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Although B cells and T cells are integral players of the adaptive immune system

and act in co-dependent ways to orchestrate immune responses, existing

methods to study the immune repertoire have largely focused on separate

analyses of B cell receptor (BCR) and T cell receptor (TCR) repertoires. Based

on our hypothesis that the shared history of immune exposures and the shared

cellular machinery for recombination result in similarities between BCR and

TCR repertoires in an individual, we examine any commonalities and

interrelationships between BCR and TCR repertoires. We find that the BCR

and TCR repertoires have covarying clonal architecture and diversity, and that

the pattern of correlations appears to be altered in immune-mediated diseases.

Furthermore, hierarchical clustering of public B and T cell clonotypes in both

health and disease based on correlation of clonal proportion revealed distinct

clusters of B and T cell clonotypes that exhibit increased sequence similarity,

share motifs, and have distinct amino acid characteristics. Our findings point to

common principles governing memory formation, recombination, and clonal

expansion to antigens in B and T cells within an individual. A significant

proportion of public BCR and TCR repertoire can be clustered into

nonoverlapping and correlated clusters, suggesting a novel way of grouping

B and T cell clonotypes.
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1 Introduction

The increasing availability of B cell receptor (BCR) and T cell

receptor (TCR) repertoires through recent developments in

high-throughput sequencing (1–4) has highlighted a pressing

need to be able to interpret the accumulated data to derive

biologically and clinically meaningful conclusions. Significant

progress has been made in methods of analyzing aspects of the

immune repertoire, providing measures of clonality, diversity,

VDJ gene usage, sequence motifs, and network characteristics

(5). These methods, in turn, have led to discoveries of repertoire

characteristics in normal aging (6, 7), and in diseases such as

cancer (8, 9), autoimmune disorders (9, 10), and infections (11,

12). Existing methods have focused on separate analyses of BCR

and TCR repertoires, however, and no study to date has

attempted to discover existing parallels within an individual’s

BCR and TCR repertoires.

BCR and TCR repertoires share cellular machinery such as

recombinase to produce a diverse set of receptors and evolve

through common formative events such as infections and

exposure to diverse antigens. Both B and T cells act in concert

to orchestrate effective adaptive immune responses and drive out

pathogens. Maturation of B cells to produce more antigen-

specific antibodies occurs in a T cell-dependent manner, and T

cells in turn can expand clonally in response to antigens

presented by antigen presenting cells including B cells. In

addition, both B and T cells keep a record of immune

exposures in their memory cell subset. We hypothesized that

the shared history of antigen exposures and shared cellular tools

for recombination of B and T cells, as well as the interdependent

manner through which B and T cells operate, result in

commonalities in B and T cell repertoires in an individual. We

further tried to find out whether there exist specific B or T cell

clonotypes whose presence in BCR and TCR repertoires are

interdependent and what the defining characteristics of such

clonotypes are.

With this hypothesis and question in mind, we jointly

analyzed the clonal distribution, diversity, clonal overlap, and

network characteristics of BCR and TCR repertoires in healthy

individuals and individuals with disease, including COVID-19

and autoimmune hepatitis (AIH). We further extracted clusters

of highly correlated BCR and TCRs to examine their

distinctive features.
2 Materials and methods

2.1 Immune repertoire sequencing data

We searched for receptor sequence datasets with both BCR

and TCR sequences available for each subject in public datasets

provided by iReceptor (13) and European Nucleotide Archive
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(14). We found five studies with B and T cell repertoire

sequencing data from peripheral blood of both healthy and

individuals with disease (Table 1).

Two studies with 94 healthy controls and 91 patients (AIH:

N=54, COVID-19: N=37) (15, 16) amplified rearranged

immunoglobulin heavy chain (IGH) and T-cell receptor beta

chain (TRB) regions of genomic DNA, sequenced these using

Illumina MiSeq, and processed the reads using the MiXCR

framework (17), resulting in data for an average of 2,203 unique

B cell clonotypes and 7,250 unique T cell clonotypes for each

individual. One study with 10 healthy controls (18) used RNA

from FACS-sorted immune cells to sequence IGH and TRB

regions. Sequences were acquired using Illumina MiSeq and

then processed using VDJPipe and pRESTO toolkit. This study

provided sequence information for 20,852 T and 24,791 B cell

clonotypes per subject on average. The next study with 10 healthy

controls and 5 COVID-19 patients (19) acquired sequence reads

usingChromiumSingle-Cell V(D)J Enrichment kit and processed

themusing theCell Ranger vdj pipeline. Individuals in this dataset

had 983 T cell clonotypes and 3,250 B cell clonotypes on average.

We conducted replication and validation analyses on a

separate study with 43 healthy controls and 32 COVID-19

patients (20). In this study, genomic DNA from peripheral

blood mononuclear cells were isolated to generate immune

receptor libraries using the immunoPETE protocol from

Roche Sequencing Solutions, providing sequence information

for an average of 22,834 T cell clonotypes and 9,141 B cell

clonotypes per individual.

Individual demographic information was available only for

COVID-19 patients in two studies (N=47) and the replication

study (healthy N=43, COVID-19 N=32). For the main study, we

restricted our analyses to productive full-length CDR3 amino

acid sequences of TRB and IGH.
2.2 Clonality and diversity metrics

Metrics of clonality and diversity between pairs of

individuals were gathered for each repertoire using the R

package immunarch (21) (v0.5.4). Clonality indices included

clonal volume and clonal proportions occupied by the most

frequent and rarest clones in terms of proportion and in rank.

More specifically, clonal volume refers to the total number of

unique clonotypes, indicating the total number of unique CDR3

amino acid sequences found in each repertoire. The next

clonality measures were selected to capture the frequency

distribution of clonotypes within each repertoire, spanning the

most abundant clonotypes and the rarest clonotypes. Top clone

proportions measure the cumulative fraction of the repertoire

occupied by the 100 clonotypes with the highest clonotype

counts. Hyperexpanded clone proportions refer to the fraction

of the repertoire that is occupied by clonotypes that have counts
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that exceed 1% of the total number of all clones within each

individual repertoire. Similarly, small clone proportions are

sums of the proportions of the clonotypes that each take up

less than 0.001% of the repertoire space. Finally, rare clone

proportions are proportions of the repertoire occupied by clones

with clonal counts fewer than three.

We chose several diversity metrics to cover several aspects of

diversity. These included metrics of species richness that rely more

heavily on clonal volume, including the Chao1 coefficient, as well as

metrics that incorporate species evenness, including Hill number

with q=1 and q=2, Gini-Simpson index, and Gini coefficient. The

Chao1 coefficient estimates true diversity by considering the

number of singletons and doubletons in the repertoire. Hill

number with q=1 is equal to the exponential of Shannon’s

entropy index, while Hill number with q=2 is the inverse of

Simpson’s concentration index. Gini-Simpson index reflects the

probability of interspecific encounter and the Gini coefficient

measures how inequal species frequencies are along a frequency

distribution. We have provided a more detailed description of how

each metric was calculated in the Supplementary Note.
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All metrics were calculated for each BCR and TCR repertoire

individually, and correlation between an individual’s BCR and

TCR metrics measured separately for the healthy and disease-

associated (DA) groups of each dataset. The overall correlation

coefficients for all healthy datasets and all DA datasets were

calculated by meta-analyzing Spearman’s rank correlation

coefficients with the metacor function from the meta package

(v5.5-0) in R (v4.0.12). Significance was evaluated with false

discovery rate (FDR)-adjusted P-values. Since clonality and

diversity metrics can be profoundly affected by sequencing

depth and quality, we conducted additional analyses to assess

for the influence of these factors by analyzing correlations using

multiple downsampling to 6 different fixed repertoire sizes (200,

500, 1000, 2000, 5000, 8000). For two studies with 94 healthy

controls and 91 patients (15, 16), fastq files of sequenced reads

were available, from which we extracted quality control metrics.

The proportion of high-quality reads (quality score > Q30) was

used as a covariate in a multivariate regression model to

separately test whether sequencing quality affected correlations

between summary statistics.
TABLE 1 Demographic and sequencing information on the studies with immune repertoire data from both B and T cells used for analysis.

Author
(Year)

Sequencing method, Data processing N Median age
(range)

Gender (%
female)

B/T average clonotype
count (SD)

Healthy
(N =
152)

Rubelt et al.
(2016)

Immune repertoire sequencing of FACS-sorted B/
T cells (RNA),
VDJPipe, pRESTO, IMGT/HighV-QUEST

10 NA (22-27) NA 20852 (13164)
24791 (8908)

Schultheiss
et al.
(2021)

Bulk immune repertoire sequencing (gDNA),
Mixcr

57 50 (23-86) 60 1610 (1300)
7314 (3667)

Schultheiss
et al.
(2020)

Bulk immune repertoire sequencing (gDNA)
Mixcr

37 NA NA 2311 (1298)
5818 (3058)

Wen et al.
(2020)

10x chromium single-cell V(D)J enrichment
(RNA)
Cell Ranger vdj pipeline

5 55 (30-80) 60 951 (352)
5449 (1745)

Joseph et al.
(2022)

immunoPETE protocol from Roche Sequencing
(gDNA)
In-house pipeline

43 43 (25-71) 44 8394 (5643)
23412 (12193)

DA
(N =
133)

Schultheiss
et al.
(2022)

Bulk immune repertoire sequencing (gDNA),
Mixcr

54
(AIH)

54 (20-79) 80 1649 (1309)
6863 (5298)

Schultheiss
et al.
(2021)

Bulk immune repertoire sequencing (gDNA),
Mixcr

37
(COVID)

NA (20-79) 32 3980 (2556)
9197 (6460)

Wen et al.
(2020)

10x chromium single-cell V(D)J enrichment
(RNA)
Cell Ranger vdj pipeline

10
(COVID)

58 (30-80) 50 999 (587)
2250 (1282)

Joseph et al.
(2022)

immunoPETE protocol from Roche Sequencing
(gDNA)
In-house pipeline

32
(COVID)

60 (28-88) 38 10145 (10743)
22059 (15431)
DA, disease-associated.
AIH, autoimmune hepatitis.
NA, not available.
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2.3 Network analysis

To construct networks and derive their network metrics, we

likewise randomly downsampled individual repertoires to 6

repertoire sizes (200, 500, 1000, 2000, 5000, 8000), and removed

frequency information for each clonotype. Networks were

constructed by counting each clonotype as a single node and

connecting them to clonotypes within 3 Levenshtein distances

(LDs). To construct these networks, we used the imnet package

(22). Based on these constructed networks, we calculated 6 global

network metrics: assortativity, average degree, average clustering

coefficient, density, local and global efficiency.

Assortativity measures how similar the connections within

the graph are in terms of the node and degree. The average

degree within a network refers to the average number of

connections each node has. The average clustering coefficient

denotes how many triangles a node participates in on average,

reflecting how tightly connected the nodes are. Density is related

to average degree in that it reflects the number of all the edges in

the graph compared to the total number of nodes. Local and

global efficiency both measure the shortest path between nodes,

where local efficiency reflects shortest path distances of pairs of

nodes within subgraphs and global efficiency measures

the shortest path distances of all pairs of nodes in the graph.

A more detailed description of the metrics is provided in

the Supplementary Note.

These metrics were calculated with networkX v2.8 (23).

Correlation between the global network metrics of BCR and

TCR repertoires was measured separately for each study, and

then combined in a meta-analysis using the metacor function

from the meta package in R.
2.4 Cell subtype-specific public
clonotype analysis

This part of the analysis was done on data provided by Rubelt

et al. (18) (N=10), because this dataset provided information on

the cell subtype of origin for each clonotype. We applied the

conventional definition of public clonotypes as the identical

sequences of full-length CDR3 amino acids found in two or

more individuals and extracted the sequence information of

public clonotypes. For each of the 6 cell subtypes included in

the dataset (naïve B cell, memory B cell, naïve CD4+ T cell,

memory CD4+ T cell, naïve CD8+ T cell, memory CD8+ T cell),

we pooled all clonotypes from different individuals together and

selected the 50most frequently occurring public clonotypes. Next,

for each of the 50 clonotypes and for each cell subtype category,

we calculated the clonal proportions – i.e. clonal proportion

occupied in relation to the whole clonal space of the

individual’s cell subtype – within each individual. We then

measured the correlation between all pairs of selected most
Frontiers in Immunology 04
frequent public clonotypes (3002 ) correlations) over the samples.

In order to see whether there are differential patterns in

correlation depending on the cell subtype status of the

clonotype, we counted the clonotype pairs with high and

significant correlation coefficients, defined as Pearson’s r values

exceeding 0.8 and P-values less than 0.05, within all (62)

comparison categories. We visually represented the result in a

correlation heatmap.
2.5 Correlation-based clustering using
public clonotype proportions

Using public clonotypes, we wanted to calculate correlations

between T and B clonotype proportions and perform clustering.

We defined 4 sets of public clonotypes, i.e. same CDR3 amino

acid sequences found in two or more individuals, for each B and

T cell clonotypes of healthy and individuals with disease. As in

the previous analysis, for each public B and T cell clonotype, its

proportion, i.e. clonal proportion occupied in proportion to the

whole B or T clonal space of an individual, was calculated in all

four datasets. We then calculated the correlation between the

proportions of all B and T cell clonotype pairs across all

individuals in each healthy and DA groups of each dataset.

Thus, we obtained different correlation coefficients for each of

the respective B×T cell clonotype pairs for 4 healthy and 3 DA

datasets. The correlation coefficients were combined in a meta-

analysis as described above.

We visually represented the correlation matrix in a

hierarchically clustered heatmap using the heatmap function

of R (v4.0.12). Hierarchical clustering was done with hclust

function in base R (v.4.0.12). Briefly, rows and columns were

clustered based on dissimilarity matrices. In order to select the

clonotypes belonging to the identifiable clusters, we used the

InteractiveComplexHeatmap (v.1.2.0) package in R.
2.6 Motif discovery, analysis of amino
acid properties, and public
receptor sequence database

Further analyses were done based on the clusters of B and T

cell clonotypes with similar correlation patterns that were

visually selected from the hierarchically clustered heatmap.

The analysis entailed three main parts: 1) discovery of

enriched motifs, 2) comparison of average LDs of the CDR3

amino acid sequences, and 3) comparison of amino acid physical

properties, which included Kidera factors 1 to 10, charge, core,

disorder, MJ energy, hydropathy, volume, and polarity (24).

To look for novel motifs enriched within the clustered B and T

cell clonotypes, we used STREME v5.4.1 (25), searching for motifs

with aminimumwidth of 3 and amaximumwidth of 10, under the
frontiersin.org
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P-value threshold of 0.05. Next, to compare within-cluster CDR3

amino acid sequence characteristics to those of all public

clonotypes, we generated 10,000 randomly selected sets of public

clonotypes (4×10,000 sets of each healthy and DA B and T cell

clonotypes) of comparable size to the selected clusters. Average

pair-wise LD for each clonotype pair within the clusters and within

the randomly selected sets were calculated with the stringdist

function in R. Averages of amino acid physical properties of each

cluster and each random set were calculated with vdjtools v1.2.1

(24). The distribution of the average LDs and amino acid physical

property metrics in the selected clusters were compared against the

distribution of the metrics calculated from the 10,000 randomly

selected sets for each healthy and DA B and T cell clonotypes.
2.7 Relationship of TCR clusters to
public database of TCR sequences
with known antigen

Next, we referred to a public database of TCR sequences with

known antigens: McPAS-TCR (updated August 5, 2021) and

VDJdb (release 2022.02.23) (26, 27). From these databases, we

extracted the TCR beta CDR3 amino acid sequences of specific to

11 antigen categories that had more than 3000 sequences each.

These antigen categories were: Candida, CMV, SARS-CoV-2,

diabetes mellitus type 1, EBV), influenza virus, HIV, SLE, and

Mycobacterium tuberculosis. For each antigen category, we

calculated the fraction of matching T cell clonotypes within each

healthy and DA clusters. We then calculated the proportional

enrichment of matching antigen-specific sequences by comparing

these fractions to underlying proportions of antigen-specific

sequences in the total pooled public T cell clonotypes from

healthy and DA datasets.
2.8 Validation of results from the primary
analysis in an independent dataset

To replicate and validate our findings, we retraced our steps of the

primary analysis using a replication dataset. We computed correlations

between BCR and TCR repertoire summary statistics of clonality,

diversity, and network metrics as detailed in sections 2.2 and 2.3. We

further displayed the combined results of all datasets in a forest plot.

Finally, we wanted to see whether the B and T cell clonotypes

within the correlated clusters also tended to be found

simultaneously within an individual in the independent

dataset. We calculated how many clonotypes belonging to each

clonotype cluster the individual repertoires contained, as a

fraction of the size of the clustered clonotype groups:

FrmB,i = Nm
B,i=N

m
B  and FrmT ,i = Nm

T ,i=N
m
T

Frontiers in Immunology 05
whereNm
B refers to the total count of B cell clonotypes belonging to

clusterm , andNm
B,i refers to the count of B cell clonotypes belonging

to cluster m, that was observed in individual i. For example, if

clusterm contained 10 different B cell clonotypes and if individual i

had 3 of those clonotypes, then FrmB,i would be 0.3. The fraction for T

cell clonotypes (FrmT ,i) was defined likewise. For B cell clonotypes,

we counted clonotypes that were closely similar (within 2 LD) to the

clustered B cell clonotype to be counted, as there were very few

clonotypes that exactly matched the clustered B cell clonotypes.

Suppose that cluster m represents a true correlated cluster

between a group of B clonotypes and a group of T clonotypes.

Then, in an independent dataset, FrmB,i and Fr
m
T ,i will be associated.

We tested whether the fraction of matching clonotypes of each B

cell clonotype belonging to a cluster (FrmB,i) can explain the fraction

of matching T cell clonotypes from the paired cluster (FrmT ,i) in a

linear regression model, using the individual’s total immune

repertoire size as a covariate, as below:

FrmT ,i ∼ FrmB,i + Ci,

where Ci refers to the total number of B and T cell clonotypes

within the repertoire of individual i. Note that the samples used

for this regression iterate over all possible m and all individuals

in the replication dataset.

To simulate null hypothesis, the same model was tested for

significance 100 times using random B and T clonotype clusters

of the same sizes as the original clonotype clusters, to compare

the distribution of slope estimates and P-values.
2.9 Statistical tests

To assess for the presence of correlation of the collected

metrics between BCR and TCR repertoires across the collected

datasets, we used Spearman’s rank correlation coefficients for

each dataset separately and combined these from each dataset in

a fixed effects inverse-variance weighted meta-analysis using the

metacor function from the meta package in R. FDR-corrected p-

values using the Benjamini-Hochberg method (28) and a

threshold of 0.05 were used to assess significance.

Fisher’s exact test was used to determine the significance of

the differences in the numbers of significantly and highly

correlated most frequent public clonotypes in memory and

naïve B and T cell subtypes using base R. To compare

distributions of randomly sampled data with data from derived

from selected clusters, we used the Kolmogorov-Smirnov test.
3 Results

We collected immune repertoire sequencing data for a total

of 285 individuals, comprising 152 healthy individuals and 133
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https://doi.org/10.3389/fimmu.2022.1006136
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Hong et al. 10.3389/fimmu.2022.1006136
subjects with disease (79 COVID-19 patients and 54

autoimmune hepatitis patients) from 5 independent datasets

(15, 16, 18–20). All studies from which the sequence information

was gathered performed targeted immune receptor sequencing.

Brief information about the datasets is presented in Table 1. We

used data from 4 studies (N=210) to discover our primary

findings and used data from one study (N=75) to replicate our

primary findings.
3.1 BCR and TCR repertoires show
correlated clonal architecture and
diversity in healthy individuals and in
individuals with disease

To answer the question of whether clonal architecture of BCR

and TCR repertoires are correlated within an individual, we tested

four categories of summary statistics of clonal architecture for any

correlation between BCR and TCR repertoires. These categories

comprised (1) clonal volume, measured in the total number of

unique clonotypes; (2) proportions of clonotypes belonging to

each of following four different categories of clonal expansion,

where the four categories were small clones (clones taking up less

than 1/10000 of clonal space), hyperexpanded clones (clones

taking up more than 1/10 of clonal space), rare clones (clones

with clonal count of fewer than 3), and top 100 most frequent

clones; (3) diversity metrics measuring species richness, including

Chao1 estimator; (4) and diversity metrics incorporating

abundance data, including Hill number with q =1 (equal to the

exponential of Shannon’s entropy index), Hill number with q =2

(the inverse of Simson’s concentration index), Gini-Simpson

index (the probability of interspecific encounter), and Gini

coefficient quantifying inequality of clonotypes along a

frequency distribution. Figures 1, 2 summarize the results.

We observed that clonal volumes were significantly correlated

between the BCR and TCR repertoires in both healthy individuals

(total unique clonotype count; r = 0.33, P-value = 0.001) and

individuals with disease (r = 0.26, P-value = 0.028). This describes

the tendency for any individual with a large number of BCR

clonotypes to have a large number of TCR clonotypes.

The summary statistics describing proportions of selected

clonotypes also showed strong correlations between the BCR

and TCR repertoires within an individual, and notably, a

number of summary statistics showed stronger correlations in

disease than in health. Rare clone proportions were significantly

correlated in both healthy and DA repertoires, but the

correlation was greater in disease (r = 0.41, P-value < 0.001)

than in health (r = 0.36, P-value = 0.007). Hyperexpanded clone

proportions and top 100 clone proportions were significantly

correlated in disease (r = 0.32, P-value = 0.007, r = 0.31, P-value<

0.007, respectively), whereas healthy individuals showed similar

correlation directions without reaching significance (r = 0.03, P-

value = 1.000, r = 0.23, P-value = 0.080, respectively).
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In addition, the diversity metric measuring species richness was

significantly correlated inbothhealthy individuals (Chao1estimator:

r = 0.28, P-value = 0.030) and disease subjects (Chao1 estimator: r =

0.37, P-value = 0.002). This pattern was also seen with Hill number

withq=1(R=0.26,P-value=0.043 inhealthy individuals, andR=0.39,

P-value = 0.001 in individuals with disease). In contrast, several

diversity metrics measuring species evenness showed significant

correlations in disease (Gini-Simpson index: r = 0.30, P-value =

0.007, Gini coefficient: r = 0.31, P-value = 0.007) but not in health

(Gini-Simpson index: r = 0.05, P-value = 1.000, Gini coefficient: r =

0.03, P-value = 1.000). Thus, overall, several summary statistics of

clonal proportions and diversity showed weak to moderate

correlations in both healthy and DA repertoires, indicating that

there exist similarities in clonal structure and diversity within each

individual’s BCR and TCR repertoires. These correlation patterns

remained consistent when downsampled tomultiple repertoire sizes

and when quality control metrics inferred from fastq files were

included as a covariate (Supplementary Table 1). Interestingly, the

correlations of hyperexpanded, top, and rare clone proportions, as

well as diversity metrics of species evenness, between BCR and TCR

repertoires appear to be accentuated in theDA state compared to the

healthy, suggesting that mobilization of the immune system to

combat disease results in coordinated changes in both BCR and

TCR repertoires that lead to increased similarities in the clonal

architecture and diversity.
3.2 Network metrics from downsampled
repertoires do not show clear
correlation patterns between
BCR and TCR repertoires

Next, we looked for correlations in network characteristics

between BCR and TCR repertoires by calculating six global

network metrics – assortativity coefficient, local and global

efficiency, network density, network clustering coefficient, and

average degree (See Methods). These metrics measure different

characteristics and properties of network structures of BCR and

TCR repertoires. Because the network metrics can greatly

depend on the total number of clones, we uniformly

subsampled BCR and TCR repertoires to multiple repertoire

sizes (200, 500, 1000, 2000, 5000, 8000) from each individual

repertoire to calculate the network metrics.

Unlike the tendency of consistent results regardless of

repertoire size that was observed in the results of the correlations

of clonality and diversitymetrics, correlations between the network

metrics of BCR and TCR repertoires varied with different

subsampled repertoire sizes (Supplementary Table 2), such that

consistent inferences about correlations of metrics between BCR

and TCR repertoires could not be derived with the subsampled

iterations. A reason for this inconsistency may be that the metrics

are disproportionately affected by the inclusion of exclusion of

clonotypes at the center of networks.
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FIGURE 1

Correlation of select repertoire summary statistics between B and T cell repertoires of healthy individuals. (A) Scatterplot of scaled summary
statistics for B and T cell repertoires of healthy individuals. Colors represent individuals from different studies. r and P values are derived from
inverse variance-weighted fixed-effects meta-analysis across all studies (B) Bar plots of P-values (left) and correlations coefficients r (right) from
the meta-analysis of correlations for different summary statistics.
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FIGURE 2

Correlation of select repertoire summary statistics between B and T cell repertoires of individuals with disease. (A) Scatterplot of scaled summary
statistics for B and T cell repertoires of individuals with disease. Colors represent individuals from different studies. r and P values are derived from
inverse variance-weighted fixed-effects meta-analysis across all studies (B) Bar plots of P-values (left) and correlations coefficients r (right) from the
meta-analysis of correlations for different summary statistics.
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3.3 Analysis of correlation of the
proportions of cell subtype-specific
public clonotypes reveals increased high
correlations between memory B and
memory CD4+ T cells

In an effort to evaluate our initial hypothesis of whether shared

immunememory of B and T cells manifests itself in their respective

repertoires, we examined the correlation structure between naïve

andmemory immune cell subtypes with respect to their clonotypes.

Among the 4 datasets we have been using so far, the Rubelt et al.

(18) dataset (containing repertoire data from 10 healthy

individuals) had information on which cell subtype each

clonotype originated from, as they performed repertoire

sequencing on FACS-sorted naïve and memory B and T cells.

The dataset comprised two B cell types and four T cell types (naïve

B, memory B, naïve CD4+ T, memory CD4+ T, naïve CD8+ T,

memory CD8+ T). We defined the most frequently occurring (top

50) public clonotypes for each of the cell subtypes (50×6

clonotypes) and calculated each clonotype’s clonal proportion

within the pool of their respective cell subtype. We then

calculated the correlation between all pairs of selected clonotypes

((3002 ) correlations) over the samples. We wanted to see whether

these correlations were distinctively high or low when correlation

was measured between clonotypes of naïve and memory

cell subtypes.

We present the correlation results in Figure 3. As might be

expected, a great number of significant high correlations

(Pearson’s r greater than 0.7, P-value less than 0.05) were seen

between clonotypes from the same cell subtype. For example,

among public clonotypes of memory B cells, 11.8% of correlations

were high and significant, whereas only 3.8% of correlations

between public clonotypes of memory B cells and non-memory

B cells were high and significant (Fisher’s exact test for

proportions, Chi-squared statistic 165.21, P-value < 2.2e-16).

This implies that the functional compartmentalization that is

present within an immune cell subtype is revealed by our method

of looking at the correlations between top public clonotypes.

Between B and T cell clonotypes of different cell subtypes,

high and significant correlations were seen most frequently

between memory B cell clonotypes and memory CD4+ T cell

clonotypes. The proportion of high and significant correlations

was significantly larger than the proportion of high and significant

correlations between all B andT cell clonotypes (Fisher’s exact test

for proportions, Chi-squared statistic 58.4, P-value = 2.151e-14,

Figure 3B). This concentration of highly correlated clonotypes in

memory B and memory CD4+ T cell subsets perhaps suggests of

an increased interplay of immune functions and shared immune

memory between memory B and memory CD4+ T cells.

More interestingly, public clonotypes frommemory B cell and

CD4+ memory T cell subsets displayed a tendency to cluster into

well demarcated subsets (Figure 3A), whereas public clonotypes
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from naïve B cells and T cell subsets did not cluster into clear

groups. Combined with the observation that memory B cells and

CD4+ memory T cells have the highest proportion of public

clonotypes that are highly correlated, this finding indicates that

immune memory may be stored in these correlated clusters of

public clonotypes of memory B and CD4+ memory T cells.
3.4 Distinct clonotype clusters revealed
by hierarchical clustering of public
clonotypes based on correlation of
proportions

We next wanted to broaden our analysis to the entire pool of

public clonotypes in all 4 studies and look for any suggestive

structure in the correlations between B and T cell clonotype

proportions. First, we pooled all public clonotypes from 4

datasets of healthy individuals (2,024 public B cell clonotypes

and 27,237 public T cell clonotypes) and calculated the

proportion of each public clonotype in each individual’s

receptor repertoire. After calculating the clonal proportions for

2,024 B and 27,237 T cell clonotypes for each individual, and

quantifying the correlation between all public B and T cell

clonotype pairs (2,024×27,237 pairs, where correlation

coefficients from individual studies were meta-analyzed), we

generated a heatmap of public B and T cell clonotype

proportional correlations, where the clonotypes were

hierarchically clustered based on the correlations. This resulted

in distinct islands of highly correlated B and T cell clonotypes

that could be visually appreciated (Figure 4A). These islands

thus suggested clusters of B and T cell clonotypes that may have

an increased likelihood of coexistence in an individual.

We selected theB andTcell clonotypes belonging to the clusters,

grouping 61% of all public B cell clonotypes and 15% of all public T

cell clonotypes into nonoverlapping clusters. We examined the

clonotypes belonging to this groups for any defining or unusual

characteristics by comparing their amino acid sequences to those

belonging to the rest of the pool of public clonotypes (seeMethods).

Several of the selected B and T cell clonotype clusters contained

distinct motifs (selection is shown in Table 2).

Our next analyses focused on whether sequence

characteristics of clustered clonotypes were different from

what could be expected based on the entire pool of public

clonotypes. We calculated average values for randomly

selected clonotypes from the entire public clonotype pool.

Random selection was repeated 10,000 times to form a

reference distribution of average amino acid physical property

values. We then compared the cluster averages with averages of

10,000 random groups. T cell clonotypes belonging to the cluster

showed distinct distributions of average amino acid properties

such as charge, and Kidera factors 3 (extended structure

preference) and 7 (flat extended preference, Figure 5A),
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FIGURE 3

Correlation heatmap of top 50 most abundant public clonotypes and proportions of highly correlated clonotypes in each cell subtype
comparison category. (A) Heatmap showing correlation coefficients r between the proportions of the top 50 most abundant B (vertical axis) and
T (horizontal axis) public clonotypes of each naïve B, memory B, CD4+ naïve T, CD4+ memory T, CD8+ naïve T, CD8+ memory T cell subsets.
The individual clonotypes have been hierarchically clustered based on the correlation coefficients within their respective cell subset comparison
categories. The correlations between public clonotypes of memory B and memory T cells, in upper left square, are most pronounced and most
clearly clustered, whereas correlations between naïve B cell public clonotypes and T cell public clonotypes from various T cell subsets are less
pronounced. (B) Stacked boxplot showing the proportions of highly (r > 0.7) and significantly (P-value< 0.05) correlated public clonotypes within
the same cell subsets (on the left), and between different B and T cell subsets (on the right).
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meaning that T cell clonotypes belonging to clusters had lower

charge, and were less likely to prefer extended and flat extended

structures. B cell clonotypes did not show similar distinct

distributions of amino acid properties (Figure 5B). Clustered

T cell clonotypes also showed decreased within-group average

pairwise Levenshtein distance (LD) values (Figure 7A),

suggesting increased amino acid sequence similarity within

clusters. These findings show that grouping clonotypes,

especially T cell clonotypes, based on correlations of

proportions between B and T cell clonotype can reveal

functional groups of similar clonotypes that share certain

sequence features such as extended structure preference and

negative charge.

We repeated the analysis for DA BCR and TCR repertoires.

Clusters were discerned from a similar heatmap drawn from

2,179 public B cell clonotypes and 24,399 public T cell

clonotypes pooled from 3 DA datasets, clustering 39% of B cell

clonotypes and 13% all public T cell clonotypes into

nonoverlapping clusters (Figure 4B). Several distinct motifs

were also discovered in disease B and T cell clonotype clusters

(Table 2). In contrast to clonotype clusters from healthy

individuals, clustered DA T cell clonotypes did not show

distinct distributions of average amino acid property scores

(Figure 6A) compared to the randomly sampled clonotypes.

However, clustered DA B cell clonotypes showed distinct

distributions of Kidera factors 5 (double bend preference) and

7 (flat extended preference, Figure 6B). Average pairwise LD was

marginally lower in disease for T cell clonotype groups

compared to random groups (Figure 7A). Strikingly, random
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groups of DA public T cell clonotypes showed an already

decreased average pair-wise LD compared to healthy public T

cell clonotypes, indicating an increased sequence similarity and

decreased sequence diversity of DA T cell clonotypes overall

(Figure 7A). Average LD of random sets of public B cell

clonotypes in disease, however, were not decreased compared

to healthy (Figure 7B). This seems to indicate decreased diversity

of public T cell clonotypes in disease, despite a preserved

diversity of public B cell clonotypes, as measured by average

within group LD, resulting in disease T cell clonotype clusters

that do not have the highly distinguishing features of healthy T

cell clonotype clusters. A loss of such ‘meaningful’ T cell

clonotype clustering could be a feature of disease status, where

B and T cell proportional correlation is engendered through

different mechanisms from those in health.
3.5 T cell clonotype clusters of healthy
individuals have increased proportions of
sequences belonging to public databases

In an effort to judge whether the B and T correlation-based

grouping of clonotypes discovered clusters of functional

importance, we utilized a public database of TCR sequences

with known antigens to see whether the clusters contained

antigen-specific clonotypes. We restricted our analysis to top

ten largest antigen categories: candida, cytomegalovirus (CMV),

SARS-CoV-2, diabetes mellitus type 1, Epstein-Barr virus (EBV),

human immunodeficiency virus (HIV), hepatitis C virus (HCV),
A B

FIGURE 4

Hierarchically clustered heatmap of correlations between public B and T cell clonotype proportions. (A) Heatmap for public clonotypes from
healthy individuals. Heatmap displays r2 values for 1,244 B cell clonotypes and 4,084 T cell clonotypes. Each rectangle represents a cluster of B
and T cell clonotypes analyzed for sequence motifs and amino acid physical properties. (B) Heatmap for public clonotypes from individuals with
disease. Heatmap displays r2 values for 859 B cell clonotypes and 4,459 T cell clonotypes.
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influenza virus, systemic lupus erythematosus (SLE), and

Mycobacterium tuberculosis. For each antigen category,

we calculated the proportional enrichment of matching

antigen-specific sequences by comparing these fractions to

underlying proportions of antigen-specific sequences in the

total pooled public T cell clonotypes from healthy and DA

datasets. We found that several healthy T cell clonotype

clusters were enriched up to 6-fold for public receptor

sequences specific to the influenza virus, HCV, SLE, and the

SARS-CoV-2 (Figure 8), signaling a selective concentration of

antigen specificity in different clusters. This lends further

support to the idea that groups of B and T cell clonotypes that

tend to be found together within the same individual represent

functionally connected clonotypes.
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This proportional enrichment was present to a lesser extent in

T cell clonotype clusters from individuals with disease (up to 4-fold,

Figure 8). One possible explanation to account for this finding is

that the specificity of clonotypes in theDAclustersmay be enriched

in a more diverse set of antigens that are disease-related.
3.6 Validation of primary findings using a
replication dataset

In this part of the analysis, we sought to replicate our

primary findings by repeating our analysis in a step-by-step

manner using an replication dataset of immune repertoires from

43 healthy controls and 32 COVID-19 patients. We measured
TABLE 2 Motifs discovered from clusters of healthy and DA B and T cell clonotypes.

B/TCR Healthy/DA Sequence logo Pr in group Pr outside group Enrichment ratio P-value

TCR DA 11
/316

0
/24170

N/A 1.6x10-4

TCR DA 42
/455

126
/24031

17.61 3.7x10-4

TCR DA 12
/536

2
/23950

268.10 4.3x10-4

TCR DA 11
/320

56
/24166

14.83 3.4x10-2

TCR Healthy 9
/323

13
/33103

70.95 2.1x10-2

BCR DA 13
/44

0
/2118

N/A 9.2x10-23

BCR DA 5
/21

0
/2141

N/A 8.0x10-11

BCR DA 5
/22

0
/2140

N/A 1.1x10-10

BCR DA 47
/53

175
/5453

27.63 1.3x10-3

BCR Healthy 4
/54

0
/33368

N/A 2.9x10-3
front
Pr, proportion. DA, disease-associated.
NA, not available.
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FIGURE 5

Distribution of average amino acid property scores for selected clusters of public BCR and TCR amino acid sequences compared to random
groups of public BCR and TCR amino acid sequences from healthy immune repertoires. (A) Boxplots of scaled average amino acid physical
property scores of TCR amino acid sequences from selected clusters (mauve colors) compared to those of randomly selected T cell clonotype
groups (rainbow colors) of healthy individuals. (B) Boxplots of scaled average amino acid physical property scores of BCR amino acid sequences
from selected clusters (mauve colors) compared to those of randomly selected B cell clonotype groups (rainbow colors) of healthy individuals.
Dots represent averages of each cluster or random group. P-values are from Kolmogorov-Smirnov tests for difference of two distributions, i.e.
averages of random groups of amino acid sequences and averages of clustered clonotype sequences. ** P-value< 0.005. *P-value< 0.05. KF
kidera factors (KF1 helix/bend preference, KF3 extended structure preference, KF5 double-bend preference, KF6 partial specific volume, KF7 flat
extended preference, KF10 surrounding hydrophobicity).
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FIGURE 6

Distribution of average amino acid property scores for selected clusters of public BCR and TCR amino acid sequences compared to random
groups of public BCR and TCR amino acid sequences from disease-associated immune repertoires. (A) Boxplots of scaled average amino acid
physical property scores of TCR amino acid sequences from selected clusters (mauve colors) compared to those of randomly selected T cell
clonotype groups (rainbow colors) of individuals with disease. (B) Boxplots of scaled average amino acid physical property scores of BCR amino
acid sequences from selected clusters (mauve colors) compared to those of randomly selected B cell clonotype groups (rainbow colors) of
individuals with disease. Dots represent averages of each cluster or random group. P-values are from Kolmogorov-Smirnov tests for difference
of two distributions, i.e. averages of random groups of amino acid sequences and averages of clustered clonotype sequences. **P-value<
0.005. * P-value< 0.05. KF kidera factors (KF1 helix/bend preference, KF3 extended structure preference, KF5 double-bend preference, KF6
partial specific volume, KF7 flat extended preference, KF10 surrounding hydrophobicity).
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the correlations between clonality and diversity summary

statistics of each individual’s BCR and TCR repertoires which

were extracted as detailed previously. The results are presented

in Figure 9 as well as in Supplementary Tables 1, 2. The addition
Frontiers in Immunology 15
of the replication dataset in the meta-analysis led to greater

confidence in the correlations of clonal volume (r change: 0.33 to

0.37, P value change: 0.008 to 7.9e-5) and Chao1 diversity (r

change: 0.28 to 0.30, P value change: 0.03 to 4.2e-3) in the
A

B

FIGURE 7

Distribution of average within-group pairwise Levenshtein distances for selected clusters of public BCR and TCR amino acid sequences compared
to random groups of public BCR and TCR amino acid sequences. (A) Boxplot of averages of Levenshtein distance (LD) between TCR amino acid
sequence pairs from healthy (H), and disease (D) clusters compared with averages of LD between TCR amino acid sequence pairs from randomly
selected public T cell clonotype groups (B) Boxplot of averages of LD between BCR amino acid sequence pairs from healthy (H), and disease (D)
clusters compared with averages of LD between BCR amino acid sequence pairs from randomly selected public B cell clonotype groups. Dots
represent averages of each cluster or random group. P-values are from Kolmogorov-Smirnov tests for difference of two distributions, i.e. averages
of random groups of amino acid sequences and averages of clustered clonotype sequences. ** P-value< 0.005. *P-value< 0.05.
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healthy. Similarly, in disease, addition of the replication dataset

led to lower P values for correlations between clonal volume and

Chao1 diversity (P value change: 2.0e-5 to 2.9e-7, 1.6e-3 to 6.8e-

4, respectively). For network statistics from the replication

dataset, two metrics derived from downsampled repertoires to

a size of 2000 showed negative correlations in the healthy

(average degree and density, Supplementary Table 2), although

this should be interpreted with caution since network metrics

have been shown to be affected by downsampling size.

Finally, we sought to gauge the significance of the paired

clusters of public B and T clonotypes by looking at the presence

of each clustered clonotype within individuals in the replication

dataset. We performed a regression approach (see Methods) to

assess whether the fractions of BCRs that matched to B cell

clonotype clusters can explain the fractions of TCRs that

matched to the identical T cell clonotype clusters. We

obtained a significant result (regression estimate = 0.125, P-

value = 1.05e-5) for clusters defined from healthy BCR and TCR

repertoires, indicating that the correlations between B and

T clonotypes in the clusters defined by the main analysis were

also observed in healthy subjects of the replication dataset. This

regression estimate value was outside of the distribution of

estimates seen in 100 iterations of randomly chosen B and T

cell clonotype clusters (Supplementary Figure 1), denoting that

an empirically assessed p-value was also <0.01. This result

suggests that when an individual has many BCRs belonging to

one cluster, he or she likely has many TCRs belonging to the

paired cluster of T cell clonotypes. The same trend, however, was

not observed in individuals with disease, suggesting that the

clusters may not translate across different disease activities and

states, as the main analysis consisted of two diseases while the

replication analysis was fixed to a single disease (COVID-19).
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4 Discussion

We have explored BCR and TCR together to search for any

shared features that shed light on the intertwined workings of

the adaptive immune system. In support of our hypothesis that

similarities BCR and TCRs result from shared immune history

and cellular machinery, we show that several key repertoire

features such as clonal volume and species diversity covary in an

individual’s BCR and TCR. We observed an increased tendency

for an individual’s BCR and TCR repertoire to share clonal

architecture and diversity characteristics in disease states. We

also found an increased presence of highly correlated B and T

cell clonotypes in the memory B and CD4+ T cell subsets of BCR

and TCR. Finally, we identified nonoverlapping clusters of

public B and T cell clonotypes that tend to be co-present in an

individual. B and T cell clonotypes belonging to these clusters,

especially the T cell clonotypes from healthy clusters, tended to

have increased sequence similarity. T cell clonotype sequences

within healthy clusters also had lower charge and a higher

preference for flat, extended structures, as well as an

enrichment of sequences with specific known antigens.

In our study, we looked at the repertoire summary statistics

of both healthy and individuals with disease. While most of the

correlations were weak to moderate, we recognized that there

were differences in the pattern of correlations. Three categories

of summary stat is t ics inc luding c lonal i ty metr ics

(hyperexpanded and top clone proportions) and diversity

metrics (Gini-Simpson index and inverse Gini index) were

more tightly correlated in the DA group, although the same

trend was not seen in the replication dataset. These results may

suggest that certain disease states are characterized by

‘hypersynchronized ’ BCR and TCR repertoire clonal
FIGURE 8

Heatmap showing enrichment of TCR sequences with known antigens within T cell clonotype clusters from proportional correlation-based
clustering. DA, disease-associated CMV cytomegalovirus COV SARS-CoV-2 EBV Epstein-Barr virus Flu Influenza virus HCV hepatitis C virus HIV
human immunodeficiency virus MTb Mycobacterium tuberculosis SLE systemic lupus erythematosus T1DM diabetes mellitus type 1.
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structures, where an ongoing disease process exerts pressure on

both BCR and TCR repertoires to undergo clonal expansion and

mobilize to pathogens and disease signals.

We also found that a surprisingly large proportion of public T

cell clonotypes cluster with groups of public B cell clonotypes. A T

cell receptor bias that leads to the unexplained large presence of

public receptor sequences has been observed previously (29, 30).

How such a bias takes shape in an individual’s immune repertoire is

not yet clear. Our findings suggest that a significant part of the bias

that results in unexpectedly abundant public clonotypes occurs

through a way that affects both B and T cells and also increases the
Frontiers in Immunology 17
likelihood of certain public B and T cell clonotypes to be co-present

in the immune repertoire. As our finding of the enrichment of

known antigen-specific TCR sequences in the clustered T cell

clonotypes suggests, such bias shaping may occur through

continued antigenic stimulation in autoimmune diseases (SLE,

T1DM) and chronic infections such as CMV and HIV infection.

Our results point toward a novel way of discovering

functionally relevant clusters B and T cell receptor sequences.

Although the cell subtype information for the identified clusters

of correlated public B and T cell clonotypes were not known,

based on the results from the cell subtype-specific analysis, it is
FIGURE 9

Forest plot of meta-analyses of clonality and diversity metrics with the replication study (using Josephs et al., 2022) included. Meta-analysis
results of the correlations between clonality and diversity summary statistics derived from individual BCR and TCR repertoires from each study
including the replication study (highlighted) are presented in a forest plot. Size of the squares indicate study weights that are proportional to
sample size. Effect sizes are from a common effect model.
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plausible to hypothesize that correlation-based grouping of the

public repertoire isolates BCR and TCR clusters from memory

cell subsets that represent specific portions of the shared

immune memory of BCR and TCR repertoires. One strength

of our grouping method is that it is solely based on the

physiological phenomenon of the BCRs and TCRs being

discovered concurrently in an individual, and does not rely on

past assumptions about the receptor sequence itself that are used

by many other T cell receptor clustering methods (31, 32).

Combining BCR and TCR repertoires to group individual

clonotypes into different clusters may thus be a natural way to

cluster immune receptors to extract additional functional

information about the immune repertoire.

Several caveats need to be kept in mind in interpreting the

results of this study. First, repertoire metrics can depend on

amount of sample used and sequencing depth. Given the large

number of B and T cells in the body, it is impossible to sample and

sequence all receptor sequences in a single blood draw, and

repertoire characteristics vary depending on the amount of

sample and sequencing depth used. Correlation of BCR and

TCR size, therefore, may be a result of a correlation in the

amount of sample and sequencing depth used for immune

sequencing. Although it is impossible to completely remove the

influence of this potential confounder, we have tried three things

to account for its effects; (1) We performed meta-analysis of

statistics that can remove study-specific effects to some degree, (2)

We performed downsampling of the repertoire to different sizes to

measure uncertainty of results dependent on sampling depths,

and (3) We used an independent dataset to replicate results.

Our study is also limited by its small sample size, as the

majority immune repertoire sequencing studies so far have

focused solely on either BCR or TCR repertoires separately and

only a limited number of studies to date have sequenced both the

BCR and TCR repertoires of an individual. Another factor that

could have influenced our results is the heterogeneous sequencing

methods employed by the studies included, comprising both

cDNA and DNA sequencing, and the limited information we

have on the individual subjects included in the study. Factors such

as age and gender are known to influence BCR and TCRs, which

we could not adjust for in this study due to the limited availability

of demographic information of the individual study participants.

This study provides evidence in favor of studying BCR and

TCR repertoires together in order to reveal aspects of the

immune system that studying both individually may not be

able to unveil. Further examination of the defining shared

features both BCR and TCR repertoires may reveal hallmarks

of a healthy interaction between B and T cells, as is necessary for

a robust immune response, and how they are altered by a history

of immune exposures and disease.
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