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Background: While prior research has shown differences in the risk of malaria

infection and sickness between males and females, little is known about sex

differences in vaccine-induced immunity to malaria. Identifying such

differences could elucidate important aspects of malaria biology and

facilitate development of improved approaches to malaria vaccination.

Methods: Using a standardized enzyme-linked immunosorbent assay, IgG

antibodies to the major surface protein on Plasmodium falciparum (Pf)
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sporozoites (SPZ), the Pf circumsporozoite protein (PfCSP), were measured

before and two weeks after administration of a PfSPZ-based malaria vaccine

(PfSPZ Vaccine) to 5-month to 61-year-olds in 11 clinical trials in Germany, the

US and five countries in Africa, to determine if there were differences in vaccine

elicited antibody response between males and females and if these differences

were associated with differential protection against naturally transmitted

Pf malaria (Africa) or controlled human malaria infection (Germany, the US

and Africa).

Results: Females ≥ 11 years of age made significantly higher levels of antibodies

to PfCSP than did males in most trials, while there was no indication of such

differences in infants or children. Although adult females had higher levels of

antibodies, there was no evidence of improved protection compared to males.

In 2 of the 7 trials with sufficient data, protected males had significantly higher

levels of antibodies than unprotected males, and in 3 other trials protected

females had higher levels of antibodies than did unprotected females.

Conclusion: Immunization with PfSPZ Vaccine induced higher levels of

antibodies in post-pubertal females but showed equivalent protection in

males and females. We conclude that the increased antibody levels in post-

pubertal females did not contribute substantially to improved protection. We

hypothesize that while antibodies to PfCSP (and PfSPZ) may potentially

contribute directly to protection, they primarily correlate with other,

potentially protective immune mechanisms, such as antibody dependent and

antibody independent cellular responses in the liver.
KEYWORDS

PfSPZ Vaccine, malaria vaccine, Plasmodium falciparum, PfCSP, antibodies, humoral
immunity, sex, gender
Introduction

In 2020, malaria caused 241 million clinical episodes and

627,000 deaths (1), the highest number of deaths since 2012. The

worsening situation has occurred despite an annual investment

of >$3 billion in intensive control measures, indicating a

saturation of capacity to achieve further impact (2, 3). The

WHO estimated that there were more deaths in Africa from

malaria than from COVID-19 in 2020 (4), resulting in 40-fold

more disability life years (DALYS) lost from malaria in Africa in

2020 than from COVID-19 from February 2020 to March

2021 (5).

Despite the global malaria control efforts, progress has

slowed in recent years and there is an urgent need for highly

effective malaria vaccines. A malaria vaccine, RTS,S/AS01, has

been recently recommended for implementation in young

African children by the World Health Organization based on

the results of a pilot implementation program in Ghana, Malawi,

and Kenya in 920,000 infants in which the vaccine reduced
02
malaria hospitalizations by 21% and severe malaria by 30% (6).

Our long-term goal is the development of a much more effective

malaria vaccine that can be used to eliminate malaria because it

prevents infection with Pf. We use whole Plasmodium

falciparum (Pf) sporozoites (SPZ), the entire parasite, as the

immunogen in our vaccines (7).

Our first-generation malaria vaccine is Sanaria® PfSPZ

Vaccine, which is made up of radiation-attenuated, aseptic,

purified, cryopreserved PfSPZ. It has been tested in 21 clinical

trials in the United States (US), Europe, and six African

countries (8–29). A meta-analysis of 13 double-blind, placebo-

controlled trials of PfSPZ Vaccine, 11 of which were conducted

in Africa, revealed no significant difference in adverse event

patterns between vaccinees and controls who received normal

saline (NS) (16–21, 25–29). Vaccine efficacy (VE) reached 100

percent against homologous (same Pf strain as the vaccine,

NF54) controlled human malaria infection (CHMI) at 3-7

weeks after the last dose of vaccine (17, 27, 30), and 78

percent against heterologous (Pf7G8 strain) CHMI at 3 and 9-
frontiersin.org
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10 weeks (14, 28), and lasted for at least 14 months against

homologous (13) and 8 months against heterologous CHMI

(15). VE against Pf infection has been demonstrated in field trials

in African adults to last at least 18 months and vary from 47 to

85 percent depending on the trial, dosage regimen and

population assessed (29). This protection is seen despite

antibody and cellular immune responses that are many-fold

lower than in malaria-naive adults in Germany or the US.

Vaccination-induced protective immunity is mediated by a

complex combination of innate, humoral, and cell-mediated

immune responses (31–36). The influence of biological sex on

immunity has gathered attention in recent years, and a growing

body of data suggests that sex-specific effects may result in variable

immunological and efficacy outcomes after vaccination (32).

Females tend to have greater antibody responses than males,

higher basal immunoglobulin levels and higher B cell numbers

(32, 33, 35–37).

In all our clinical trials we have assessed, in the same

laboratory, the IgG antibody responses to the major protein on

the surface of PfSPZ, the Pf circumsporozoite protein (CSP), prior

to immunization and 2 weeks after the last immunizing dose. In a

number of the trials, especially the field trials, anti-PfCSP antibody

levels were higher in vaccinees who were protected as compared to

those who were not protected (16, 25, 27). In this paper we report

our analysis of the comparative anti-PfCSP antibody responses

and protective efficacy between male and female vaccinees in 11

clinical trials in the US, Germany, Kenya, Tanzania, Mali, Burkina

Faso, and Equatorial Guinea.

Methods

Selection of clinical trials

All clinical trials of PfSPZ Vaccine were considered for

inclusion. Trials were included if they met the following

criteria: 1) PfSPZ Vaccine was administered by direct venous

inoculation (DVI); 2) The trial included female participants; 3)

Datasets including participant demographics, net OD 1.0 (see

ELISA methods for definition of Net OD 1.0) anti-PfCSP levels

by ELISA and vaccine efficacy outcomes (when assessed) were

available for analysis. Because participants were not assessed for

biological sex, the data collected on sex are represented by self-

identified or parent-identified gender. To assess differences in

potential effects of changes in the hormonal milieu associated

with puberty, the data were divided into study participants < 11

years of age and ≥ 11 years of age as part of the analysis.

IgG antibodies to PfCSP by ELISA

IgG antibodies to the Pf circumsporozoite protein (CSP)

were assessed by ELISA as previously described (38). Briefly, 96-

well plates (Nunc MaxiSorp Immuno Plate) were coated

overnight at 4°C with 2 µg/mL of a nearly full length
Frontiers in Immunology 03
recombinant PfCSP protein [described in (38)] in 50 µL per

well in coating buffer (Coating Solution Concentrate Kit, KPL,

Catalog# 5150-0014). Plates were washed three times with 2 mM

imidazole, 160 mM NaCl, 0.02% Tween 20, 0.5 mM EDTA and

blocked with 1% Bovine Serum Albumin (BSA) blocking buffer

(10% BSA Diluent/Blocking Solution, KPL, Catalog# 5140-0006)

containing 1% non-fat dry Milk for 1 h at 37°C. Plates were

washed three times and serially diluted serum samples (in

triplicates) were added and incubated at 37°C for 1 h. After

three washes, peroxidase labelled goat anti-human IgG (Anti-

Human IgG (H+L) Antibody, Peroxidase-Labeled, KPL, Catalog

#5220-0330) was added at a dilution of 0.1 µg/ml and incubated

at 37°C for 1 h. Plates were washed three times, ABTS peroxidase

substrate was added for plate development, and the plates were

incubated for 75 min at room temperature. The plates were read

with a Spectramax Plus 384 microplate reader (Molecular

Devices) at 405 nm. The data were collected using SoftMax

Pro GXP v5 and fit to a 4-parameter logistic curve, to calculate

the serum dilution yielding an optical density reading of 1.0 (OD

1.0). A negative control (pooled sera from non-immune

individuals from a malaria free area) was included in all

assays. Serum from an individual with anti-PfCSP antibodies

was used as a positive control. The same negative and positive

controls were used in all assays. The assay was conducted on sera

obtained prior to immunization and 2 weeks after the last

immunization. Samples were considered positive if the

difference between the post-immunization OD 1.0 and the

pre-immunization OD 1.0 (net OD 1.0) was ≥50 and the ratio

of the post-immunization OD 1.0 to pre-immunization OD 1.0

(ratio) was ≥3.0.
Statistical and meta-analysis methods

The Net OD 1.0 ELISA anti-PfCSP levels were calculated for

each participant in a trial to compare the antibody levels between

female and male participants. First, the net OD 1.0 ELISA anti-

PfCSP levels were obtained by calculating the difference between

pre-immunization and two weeks post last immunization levels

measured for each participant. Then, the negative net antibodies

were replaced with a value of 1 for the logarithmic presentation

of data. Finally, the net antibody levels between female and male

participants were compared using the Kruskal-Wallis test (SAS

9.4). The non-parametric Wilcoxon-Mann-Whitney test was

used to determine statistical significance for fold change values

of antibody levels.

The protection risk ratio (RR) between male and female

vaccine participants was compared to evaluate the vaccine

efficacy in males and females. The RR as a parameter does not

depend on aspects of study design, which vary between studies.

This feature supported comparing multiple clinical trial

outcomes obtained from different populations, population

sizes, and vaccine doses. The RR was obtained from (39).
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RR =
a

n1

�

c
n2

� (1)

Where a was the number of protected male participants in a

trial vaccine group, n1 was the total number of males in that

trial’s vaccine group. The c and n2 were the number of protected

females and total female participants in the vaccine group. In a

random-effects meta-analysis, Ln(RR) was each trial’s study

effect (ri). In the random-effects meta-analysis, the 95%

confidence interval (CI) for RR was calculated using (2):

CI = r̂ i ± 1:96� ŝ (2)

Where s for was the each trial estimated standard error

obtained from (3):

ŝ 2
i =

1
a= − 1

n1

�
+ 1

c= − 1
n2

�
(3)

The z-statistic value for each trial was then estimated by (4):

zi =
r̂ i

ŝ i

�
(4)

We obtain the two-tailed p-value for a trial by p=2[ 1−F(z) ],
where F(z) was the standard normal cumulative distribution (39).

Lastly, the overall RR of all trials was calculated using the random-

effects modified inverse variance method for trial weights. The

modified weight was calculated by (5):

wi = ~winv + ln (n1 + n2) (5)

The inverse variance estimates study weight and can be

presented by ~winv =
1

ŝ i

�
. The logarithmic summation modifies

the study weights (modified variance) to overcome the possible

small study size problem due to numerous small sample size

trials (40, 41). Finally, the Q-statistics and I2 values for the

random-effect analysis were measured to report the

heterogeneity of the meta-analysis on male and female

vaccine efficacy.
Results

Clinical trials

Data from 11 clinical trials were available for analysis

(Table 1). These included 8 adult (age ≥ 18 years) trials with

immunology and efficacy data; 1 trial with infants (ages 5 to 12

months) and children (ages 1 to 9 years) with immunology for

all ages and efficacy for the infant cohort; and 2 trials with infants

(ages 6-12 months), children (ages 1-17 years) and adults (age ≥

18 years) with immunology data for all 3 age groups but efficacy

data only for adults. Trials conducted in the US and Germany

enrolled malaria naïve adults; efficacy was assessed using

controlled human malaria infection (CHMI). Trials conducted
Frontiers in Immunology 04
in sub-Saharan Africa (Tanzania, Equatorial Guinea, Burkina

Faso, Kenya, Mali) enrolled participants with varying degrees of

prior exposure to Pf; efficacy, when evaluated, was assessed

against either naturally acquired infection (Kenya, Mali,

Burkina Faso) or CHMI (Tanzania, Equatorial Guinea).
Antibodies to PfCSP by ELISA by sex

In all trials, antibody levels against PfCSP were assessed

prior to the first dose of vaccine and 2 weeks after the final

vaccine dose. The antibody level was the serum dilution at which

the optical density (OD) was 1.0. The net OD 1.0, the difference

between the post- and pre-vaccination OD 1.0 levels, is reported.

As reported in prior studies, antibody levels for males and

females combined were substantially higher in adult study

participants from sites where malaria is not endemic

compared with malaria endemic areas (16, 17, 19) [Jongo,

unpublished]. Antibody levels at sites located in Tanzania and

Equatorial Guinea where infants to adults were assessed,

correlated inversely with age (19) [Jongo, unpublished]. Net

OD 1.0 PfCSP antibody levels were higher in female study

participants compared with male participants in 10 of 12 trials

(Figure S1); in 5 trials (EGSPZV2 (Equatoria Guinea, 2016),

EGSPZV3 (Equatoria Guinea, 2018), MLSPZV2 (Mali 2) (Mali,

2014), WRAIR 2080 (US, 2014) and MAVACHE (Germany,

2016)) this difference was statistically significant. Net PfCSP

antibody levels were higher in males in three trials – BSPZV2

(Tanzania, 2015) and KSPZV1 (Kenya, 2016). All 3 trials

included children, and all participants in the Kenya trials were

less than 9 years of age. When the trial data were segregated

according to age ≥ or < 11 years old, all studies showed higher

net PfCSP antibody levels in females age ≥ 11years compared

with males, with the difference significant in 5 trials (Figure 1).

In the 4 clinical trials with infants and children, the net PfCSP

antibody levels in participants under age 11 years were not

significantly different, but levels were higher in males in 3 of the

4 trials (Figure 2).
Vaccine efficacy by sex

In the adult trials, vaccine efficacy was determined by CHMI

at predetermined time points after the final vaccine dose or by

natural exposure over a 24-week period after the final vaccine

dose (Table 1). A meta-analysis of vaccine efficacy by sex

(Figure 3) was done for 9 of the 10 trials in which protective

efficacy was assessed in adults. The EGSPZV2 (Equatorial

Guinea, 2016) had only 1 female who participated in CHMI

(and was protected) and was not included in the analysis. In one

trial, the MLSPZV2 (Mali 2) (Mali, 2016) trial, meta-analysis

demonstrated a trend towards greater vaccine efficacy in females

(RR 0.53, CI 0.28 - 1.01, p=0.057, chi-squared). However, the
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overall results of the meta-analysis demonstrated no difference

in protective efficacy by sex (RR 1.02, CI 0.21-5.05, p=0.96, chi-

squared). In the only pediatric trial to assess vaccine efficacy,

KSPZV1 (part 2) (Kenya, 2016), there was no difference in

efficacy by sex (RR 1.06, CI 0.76-1.39, p=0.76, chi-squared).
Frontiers in Immunology 05
Antibodies by sex and protection status

Net OD 1.0 PfCSP antibody levels by sex and protection

status within each of the 7 individual trials of adults in which

sample sizes were adequate to make comparisons (MLSPZV1
TABLE 1 Characteristics of the individual trials included in this analysis.

Study (Country, year trial started) Vaccinees
Male/Female

Dose Dosing Interval
(days)

Efficacy Assessment

US and German Adults age ‗18 years

VRC 312 (USA, 2011) (9) (NCT01441167) 5/9 1.35x105 PfSPZ Group 4a – 1, 29, 113,
141 and 189

Group 4b – 1, 29, 57,
85 and 134

Group 4c – 1, 29, 57
and 106

CHMI (NF54) 3 weeks post final
dose

WRAIR 2080 (USA, 2014)) (14)
(NCT02215707)

20/14 2.7x105 PfSPZ 1, 29, 57, 85 and 141 CHMI (NF54, 7G8) 3 weeks post
final dose4.5x105 PfSPZ 1, 57 and 113

Warfighter 2 (USA, 2016) (23) (NCT02601716) 36/21 4.5x105 PfSPZ 1, 3, 5, 7 and 113 CHMI 12 weeks post final dose

9.0x105 PfSPZ 1, 57 and 113

1.8x106 PfSPZ 1, 57 and 113 CHMI 24 weeks post final dose

2.7x106 PfSPZ (1st dose)
then 9.0x105 PfSPZ

1, 57 and 113

MAVACHE (Germany, 2016) (28)
(NCT02704533)

8/4 9.0x105 PfSPZ 1, 8 and 29 CHMI 3 weeks post final dose

African children and adults age ≥ 11 years

MLSPZV1 (Mali, 2014) (16)
(NCT01988636)

35/7 2.7x105 PfSPZ 1, 29, 57, 85 and 141 Naturally acquired infection 4 to 24
weeks post final dose

BSPZV2 (Tanzania, 2015) (19, 22) (NCT02613520) 13/12 9.0x105 or 1.8x106 PfSPZ 1, 57 and 113 CHMI (age ≥ 18 years) 3-11 weeks
post final dose

MLSPZV2 (Mali, 2016) (27)
(NCT02627456)

41/15 1.8x106 PfSPZ 1, 57 and 113 Naturally acquired infection 0 to 24
weeks post final dose

BFSPZV1 (Burkina Faso, 2016) (29)
(NCT02663700)

21/18 2.7x106 PfSPZ 1, 57 and 113 Naturally acquired infection 0 to 24
weeks post final dose

EGSPZV2 (Equatorial Guinea, 2016) [ (24), Jongo
et al., manuscript in preparation]
(NCT02859350)

23/4 2.7x106 PfSPZ 1, 57 and 113 CHMI (age ≥ 18 years) 14-33 weeks
post final dose

EGSPZV3 (Equatorial Guinea, 2018) [(26) Jongo
et al., AJTMH 2022]

64/13 9.0x105 PfSPZ Group 1 - 1, 3, 5, 7
and 113

Group 2 - 1, 3, 5 and
7

Group 3 - 1, 3, 5, 7
and 29

Group 4 - 1, 8 and 29

CHMI 3 weeks post final dose

African infants and children age 5 months – 11 years

BSPZV2 (Tanzania, 2015)
(19)
(NCT02613520)

14/20 4.5x105, 9.0x105 or 1.8x106

PfSPZ
1, 57 and 113 days N/A

KSPZV1 (part 1)
(Kenya, 2016) (42)
(NCT02687373)

20/25 1.35x105, 2.7x105 or 4.5x105 1 dose N/A

9.0x105 or 1.8x106 PfSPZ 1 and 57 days

KSPZV2 (part 2)
(Kenya, 2016) (20)
(NCT02687373)

109/88 4.5x105, 9.0x105 or 1.8x106

PfSPZ
1, 57 and 113 days Naturally acquired infection 2 to 52

weeks post final dose

EGSPZV2
(Equatorial Guinea, 2016) (Jongo et al., manuscript
in preparation)
(NCT02859350)

18/15 1.8x106 PfSPZ 1, 57 and 113 days N/A
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(Mali 1) (Mali, 2014), MLSPZV2 (Mali 2) (Mali, 2016), WRAIR

2080 (US, 2014), Warfighter 2 (US, 2016), BFSPZV1 (Burkina

Faso, 2016), MAVACHE (Germany, 2016), EGSPZV3

(Equatorial Guinea, 2018)) did not yield a consistent
Frontiers in Immunology 06
relationship among antibody level, protection and sex (Figure

S2). Among participants who were protected, antibody levels

were higher in females than in males in 6 of 7 trials and the

differences were statistically significant in 3 (WRAIR 2080 (US,
FIGURE 1

Net OD 1.0 PfCSP antibody level by sex in study participants age ≥ 11 years receiving PfSPZ Vaccine. Study name and time of study start are
shown in the left of the figure, with the number of participants of each sex and the median net OD 1.0 PfCSP antibody levels for each sex in the
right-hand columns. Box plots display the median, interquartile range and minimum/maximum for each trial with female participants
represented in red and male participants in blue. The difference in net PfCSP antibody responses between females and males was statistically
significant (p<0.05, Kruskal-Wallis test) in 5 of the trials (★).
FIGURE 2

Net OD 1.0 PfCSP antibody level by sex in study participants age < 11 years receiving PfSPZ Vaccine. Study name and time of study start are
shown in the left of the figure, with the number of participants of each sex and the median net PfCSP antibody levels for each sex in the right-
hand columns. Box plots display the median, interquartile range and minimum/maximum for each trial with female participants represented in
red and male participants in blue. There was no difference in the net PfCSP antibody responses between females and males in this age group.
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2014), MAVACHE (Germany, 2016), EGSPZV3 (Equatorial

Guinea, 2018)) of the 6 trials. In 3 trials (WRAIR 2080 (US,

2014), Warfighter 2(US, 2016), and BFSPZV1 (Burkina Faso,

2016)), antibody levels were significantly higher in protected vs

unprotected females. In 2 trials (MLSPZV1 (Mali 1) (Mali, 2014)

and MLSPZV2 (Mali 2) (Mali, 2016)), antibody levels were

significantly higher in protected vs unprotected males and in

one additional trial (EGSPZV3 (Equatorial Guinea, 2018)) the

difference was borderline significant (p=0.059).

Discussion

In 100% of ten clinical trials in Mali, Tanzania, Burkina Faso,

Equatorial Guinea, the US, and Germany females ≥11 years of

age (Figure 1) made higher levels of antibodies to PfCSP than did

males, and these differences were significant in five of the ten

studies. In contrast, in four studies in participants <11 years old

in Africa, there were no significant differences in levels of

antibodies to PfCSP between females and males, and in three

of the four studies, males had higher levels of antibodies

(Figure 2). These findings are consistent with prior reports on

sex differences in vaccine induced antibody responses. Adult

females, for example, have shown stronger antibody responses to

immunizations for influenza, hepatitis B, herpes virus, yellow

fever, rabies, and smallpox virus than males (7, 31, 33, 36, 43).

Sex differences in humoral immunity exist throughout life in

some cases, while in others, such as appears to be the case with

PfSPZ Vaccine, differences are found only after puberty,

implying that genes and hormones are both likely involved (31).

Although females have shown higher vaccine-induced

antibodies in many studies, it has not been consistently linked
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to increased vaccination effectiveness in females (44, 45). In our

case, the differences in antibody responses between males and

females were not mirrored by differences in efficacy; protection

against CHMI or against transmission in the field appeared not

to be influenced by sex (Figure 3). This suggests that other

immune mechanisms, such as antibody-dependent or antibody-

independent cell-mediated responses, are the major

determinants of protection. However, we have not

systematically assessed the functional capacity of antibodies in

the sera of females vs. males to inhibit PfSPZ invasion of

hepatocytes, which has been significantly associated with

protection in some clinical trials, even when anti-PfCSP

antibody level was not significantly associated (9). It is

generally believed that PfSPZ-based vaccination protects

against malaria infection through CD8 T cell responses that

home to the liver, although other mechanisms may be involved

as well (8). We surmise that antibody responses may correlate

with other responses more mechanistically involved in

protection, as suggested in prior publications on PfSPZ

Vaccine (8, 9) and thereby act as a biomarker. This is

consistent with the finding that, depending on the trial,

antibody responses in non-protected individuals in one trial

may be higher than antibody responses in protected individuals

in another trial. For example, antibody responses in non-

protected individuals in EGSPZV3 (Equatorial Guinea, 2018)

(Figure S2G) were higher in both males and females than

responses in protected individuals in MLSPZV1 (Mali 1)

(Mali, 2014) (Figure S2A), MLSPZV2 (Mali 2) (Mali, 2016)

(Figure S2B) or BFSPZV1 (Burkina Faso, 2016) (Figure S2E). If

antibody levels were the primary determinants of protection, this

would not be the case.
FIGURE 3

Protection status by sex in adult vaccinees (age ≥ 18 years) in trials of PfSPZ Vaccine, random-effects model. Although one trial (MLSPZV2)
showed a trend towards a significant difference in vaccine efficacy favoring females, the conclusion of the meta-analysis was no difference in
the efficacy of PfSPZ Vaccine in males compared with females (weighting – modified variance; I2-11.7% (-66%, 53%); p=0.97, chi-squared).
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A consistent finding from our studies is that individuals

with prior malaria exposure, such as African adults, have

significantly lower antibody responses to PfCSP than malaria

naïve adults (Figure 1, Figure S1) (14, 16, 17, 19, 23, 27). We

think this is primarily due to immune dysregulation due to

lifelong exposure to malaria parasites, but elimination of the

PfSPZ for immunization by naturally acquired adaptive

immune responses and immunosuppression due to

concomitant helminth and other infections may also

contribute (46). Interestingly, in trials including African

infants and children there is a negative correlation between

age and antibodies to PfCSP with the highest levels in infants

and young children (19). Antibody levels in these children

approach the responses seen with malaria-naive adults (19).

Regardless, in participants ≥ 11 years of age, antibody levels

were higher in females than their male counterparts despite

the degree of prior malaria exposure (Figure 1).

An effect of dose and dosing interval was not specifically

examined in this analysis. Antibody levels appear to increase

with increasing total vaccine dose in groups with similar

degrees of prior exposure to Pf in both males and females

(Figure 1). Regardless of the dose and dosing interval used, all

trials evaluating children and adults ≥ 11 years of age,

antibody levels were higher in females compared with

males (Figure 1).

In this study, the interplay between sex, antibody levels and

protection was not straightforward. In three of seven trials with

sufficient data for evaluation (one in Burkina Faso, two in the

US), protected females showed statistically significantly higher

antibody responses than non-protected females and males did

not (Figures S2C–E) while in two different trials (both in Mali),

protected males showed statistically significantly higher

antibody responses than non-protected males and females

did not (Figures S2A, B). In two trials (Germany and

Equatorial Guinea), there were no significant differences

between protected and unprotected males or females

(Figures S2F, G). At this point, we are not able to explain

these differences.

The finding that sex-related differences in protection

were not revealed in this study has important practical

implications. For example, there is no need to consider

varying immunization regimens between males and females.

Nevertheless, it will be important to continue monitoring for

sex-related differences as the clinical development program for

PfSPZ-based vaccines moves forward.
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