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The coronavirus disease 2019 (COVID-19) pandemic caused by the infection of

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has cast a

notorious damage to the public health and global economy. The Stimulator of

Interferon Genes (STING) is a crucial element of the host antiviral pathway and

plays a pivotal but complex role in the infection and development of COVID-19.

Herein, we discussed the antagonistic mechanism of viral proteins to the STING

pathway as well as its activation induced by host cells. Specifically, we

highlighted that the persistent activation of STING by SARS-CoV-2 led to

abnormal inflammation, and STING inhibitors could reduce the excessive

inflammation. In addition, we also emphasized that STING agonists

possessed antiviral potency against diverse coronavirus and showed adjuvant

efficacy in SARS-CoV-2 vaccines by inducing IFN responses.
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Introduction

Coronavirus disease 2019 (COVID-19) has rapidly spread across the world since the

end of 2019, resulting in over 500 million confirmed infected cases and over 6 million

deaths so far (https://www.who.int/). The corresponding virus of COVID-19 was

identified as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus,

which contains a positive single-stranded RNA genome (1, 2). COVID-19 has caused

disastrous damage to the public health and the economic development of the world, and a

few treatment options and vaccines have been developed to reduce it (3, 4). Remdesivir, a

broad-spectrum antiviral drug, is the first drug approved by FDA for COVID-19

t r e a tmen t ( 5 ) . Ano the r sma l l mo l e cu l e an t i v i r a l a g en t , P ax l ov i d

(nirmatrelvir/ritonavir), was approved for the treatment of adult patients with mild-to-

moderate COVID-19 (6). Meanwhile, oral or intravenous administration of

dexamethasone was reported to reduce the 28-day mortality in patients hospitalized

with COVID-19 (7). Additionally, various therapeutic monoclonal antibodies have been

applied to treat COVID-19, such as Regkirona (regdanvimab) and REGEN-COV
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(casirivimab and imdevimab) (8–10). Combination of

interleukin-6 receptor blocker (tocilizumab or sarilumab) and

JAK inhibitor baricitinib is strong recommended for patients

with severe or critical COVID-19 (11). Moreover, a number of

vaccines has been developed to prevent the infection of SARS-

CoV-2, such as BNT162b2 and mRNA-1273, demonstrating

appreciable efficacy in phase III clinical trials (12, 13).

Nevertheless, available drugs and vaccines are insufficient to

combat the continuous emergence of viral variants, and the

excessive inflammation induced by existent treatments should be

concerned. Therefore, it is urgent to develop novel prophylactic

and therapeutical measures to prevent SARS-CoV-2 from

continuous infection, mutation, and transmission.

SARS-CoV-2 belongs to the b-coronavirus genus, which

includes SARS-CoV, Middle East respiratory syndrome

(MERS)-CoV and bat coronavirus HKU4 and so on (14–17).

The virus genome consists of 14 open reading frames (ORFs)

that encode 16 nonstructural proteins (nsp), structural proteins

(spike protein S, membrane protein M, envelope protein E, and

nucleocapsid protein N) and 9 accessory proteins (ORF3a,

ORF3b, ORF6, ORF7a, ORF7b, ORF8, ORF9b, ORF9c and

ORF10) (Figure 1A) (1, 18). The life cycle of SARS-CoV-2 is

displayed in Figure 1B, and the interaction between the S protein

of SARS-CoV-2 and the ACE2 on host cells is essential for the

infection, thus ACE2 and S protein are important targets for

treatment of COVID-19 (18, 19).

The innate immune system is the first line of defense against

evading pathogens (20). It recognizes pathogen/damage

associated molecular patterns (PAMPs/DAMPs) by pattern

recognition receptors (PPRs), including Toll-like receptors

(TLRs), Nod-like receptors (NLRs), RIG-I-like receptors

(RLRs) and the DNA sensor cyclic guanosine monophosphate

(GMP)-adenosine monophosphate (AMP) synthase (cGAS)-

stimulator of interferon genes (STING) signaling pathway.

Among them, the cGAS-STING pathway plays an important

role in innate immune response to pathogen infection.

Mechanistically, the double stranded DNA (dsDNA) of

pathogens is accumulated in cytoplasm and activates cGAS to

generate 2′3′-cyclic GMP-AMP (2′3′-cGAMP), which binds to

and activates STING (21–24). The bound STING is translocated

from endoplasmic reticulum (ER) to Golgi, where it recruits the

kinase TANK-binding kinase 1 (TBK1) and stimulate IkB kinase

(IKK), causing phosphorylation of interferon regulatory factor 3

(IRF3) and nuclear factor-kB (NF-kB) (25, 26). Subsequently,
the transcription of type I interferons (IFNs) and other

inflammatory genes was triggered, which mediate immune

response to eliminate pathogens (27–29). In addition to

dsDNA from pathogens, endogenous DNA including

chromosomal DNA and mitochondrial DNA can also trigger

the cGAS-STING signaling pathway. Normally, chromatin is

strictly compartmentalized in the nucleus to prevent cGAS-

STING activation, while chromosome mis-segregation during
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cell mitosis leads to the generation of micronuclei, induing the

aberrant recognition by cGAS (30, 31). Similarly, abnormal

packaging of mitochondrial DNA (mtDNA) facilitates the

escape of mtDNA into cytosol, which induces the activation of

cGAS-STING (32).

As an RNA virus, SARS-CoV-2 is primarily recognized by

RLRs in the host cells (33). Interestingly, increasing evidences

demonstrated that the cGAS-STING pathway, a key DNA

sensor, restricted the infection of RNA virus, and the proteins

of RNA virus could antagonize the cGAS-STING signalling (34).

For example, Sting-/- mice were more sensitive to vesicular

stomatitis virus (VSV), a negative-stranded virus, and the

production of type I IFNs was decreased in Sting-/- mice (35).

Besides, the papain-like protease (PLpro) of SARS-CoV was

reported to disrupt the STING-tumor necrosis factor receptor-

associated factor 3 (TRAF3)-TBK1 complex by directly binding

to it, and the dimerization and ubiquitination of STING were

blocked by the PLpro of SARS-CoV and human coronavirus

(HCoV) (36, 37). Hence, as an RNA virus, how SARS-CoV-2

interacts with STING pathway is worthy of further exploration.
SARS-CoV-2 regulates
STING signaling

SARS-CoV-2 infection has a double-edged effect on the

STING signaling, dependent on the stage of disease procession

and the infected tissues. Initially, Rui and colleagues

hypothesized that SARS-CoV-2 might antagonize the innate

immune pathway due to the antiviral function of STING (38).

They investigated the effect of SARS-CoV-2 proteins on STING

and RLR-mediated immune response, and found that both

ORF3a and 3CL of the virus could inhibit STING and the

downstream NF-kB signaling, but not IRF3 signaling, and this

process was independent of cGAS. Further, it was found that

ORF3a directly interacted with both the N-terminal and the C-

terminal fragment of STING and suppressed the nuclear

accumulation of p65, which then inhibited STING-mediated

NF-kB signaling. While viral 3CL, through its enzymatic

activity, inhibited the NF-kB pathway by suppressing the K63-

ubiquitination of STING. In addition, the polymorphisms of

STING from different species, including human, mouse and

chicken could be inhibited by 3CL and ORF3a. However, bat

STING, the natural host of SARS-CoV-2, was found defective to

produce type-I interferon (IFN) and thus showed compromised

anti-viral potency (39, 40). These results suggest that STING

might be involved in the transmission of the virus. This is the

first study supporting that SARS-CoV-2 can suppress STING

signaling to escape from innate immune response.

Similarly, Han and co-workers reported that the ORF9b of

SARS-CoV-2 suppressed the induction of type I and III
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A
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FIGURE 1

The structure and life cycle of SARS-CoV-2 virus. (A) The structure and genome of SARS-CoV-2 virus. The SARS-CoV-2 virus is composed of
four structural proteins (spike protein S, membrane protein M, envelope protein E, and nucleocapsid protein N) and a single-stranded RNA
genome. The virus genome contains 14 ORFs encoding 16 nonstructural proteins, 4 structural proteins and 9 accessory proteins respectively.
(B) Scheme of the SARS-CoV-2 replication cycle. At the initial step of infection of this virus, the S1 subunit of the S protein interacts with the
receptor angiotensin-converting enzyme 2 (ACE2) of host cells, and the S2 subunit is cleaved by TMPRSS2, a serine protease on the host cell
surface, to promote uptake and fusion. Subsequently, the viral RNA is released into the cytoplasm of the host cell, and the ORF1a and ORF1b at
the 5’-end are translated to polyproteins (pp1a and pp1ab), which is then cleaved by viral proteases 3CLpro and PLpro to 16 nonstructural
proteins (nsps). These nsps form the replication and transcription complex to synthesize progeny viral genomic RNA. In parallel, ORFs at 3’-end
are translated to structural proteins, and the S, M and E proteins are translocated to the ER-to-Golgi compartment, where they are assembled
with N-encapsulated genomic RNA and then secreted out of cell through exocytosis.
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interferons through multiple innate immune signaling,

including RLR, TLR and STING (41). The antiviral activity of

the host cell against SARS-CoV-2 depends on the production of

type I and III IFNs, which is impaired in the serum of COVID-

19 patients. However, the ORF9b of SARS-CoV-1 has been

reported to inhibit IFNs response (2, 42–44). Based on these

findings, they explored the effect of ORF9b on IFNs response

and found that ORF9b of SARS-CoV-2 antagonized type I and

III IFN responses induced by SeV and suppressed the activation

of RLR, TLR and the cGAS-STING pathway. Mechanistic

studies indicated that ORF9b directly interacted with RIG-I,

MDA-5, MAVS, TBK1, TRIF and STING, and suppressed the

phosphorylation of TBK1 and IRF3 along with IRF3 nuclear

translocation. Furthermore, overexpression of viral ORF9b

facilitated VSV infection, suggesting that ORF9b is closely

implicated with the pathogenesis of COVID-19.

Recently, the ORF10 of SARS-CoV-2 has also been found to

antagonize STING-dependent interferon response. Han et al.

screened 29 SARS-CoV-2 viral proteins, and found ORF10 could

suppress the activation of the cGAS-STING pathway by

interacting with STING directly. As a result, the STING-TBK1

interaction was impeded, and the translocation of STING was

blocked, leading the immune evasion of SARS-CoV-2 (45).

Taken together, various components of SARS-CoV-2 could

inhibit the STING pathway and subsequent interferon response,

leading to virus escape from innate immunity (Table 1).

Intriguingly, contrary to the aforementioned findings that

SARS-CoV-2 antagonizes the STING signaling, many other

studies suggest that infection with SARS-CoV-2 could trigger

STING signaling. Transcriptome data showed that at the time of

diagnosis, the content of STING protein was increased in the

blood of patients with mild or moderate symptoms, whereas

there is no significant change in the severe patients (46).

Furthermore, STING expression was found to be elevated only

in moderate patients at a few days after diagnosis (46). These

data indicate that activation of STING might be associated with

the severity and stage of COVID-19.

More detailed mechanistic studies indicate that cell fusion

and formation of syncytia and micronuclei play crucial roles in

SARS-CoV-2-induced cGAS-STING signaling (47, 48). Previous

study has demonstrated that cell fusion mediated by the

interaction of S protein with host ACE2 results in the

formation of syncytia, presenting as a single cell containing
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several nuclei (49). Further, Ren and co-workers explored

molecular events after syncytium formation in the well-

established syncytia model. The results showed that both S

protein and SARS-CoV-2 induced syncytium formation in

HeLa-ACE2 cells and then led to production of micronuclei.

Eventually, DNA damage and genome instability of the

micronuclei promoted the activation of the cGAS-STING

pathway as well as the downstream IFN response (50).

Furthermore, more studies were conducted to elucidate the

mechanism of innate immune activation caused by SARS-CoV-2

infection. In addition to the activation of cGAS-STING induced

by DNA from micronuclei, Zhou and co-workers further

demonstrated that syncytia formation caused cytoplasmic

chromatin by disrupting the actin cytoskeleton and nuclear

lamin A/C, which are important factors for maintaining

nuclear morphology. Meanwhile, they found that STING

agonists (diABZI and SR-717) exhibited antiviral activity

against SARS-CoV-2 (51). Meanwhile, cleavage of S protein by

host proteases was found essential for cell fusion and IFN

response (52).

The generation of syncytia provides a possible mechanism

for delayed IFN response in COVID-19 patients, indicating that

the production of type I IFN is inhibited at early stage of SARS-

CoV-2 infection, but then substantially activated at the late stage

(44, 53).
The aberrant inflammatory response
caused by STING activation

Although STING activation presents antiviral potential, the

sustained STING signaling results in excessive amounts of type I

IFNs. Indeed, patients with severe COVID-19 exhibited robust

type I interferon response, which was associated with acute

respiratory distress syndrome, lung injury and poor clinical

outcome (1, 54–57). Therefore, over-activation of STING

pathway may lead to hyperinflammation and related

syndromes in COVID-19 patients.

By profiling the transcriptome and secreted cytokines of

SARS-CoV-2-infected lung epithelial cells, Neufeldt and co-

workers found that the NF-kB and pro-inflammatory pathway

was up-regulated in infected lung epithelial cells, while the
TABLE 1 The effect of SARS-CoV-2 viral components on the STING signaling pathway.

Viral components Interaction with STING Mechanism of action Ref

ORF3a Directly bind with STING Inhibit the nuclear accumulation of p65 to inhibit the NF-kB pathway (38)

3CL Inhibit the K63-ubiquitination of STING Inhibit the NF-kB pathway and the recruitment of TBK1 and IKKb (38)

ORF9b Directly bind with STING Inhibit the phosphorylation of TBK1 and IRF3 as well as the nuclear translocation of IRF3 (41)

ORF10 Directly bind with STING Impair the STING-TBK1 interaction and STING translocation (45)
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antiviral IFN response was not enhanced (58). These

observations were consistent with the clinical features of severe

patients (2, 59). Subsequent studies further proved that the

hyper-inflammatory response is attributed to the activation of

NF-kB but not IRF3, and is mediated by cGAS-STING pathway

rather the RLR and TLR pathways. This imbalanced immune

response recruited macrophage and neutrophils to cause cell

death and lung pathology (58, 60). Finally, VS-X4 and H151, the

established STING inhibitors (61), suppressed the upregulation

of inflammatory cytokines and alleviated the abnormal immune

response, which may protect COVID-19 patients from further

suffering of this disease (62, 63).

Different from other studies on lung epithelial cells or tumor

cell models, Domizio and colleagues focus on skin

manifestations in SARS-CoV-2 infection (64). They found that

cGAS-STING signaling and subsequent type I IFN production

were initiated in endothelial cells and perivascular macrophages

around injured vessels. As a result, the production of type I IFN

in endothelial cells promoted cell death and tissue damage.

Accordingly, administration of the STING inhibitor H151

reduced type I IFN response and related lung pathology in

mice infected with SARS-CoV-2 (19).
STING agonists inhibit SARS-CoV-2

Since viral proteins suppress the STING pathway in the early

stage of infection, while the micronucleus and DNA damage

caused by cell fusion in the host activate the STING signaling to

suppress viral infection, treatment with STING agonists in the

ear ly stage of COVID-19 provides be a potentia l

antiviral strategy.

Recently, Li and co-workers found that SASR-CoV-2

infection induced delay of IFN response to evade innate

immunity, which could be controlled by type I IFN treatment

(65). Subsequently, they screened 75 agonists targeting diverse

PRR pathway and identified cyclic dinucleotides (CDNs), the

endogenous stimulator of STING (66), showing antiviral activity

against SARS-CoV-2. One of the potent STING agonists diABZI

was then tested in subsequent studies due to its significant

potency and higher bioavailability. As expected, diABZI

elicited potent and transient innate signaling and prevented

SARS-CoV-2 infection in primary human respiratory epithelial

cells as well as the lung of mice. A single intranasal delivery of

diZBAI protected mice from lethality induced by SARS-CoV-2

and its South African variant B.1.351, thus supporting the

therapeutic potential of diABZI against diverse trains of SARS-

CoV-2 (65).

Similarly, the diABZI analogue, diABZI-4, was proved as

well to prevent SARS-CoV-2 replication in ACE2-A549 cells and

in 3D-cultured embryonic stem cell–derived induced alveolar
Frontiers in Immunology 05
type II (iAT2) cells (67). Intranasal administration of diABZI-4

before or after virus infection reduced weight loss and death in

K18-ACE2 mice without pathological damage in lung tissues.

Furthermore, diABZI induced transient pro-inflammatory

cytokines production and promoted the activation of myeloid

cells, T cells and NK cells, without pathological damage and

excessive inflammation in lung tissue (67).

Taken together, STING agonists could effectively activate the

antiviral response and prevent SARS-CoV-2 infection in vivo

and in vitro. The activation is transient, but can prevent lung

tissue damage from abnormal inflammation. Therefore, STING

agonists may provide alternative strategy for the treatment of

COVID-19 in the early stage (Table 2).
STING agonists as adjuvant of SARS-
CoV-2 vaccine

Vaccines have made great contribution to COVID-19

prevention (70). Of which subunit vaccines are the most used

due to their excellent efficacy and safety. The spike protein of

SARS-Cov-2 and its receptor binding domain (RBD) have been

considered as the two main antigens in COVID-19 vaccine,

because their corresponding epitope domains could induce the

production of neutralizing antibodies (71, 72). However, the

poor immunogenicity of the highly purified S protein and RBD

limits the development of effective SARS-CoV-2 vaccine.

Therefore, additional adjuvants are necessary to elicit robust

and durable immune response. Aluminum salts (Alum) are the

most commonly used adjuvant, however, poor antibody

immune response and predominant Th2 response restrict their

use for various antigens (73, 74). With the development of innate

immunity research, PAMPs/DAMPs has attracted attention as

potential vaccine adjuvants, and STING agonists has been

employed as adjuvants in multiple pre-clinical vaccines (75).

Mechanistically, activation of STING could maturate DCs and

prime T cells, leading to subsequent humoral immunity to

control virus (76, 77). Neutralizing antibodies produced by

humoral immunity contributes to the virus clearance potency

of vaccines, and STING agonists were reported to increase

antibody titers and trigger potent humoral immune response

(78).Additionally, STING agonists induced the formation of

germinal center (GC), where B cells were primed and

differenced into memory B cells to achieve long-lasting

profection towards virus (79, 80). Therefore, STING agonists

are promising adjuvant for constructing effective SARS-CoV-

2 vaccines.

cGAMP, the natural ligand of STING, has been widely

investigated as adjuvant in vaccine development. cGAMP and

S protein-loaded HIV-derived virus-like particles (VLPs) was

reported to induce more potential antibody response compared
frontiersin.org
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with S protein-loaded VLPs. The virus neutralizing capacity of

resulting antibodies was improved as well (81). An intranasal

subunit vaccine accompanied by liposomal cGAMP and

lyophilized S protein was reported to trigger robust

neutralizing antibodies and comprehensive immune response

in lung, spleen and nasal compartments (82). Additionally, a

ternary adjuvant system consisting of Alum, cGAMP and TLR3

agonist poly(I:C) was used to construct a S1 protein vaccine, and

the ternary adjuvant showed potent adjuvant effect on inducing

humoral and cellular immunity without apparent biological

toxicity in immunized mice (83).

In addition to cGAMP, a few novel STING agonists were

also used as adjuvants in SARS-CoV-2 vaccine. For instance, Wu

and co-workers synthesized the analogue CDGSF by modifying

cyclic di-GMP (CDG) with one phosphorothioate and one

fluorine moieties (84). The fluorine modification enhanced the

liposolubility and stability of CDG (85), and increased the

expression of CD86 in macrophage and bone marrow-derived

dendritic cells (BMDC). As adjuvant, CDGSF significantly

improved the S protein-specific IFN-g secretion and IgG titers,

more potent than classical adjuvant Alum, thus highlighting the

a d j u v a n t p o t e n t i a l o f CDGSF i n SARS -CoV - 2

vaccine preparation.

CF501 is a new STING agonist and was found to show

potent adjuvant efficacy in pan-sarbecovirus vaccine (86).

Compared with Alum- or cGAMP-adjuvanted RBD-Fc-based
Frontiers in Immunology 06
vaccines, intramuscular injection of CF501-adjuvanted RBD-Fc

vaccine (CF501/RBD-Fc) triggered stronger humoral and

cellular immune responses against various variants of SARS-

CoV-2, SARS-CoV and SARSs-CoVs from bats in mice, rabbit

and rhesus macaques models. Further, CF501/RBD-Fc induced

long-term protective immunity against SARS-CoV-2 challenge

in both macaques and hACE-transgenic mice. Moreover, CF501

transiently triggered innate immunity without obvious lesion in

the tissue of CF501/RBD-Fc-immunized mice, suggesting the

good safety profile of CF501 as adjuvant (86).
Discussion

It is well established that the STING pathway elucidates a

double-edged effect on COVID-19. At the early stage of

infection, STING signaling is suppressed by vital proteins

containing 3CL, ORF3a and ORF9b, resulting in the impaired

innate immune response (38, 41). In contrast, the fusion of S

protein of the virus with the ACE2 receptor in host cells leads to

syncytia formation, resulting in formation of micronucleus and

DNA damage, and consequently triggering the STING signaling

and antiviral response (50, 51). These may account for the

observed activation delay of type I IFN response in COVID-19

patients (57). Therefore, treatment with STING agonists could

effectively activate innate immune response to inhibit virus
TABLE 2 The effect of STING inhibitors and agonists on SARS-CoV-2.

Catalogue Compound Model Effect Mechanism of action Ref

Inhibitor VS-X4 Calu-3 cells and
A549-ACE2 cells

Limit SARS-CoV-2 mediated inflammation Decrease TNF, IL-6 and IP-10 upregulation caused
by infection; decrease p65 nuclear accumulation

(58)

H-151 Calu-3 cells and
A549-ACE2 cells

Limit SARS-CoV-2 mediated inflammation Decrease TNF upregulation caused by infection;
decrease p65 nuclear accumulation

(58)

H-151 Lung-on-chip (LoC) model;
K18-hACE2 transgenic mice

Reduce inflammatory cell infiltration;
attenuate lung injury, weight loss and

mouse death after infection

Reduce ISGs expression and cytopathic effect
induced by infection in endothelial cells

(64)

Agonist diABZI MucilAir™ reconstituted

from human bronchial
biopsies primary cells

Inhibit SARS-CoV-2 infection; prevent
epithelial damage

/ (68)

diABZI A549-ACE2 cells; human
lung tissue slices

Inhibit SARS-CoV-2 infection / (69)

diABZI Primary NHBE cells; K18-
hACE2 transgenic mice

Decrease viral replication, weight loss and
lung inflammation

Transiently stimulate IFN signaling and mildly
induce TNFa; activate JAK-STAT signaling;

decrease immune cells in lung

(65)

diABZI Calu-3 cells and
HeLa-ACE2 cells

Inhibit SARS-CoV-2 replication Increase the phosphorylation of IRF3 (51)

diABZI-4 A549-ACE2 cells; Embryonic
stem cell–derived induced

alveolar

Inhibit SARS-CoV-2 gene expression and
replication; prevent SARS-CoV-2 infection;

alleviate wight loss

Induce oligomerization of STING and ISGs
expression; activation of myeloid cells, gdT cells,

and NK cells

(67)
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infection and replication. However, excessive and sustained

activation of STING signaling leads to accumulation of

inflammatory factors, resulting in abnormal lung inflammation

and poor clinical outcomes (Figure 2) (52, 58, 64). Hence, trials

of STING agonists and inhibitors in the treatment of COVID-19

should be cautiously evaluated in context. Timing and duration

are critical factors, at the early state of infection, STING agonists
Frontiers in Immunology 07
may be used to recuse the deficiency of IFNs production.

Instead, the inhibitors of STING could be applied to suppress

the excessive inflammatory response and to alleviate the tissue

injury caused by the disease. Since type I IFN response is the

bridge between STING pathway and COVID-19 progression, we

speculate that the content of interferons in the patients might be

a bio-marker for the use of STING regulators in clinical.
A

B

FIGURE 2

The relationship of SARS-CoV-2 infection and STING pathway. (A) At the early stage of SARS-CoV-2 infection, the viral proteins inhibited the
activation of STING pathway by direct interaction with STING (left). During the late stage of infection, the host cells fused with virus through the
interaction of ACE2 and S protein to form syncytia, which contains a large number of micronuclei, mediating DNA damage and thus activating
STING signaling. Durable and excessive STING activation lead to abnormal inflammatory response, resulting in tissue damage and poor
prognosis (right). (B) STING agonists could be used to activate STING signaling at the early stage of infection to elicit anti-viral response (left).
STING inhibitors could attenuate tissue damage by suppressing excessive STING activation and aberrant inflammatory response (right).
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