary part of the LCs has to be

understood since it could not only explain discrepancies between

mice and humans in their ability to form AL amyloidosis but

also help discover enhancing or protecting factors that could

become new targets for therapies (Figure 3). Increased activity of

extracellular matrix metalloproteinases (MMPs) has been

highlighted in cardiac and glomerular deposits in patients

(109–112), but no study has demonstrated their specific

involvement in amyloidogenesis or LC degradation. Proteases

have been recently involved in TTR amyloidosis first in vitro

(113) and then confirmed in a mouse model of ATTR (103). The

authors showed that the plasmin pathway was activated in

cardiac tissue and would be involved in the release of the

amyloidogenic portion of TTR. Whether a similar process

could be involved in AL amyloidosis remains to be

determined. However, the spectrum of possible involved

proteases is wide and includes intracellular proteases since LCs

can also be internalized by many cell types (31, 51, 52, 56–

58, 114).

We also have to consider that LC modifications, leading to

their propensity to aggregate, could happen before they reached

their final organ destination or even before their secretion by

plasma cells. Since growing evidence showed that unstable,

pathogenic LCs induce molecular stress in plasma cells (83,

90), their protein quality control, regulated by numerous ER-

resistant chaperones, could be overwhelmed, leading to unfolded

or misfolded LCs released in the bloodstream. Such proteins

could then have a higher propensity to aggregate in tissues (115).

Here, we reach another limit of AL modeling since a plasma cell

quality control defect could also be due to the molecular

abnormalities underlying the hematological disorder (i.e.,

translocations and mutations leading to the monoclonal

proliferation) and then would be hardly reproducible in

animal models with normal mouse plasma cells. Finally,

extracellular chaperones, produced by plasma cells or any

other cells, could also play a role. Chaperones, such as ERDJ3,

are guardians of the proteins’ integrity: they can bind to

misfolded proteins in the ER and remain associated after their

secretion to prevent aggregation (116). Any defect in ERDJ3
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production could lead to a loss of protection against circulating

unfolded proteins and favor amyloidogenesis. Another

chaperone, clusterin, which is currently associated with

amyloid fibrils, is significantly decreased in patients with

cardiac amyloidosis, which suggests that it could also play a

role by protecting from amyloidogenesis (117). All these

chaperones are highly conserved in mammals, but discreet

differences in structure or concentration between humans and

mice could account for the difficulties to reproduce spontaneous

amyloidosis later (99). As an example, SAP, invariably found in

amyloid deposits, was shown to protect fibrils from degradation

by proteases (118), but human SAP binds much more avidly and

is more abundant in human amyloid fibrils than in mice (119).

Understanding these differences between rodents and humans

would likely help decipher the last secrets of AL amyloidosis and

design new therapeutic approaches.
Conclusion

Studying AL amyloidosis is like trying to put together the

pieces of a giant jigsaw puzzle in which a few pieces are still
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missing. Finding these missing pieces could help to finally

understand the mechanism that allows the transition from a

structure that should protect us to its pathogenic deposing-state

counterpart that destroys the organs. It is even more true in AL

than in any other amyloidosis since the diversity of the

pathogenic LCs together with the variety of the clinical

presentations greatly complicates this process. Data obtained

from experimental models reflect this diversity, and in vivo

models are needed to validate the questions raised by in vitro

experiments. They have already been useful for testing new

therapeutic approaches and launching debates about the

intrinsic toxicity of the LCs. Whether or not in vivo models of

AL amyloidosis could be game changers for understanding the

disease remains to be confirmed, but we think that the efforts of

the amyloidosis scientific community trying to develop a reliable

AL amyloidosis model will one day be rewarded.
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