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Gastrointestinal (GI) cancers occur in the alimentary tract and accessory organs.

They exert a global burden with high morbidity and mortality. Inside the tumor

microenvironment, dendritic cells (DCs) are the most efficient antigen-

presenting cells and are necessary for adaptive immune responses such as T

and B-cell maturation. However, the subsets of DCs revealed beforeweremostly

based on flow cytometry and bulk sequencing. With the development of single-

cell RNA sequencing (scRNA-seq), the tumor and microenvironment

heterogeneity of GI cancer has been illustrated. In this review, we summarize

the classification and development trajectory of dendritic cells at the single-cell

level in GI cancer. Additionally, we focused on the interaction of DCs with T cells

and their effect on the response to immunotherapy. Specifically, we focused on

the newly identified tumor-infiltrating dendritic cells and discuss their potential

function in antitumor immunity.
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Introduction

Gastrointestinal carcinoma refers to malignancies that occur in the alimentary tract

and accessory organs. It consists of six main types of cancer: oesophageal cancer (OC),

gastric cancer (GC), liver cancer (LC), gallbladder and biliary tract cancer (BTC),

pancreatic cancer (PC) and colorectal cancer (CRC) (1). There were 5.09 million new

cases of GI cancer and 3.61 million related deaths, accounting for 26.4% of the worldwide

cancer incidence and 36.3% of all cancer-related deaths, respectively (2). Additionally,

these numbers are on the upward trend compared to the epidemiological data before (3).
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At present, the main treatments for GI cancers include

surgery, chemotherapy, radiotherapy and targeted therapy, and

the rise of immunotherapy improves the ways against the tumors

and has gradually become the first-line therapy in GI cancer.

Apart from pancreatic cancer, most clinical trials of GI cancer

combine the anti-PD-1 antibody with sequential chemotherapy

or targeted therapy to create new therapeutic paradigms

(Supplementary Table 1a). The overall response rate (ORR)

ranged from 26.7%-76.7%. Unfortunately, in pancreatic cancer,

immune checkpoint blockade (ICB) therapy fails (ORR is almost

0%) and does not prolong the survival time compared with

chemotherapy (4–7). Although ICB combined with

chemotherapy has a higher ORR than targeted therapy,

approximately half of patients still cannot benefit from it due

to nonresponse, drug resistance, recurrence or disease

progression. The overall resistance to ICB therapy is 11%-71%

across all tumor types (8). These data from clinical trials indicate

that releasing only T-cell brakes cannot fully eliminate tumors.

To elicit whole-body immune activation and long-lasting

immune memory, novel therapy methods need to be developed.

Dendritic cells (DCs), as the most efficient antigen-presenting

cells, bridge the innate and adaptive immune systems. In the

tumor microenvironment, DCs represent a heterogeneous group.

Single-cell RNA sequencing can identify newDC subpopulations.

Additionally, new insights provided by the single-cell

transcriptome and spatial transcriptome will likely reveal a

plethora of new immunotherapeutic interventions targeting

specific DC subsets or their products for the treatment of a

variety of human disorders, including cancers. In this review,

we focus on high-resolution data on dendritic cells in GI cancer.
Canonical development and traditional
classification of DCs

Hematopoiesis gives rise to most immune cells. The classical

three subtypes of DCs, monocyte-derived dendritic cells (Mo-

DC), conventional dendritic cells (cDC) and plasmacytoid

dendritic cells (pDC), all come from common dendritic

progenitors (CDPs), common monocyte progenitors (cMoPs)

(9) and IL-7R+ lymphoid progenitor cells (10). In one way,

cMoPs give rise to CD14+ or CD16+ monocytes. When

circulating monocytes encounter antigens, they differentiate

into Mo-DCs and migrate to tissues later (11). In another way,

the CDPs come to pre-pDCs and pre-cDCs. cDCs have two

subtypes, type 1 (cDC1) and type 2 (cDC2), marked by

CLEC9A+/CD141+/XCR1+ and CLEC10A+/SIRPa+/CD1c+

expression, respectively. cDCs have superior antigen

presentation capacity. cDC1s present antigens to CD8+ T cells

by MHC-I/TCR interactions, and cDC2s present antigens to

CD4+ T cells by MHC-II/TCR interactions. Additionally,

cDC1s cross-presented tumor-associated antigen (TAA) or

tumor-specific antigen (TSA) to generate antigen-specific
Frontiers in Immunology 02
cytotoxic T cells is crucial in antitumor immunity (12).

Furthermore, pDCs have a rounded shape that resembles

plasma cells. Marked by CD123 in human, pDCs function

during viral infection. They produce type I interferon upon

stimulation with toll-like receptor (TLR) 7/9 (13).

DCs are themost potent antigen-presenting cells (APCs). They

have four main functions, phagocytosis, antigen presentation,

costimulatory/inhibitory ability and cytokine secretion ability, to

regulate immunity. As professional phagocytes, DCs have separate

pathways to process endogenous and exogenous antigens (14–16).

After antigen uptake, DCsmatured. They upregulate costimulatory

molecules, such as cluster of differentiation 80/86 (CD80/86) and

inducible T-cell costimulatory ligand (ICOSL), to provide the

second signal of T-cell activation and proliferation. In addition,

they secrete proinflammatory cytokines, such as interleukin-12 (IL-

12), to promote differentiation from Th0 to Th1 (17) and tumor

necrosis factor-alpha (TNF-a) to induce tumor cell apoptosis (18).

Recently, a subset of DCs, CD103+DCs, have been considered to be

crucial for trafficking to the lymph nodes and activating CD8+ T

cells (19). Additionally, anti-PD-L1 blockade requires CD103+DCs

to promote but only have a partial response. Only when combined

with FLT3L and poly I:C therapy can anti-PD-L1 blockade

efficiently reduce tumors (20). Additionally, another study using

an anti-PD-1 antibody and a multipeptide vaccine found that PD-

1+ DCs decreased and memory precursor CD8+ T cells were

upregulated (21). Altogether, these studies indicate the key

subclusters of DCs in the response to immunotherapy and their

regulation of memory CD8+ T cells.
The updated taxonomy, ontogeny and
new functions of DCs defined by
scRNA-seq

With high-resolution sequencing technology at the single-

cell level, novel clusters of DCs were discovered, and taxonomy

was updated. First, cDC1 s and cDC2s come from the common

dendritic cell progenitor (cDC progenitor), characterized by

CD34intCD100+ (22). Moreover, a novel DC subcluster, AXL+

DCs characterized by AXL and SIGLEC6, was first identified in

the peripheral blood of humans (23). AXL+DCs have a spectrum

gene signature consisting of pDCs and cDCs, which indicates

that they have the ability to give rise to both of them.

Additionally, AXL+DCs were also found in the cord blood,

which reveals their origin (24). However, they are more

similar to cDCs in the adult cord clood than pDCs in the

peripheral blood transcriptionally. Furthermore, by inhibiting

AXL receptor tyrosine kinase, Li et al. found that cDCs increase

type I interferon secretion and enhance the proliferation of

TCF1+PD1+CD8+ T cells. This pathway sensitive the anti-PD1

blockade and restored the response (25).

Moreover, Rudensky et al. identified two functionally distinct

cDC2 subclusters, T-bet+cDC2s and T-bet-cDC2s, in mice (26).
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T-bet+cDC2s have an anti-inflammatory profile, while T-bet-

cDC2s show pro-inflammatory characteristics, secreting more

TNF-a and IL-6 than T-bet+cDC2s. The researchers also

validated that siglec-H+ cells have the progenitor nature to give

rise to these cDC2 subclusters within the spleen. And in human,

C D 1 c l o C L E C 1 0 A – C L E C 4 A h i c D C 2 s a n d

CD1c+CLEC10A+CLEC4Alo cDC2s are counterparts of T-

bet+cDC2s and T-bet-cDC2s in mice. Moreover, T-bet+cDC2s

and CD1cloCLEC10A-CLEC4Ahi cDC2s in the peripheral blood

of mice and human respectively are absent consistently.

Recently, DCs were also found to maintain the exhaustion

state in lymphoid or nonlymphoid tissue, which is vital during

T-cell function (27, 28). Dähling et al. found that cDC1s prevent

the overactivation of the precursors of exhausted T(Tpex) cells

by providing a CCL21-dependent niche. They control their

differentiation to exhausted T cells to balance the exhaustion

state in the body (29). In addition, Schenkel et al. discovered that

cDC1s helped tumor-specific CD8+ T cells, TCF-1+CD8+ T cells,

to proliferate and differentiate into a heterogeneous population

and thus reduced tumor burden (30). These studies revealed new

insights into the contribution of DCs to immunity.
Phenotypic alterations and novel tumor-
infiltrating DCs identified by scRNA-seq

Although numerous potential stimulatory signals for DCs exist

in the TME, many tumors also contain abundant amounts of

immunosuppressive cytokines, such as IL-10 (31, 32). Orsini et al.

found that colorectal cancer patients exhibited an impaired capacity

to generate immature DCs from blood monocytes and lower

expression levels of the costimulatory marker CD40 (33). Studies

have found that the immunosuppressive chemokine CCL2 produced

by tumor cells induces the autocrine secretion of lipocalin 2 (LCN2)

and cooperatively generates immunoregulatory DCs (regDCs) with

decreasedHLA-DR expression and increased PD-L1 expression (34).

In addition, the circulating pDCs recruited into the tumor

microenvironment are characterized by decreased expression of

costimulatory molecules and a reduced ability to produce type I

interferons. Additionally, Li et al. found that pDCs played a potential

role in recruiting Tregs, and both of them participate in the

immunosuppressive microenvironment of GI cancer (35). Liu et al.

also demonstrated that ICOS+ Tregs and pDCs predict a poor

prognosis of gastric cancer (36). However, Abolhalaj et al. found

that the myeloid/plasmacytoid dendritic cell ratio (mDC/pDC) was

elevated in tonsillar cancer (37). Therefore, the landscape of tumor-

infiltrating DCs and their functions need to be clarified.

Single-cell RNA sequencing has promoted the precise

understanding of the tumor microenvironment. In Supplementary

Table 1b, we summarize some high-quality single-cell RNA-seq data

of GI cancers based on human tumor sample sequencing. In general,

the ratio of DCs and T cells ranges from 1:5~1:12 (38–41). The

proportion of mDCs is higher than that of pDCs, but the study did
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not give an accurate number (38). Three groups of DCs, cDC1s

(highly expressed CLEC9A/BATF3), cDC2s (highly expressed

CD1C/CLEC10A), and plasmacytoid DCs (highly expressed

LILRA4), were detected in tumor and adjacent tissues.

Furthermore, the subtypes of tumor-infiltrating DCs are

conserved across GI cancers. Recently, a novel tumor-

infiltrating DC that highly expresses CCL19/LAMP3/CCR7 was

identified. LAMP3+ cDCs were first identified by Zhang et al. (42)

in hepatocarcinoma and is a kind of tumor-infiltrating DC that

arises from cDC1 and cDC2. LAMP3+ cDCs were found in 15

different cancer types, which demonstrates that they have a broad

appearance in tumors (43). They have the ability to migrate to

hepatic lymph nodes because of high CCR7 expression. Apart

from nasopharyngeal cancer and pancreatic adenocarcinoma,

LAMP3+ cDCs preferentially come from cDC1s, which highly

express IL12B and BTLA. Moreover, cDC2-derived LAMP3+

cDCs showed high expression of CCL17. Although these two

kinds of LAMP3+ cDCs have distinct gene signatures, both of

them have the capacity to induce Treg differentiation and

recruitment. Additionally, the upregulated expression of PD-L1

and PD-L2 in LAMP3+ cDCs was consistent. And LAMP3+DCs

were predicted to interact with PD-1 on Tregs, central memory T

cells (CD4+T cells highly expressing IL7R andTCF7), and effector

memory T cells (CD8+ T cells highly expressing SELL GZMK) to

regulate multiple kinds of T cells (42). Additionally, CCR7- and

LAMP3-upregulated DCs were also detected in colorectal tumors

(44). Altogether, these facts indicated that LAMP3+ cDCs are

newly identified regulatory-like dendritic cells in the TME.

Moreover, different from the previous theorymentioned above,

scRNA-seq further predicts the ligand−receptor interaction

between DCs and T cells (42). cDC1s (DC-CLEC9A) have the

ability to present antigens toCD4+T cells and cDC2 (DC-CD1c) are

able to interact withCD8+T cells.Moreover, Cheng et al. performed

a pan-cancer scRNA-seq and found that the proportion of cDC2s

was higher than that of cDC1s in tumors. Some research found that

ascites from hepatocarcinoma patients were enriched with DCs

expressing FCER1A (DC-FCER1A) (42).
Spatial distribution of dendritic cells in
GI cancer

Apart from cell clustering at the single-cell level, the location

of dendritic cells in the tumor is also crucial for their biological

behavior. In oesophageal cancer, PD-L1+ or PD-L1- DCs were

nearest to PD-L1+ or PD-L1- tumor cells, respectively (45). The

closer distance between these two cells is correlated with better

overall survival and progression-free survival. Moreover, in

gastric cancer, DCs are sparse and scattered in the tumor (46).

In hepatocarcinoma, cDCs were found to be significantly

enriched in the normal regions instead of the tumor regions by

spatial transcriptomics. Between the normal region and tumor

region, there is a complete capsule that blocks the immune cells from
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entering the tumor (47). Furthermore, pDCs highly marked with

BDCA-2 are located in the tertiary lymphoid structure (TLS) and

correlatewith prolonged survival in colorectal cancer (48). These data

indicate that anti-tumor cDCs are not enriched in the tumor and that

pro-tumor pDCs may contribute to tumor progression in GI cancer.

Additionally, a kind of dendritic cell termed follicular

dendritic cells (FDCs) specifically originate from stromal cells

located in the primary lymphoid organs, secondary lymphoid

organs and TLSs (49). FDCs mainly induce a humoral response,

unlike the cDCs and pDCsmentioned before. Theymainly secrete

C-X-C motif chemokine ligand 13 (CXCL13) to recruit B cells to

B-cell follicles and assist them in differentiating into plasma cells

and memory cells. Unlike MHC-TCR antigen presentation in T-

cell activation, FDCs present unprocessed antigen to B cells with

immune complexes (50). FDCs, B cells, and T cells dominantly

form the tertiary lymphoid structure, andTLSs are correlatedwith

better overall survival and progression-free survival (51–53).

However, the spatial information of DCs is relatively limited.

Many studies utilizing spatial transcriptomics have not paid

much attention to dendritic cell distribution and its potential

role in presenting antigens in tumors (54, 55). Therefore, it is

necessary to identify the distribution of DCs in GI cancers since

it is vital for antigen presentation behavior.
The difference between clinical samples
and tumors from mouse models

The single-cell transcriptome and spatial transcriptome have

revealed the DC atlas of human (Figure 1). However, the mouse
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model is the main preclinical model used to study dendritic cells

and the immune system. To compare the difference in dendritic

cells and T cells between human clinical samples and mouse

tumors in GI cancer, we summarized the scRNA-seq data of

mouse models in Supplementary Table 1b. Obviously, the

subcluster differs between human and mice. Zhao et al.

sequenced BALB/C, C57BL/6, SCID and SCID-HT29 liver

cancer mouse models by scRNA-seq. They identified six DC

subclusters, some of which were consistent with human data.

Undeniably, the representative gene LILRA4, which is highly

expressed in pDCs in humans, did not exist in mice.

Additionally, the remarkable LAMP3 gene expression in human

regDCs was dismissed in the mouse (56). A similar situation

occurred in the CRC/GC mouse model, in which the classification

of DC cells was too broad (57, 58). Additionally, DC gene

expression in esophageal squamous cell carcinoma mouse

models mostly does not match that in human tumors (59).

Guilliams et al. (60) systematically compared murine and human

liver cells at the single-cell level and found that the subclusters were

mostly conserved. However, the gene expression of cDC1 s and

cDC2s is quite distinct. Altogether, there is some discrepancy in

the gene expression of the main immune clusters between mice

and humans. The diversity of mouse cancer models is limited and

cannot represent the heterogeneity of clinical samples.

To address the problem mentioned above, humanized model

technology is appealing. The humanized mouse model (humice)

refers to human CD34+ cells/peripheral blood mononuclear cells

(PBMCs) engrafted in severe combined immunodeficiency mice.

Zhao et al. established the humice platform of liver cancer. Flow

cytometry monitors at least twenty-one human immune subsets,
FIGURE 1

The developmental trajectory of dendritic cells and T cells. Monocytes circulate in the peripheral blood and differentiate into dendritic cells that
sample and cargo tumor antigens. In the tumor draining lymph nodes, dendritic cells present antigens to CD4+ or CD8+ T cells to activate them
into cytotoxic T cells. Additionally, cDCs also interact with resident CD8+ T cells to develop into CD8+ cytotoxic T cells. Besides, cDC1s and
cDC2s give rise to regulatory LAMP3+ DC which induce CD8+ T cells exhaustion through the PD-L1-PD-1 axis.
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including pDC andmDC, in peripheral blood and various cytokine

secretion in sera for 8 weeks. Then, the patients’ tumors were

implanted subcutaneously in the humice. They found that the

therapeutic effect of pembrolizumab was significantly better than

that of ipilimumab. There were obvious toxic and side effects in

humice when using ipilimumab, which is consistent with the

clinical information (61). Therefore, the humice system provides

a platform to detect the interaction between human immune cells

and better imitates the cancer immunity of humans.
Therapeutic strategy of DC-based
cancer treatment

DC-based immunotherapy mainly refers to DC-based cancer

vaccines. DC vaccines are mostly based on Mo-DCs from patients,

which are accessible and have amature culture protocol.Monocytes

can be induced to differentiate into DCs stimulated by IL-4 and

GM-CSF and to mature by LPS (62–64), which is a convenient

source to generate DC vaccines. Then, using tumor lysates or

predicted personalized tumor antigens, mo-DCs are activated and

transferred to the patients. There are ~80 phase I/II clinical trials to

treat gastrointestinal cancer (Supplemental Table 2). DC vaccines

are currently recommended to use a ‘prime-boost’ strategy.

Traditional treatment modalities first induce immunogenic cell

death (ICD), and subsequent DC vaccination can boost a stronger

immune response (65). DC vaccines have successfully treated

highly immunogenic cancer. Provenge is the first FDA-approved

DC vaccine used to treat prostate cancer since 2010 (66). These

attempts have elucidated the safety and response of DC vaccines

elicited in patients. Generally, the strategy using DC vaccine is now

recommended to combine chemotherapy or ICB therapy because

the single ORR of DC vaccine did not exceed 15% (67).

Although some regimens do not target DCs directly, scRNA-

seq detected changes inDCs contributing to a better response. In an

MC38 CRC mouse model treated with anti-CD40 agonist therapy,

CCL22+ cDC1s along with CCL5+ CD8 effector memory T cells

were enriched, and an elevated cDC1 gene signature was correlated

with longer overall survival (68). In another study, when

undergoing anti-PD-1 or anti-CTLA-4 blockade therapy, CD8

effector memory T cells highly expressing GZMK and HSPA1A

were also upregulated in patients, which the latter has not been

annotated previously in liver cancer (69). However, scRNA-seq of

patients or mousemodels before and after treatment is limited, and

more attention should be given to not only T cells.
Conclusion

Currently, scRNA-seq has identified novel subclusters and

the precise function of DCs. In summary, conventional dendritic

cells (cDC1 and cDC2) are the most efficient antigen presenting

cells in the tumor draining lymph nodes and tumor
Frontiers in Immunology 05
microenvironment. The immunotherapy response is correlated

with the interaction of cDCs and tumor-specific T cells.

However, cDC1s and cDC2s can also differentiate into a

subset of regulatory DCs (LAMP3+ DCs) to hamper anti-

tumor immunity. Therefore, the future strategy to develop

novel DC vaccines is to elicit a CD8+ T-cell response and

prevent it from being changed by the immunosuppressive

tumor microenvironment, thus eliminating the tumor burden.
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