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Snowflake epitope matching
correlates with child-specific
antibodies during pregnancy
and donor-specific antibodies
after kidney transplantation
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Development of donor-specific human leukocyte antigen (HLA) antibodies

(DSA) remains a major risk factor for graft loss following organ transplantation,

where DSA are directed towards patches on the three-dimensional structure of

the respective organ donor’s HLA proteins. Matching donors and recipients

based on HLA epitopes appears beneficial for the avoidance of DSA. Defining

surface epitopes however remains challenging and the concepts underlying

their characterization are not fully understood. Based on our recently

implemented computational deep learning pipeline to define HLA Class I

protein-specific surface residues, we hypothesized a correlation between the

number of HLA protein-specific solvent-accessible interlocus amino acid

mismatches (arbitrarily called Snowflake) and the incidence of DSA. To

validate our hypothesis, we considered two cohorts simultaneously. The

kidney transplant cohort (KTC) considers 305 kidney-transplanted patients

without DSA prior to transplantation. During the follow-up, HLA antibody

screening was performed regularly to identify DSA. The pregnancy cohort

(PC) considers 231 women without major sensitization events prior to

pregnancy who gave live birth. Post-delivery serum was screened for HLA

antibodies directed against the child’s inherited paternal haplotype (CSA).

Based on the involved individuals’ HLA typings, the numbers of interlocus-

mismatched antibody-verified eplets (AbvEPS), the T cell epitope PIRCHE-II

model and Snowflake were calculated locus-specific (HLA-A, -B and -C),

normalized and pooled. In both cohorts, Snowflake numbers were

significantly elevated in recipients/mothers that developed DSA/CSA.

Univariable regression revealed significant positive correlation between DSA/

CSA and AbvEPS, PIRCHE-II and Snowflake. Snowflake numbers showed
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stronger correlation with numbers of AbvEPS compared to Snowflake numbers

with PIRCHE-II. Our data shows correlation between Snowflake scores and the

incidence of DSA after allo-immunization. Given both AbvEPS and Snowflake

are B cell epitope models, their stronger correlation compared to PIRCHE-II

and Snowflake appears plausible. Our data confirms that exploring solvent

accessibility is a valuable approach for refining B cell epitope definitions.
KEYWORDS

HLA, epitope matching, solvent accessibi l i ty , deep learning, kidney
transplantation, pregnancy
Introduction

As of today, kidney transplantation is the gold standard in

renal replacement therapy. Amongst other factors, long-term

graft survival is known to be dependent on patient and donor

human leukocyte antigen (HLA) compatibility. HLA

incompatible donor organs are recognized and affected by the

recipient’s immune system - even under immunosuppressive

therapy - eventually resulting in premature allograft loss (1–3).

The definition of HLA compatibility remains challenging as not

each amino acid difference between the HLA proteins of patient

and donor represents an equal immunologic risk. Consequently

several approaches have been proposed to refine the definition of

histocompatibility from antigenic/allelic level to a functional

level, each bearing its own challenges (4–6). Considering the

HLA protein’s surface, the HLA Matchmaker model defines

epitopes as antibody-accessible, potentially discontinuous

patches of spatially close polymorphic amino acid residues (7).

The EPRegistry database (epregistry.com.br) is a publicly

accessible list of these so-called Eplets (8, 9). Not all of these

epitopes are however unambiguously confirmed in antibody

responses (10). The approach of counting the number of

mismatched eplets (i.e. eplet/epitope load) introduces the

assumption of equi-immunogenic eplets, which has been

disproven (11, 12). The varying physicochemical properties of

mismatched amino acids may be an explanation and matching

amino acids based on their electrostatic potentials was shown to

be advantageous over the unweighted eplet load (13). Focusing

on the HLA protein conformation, the recently described HLA-

EMMA algorithm considers amino acid mismatches at shared
DSA, donor-specific

-verified donor eplets;

urotransplant Kidney

R, interquartile range;

ransplant cohort; PC,

D, standard deviation;

-specific primer.

02
surface-accessible positions as potential B cell targets (14).

HLAMatchmaker assumes two proteins with the same amino

acid configuration as both carrying the same eplet, assuming

identical folding or alleles within the same locus (15). Likewise,

HLA-EMMA considers surface-accessible amino acid positions

per HLA locus, which however may be not identical across

different HLA proteins given slight variations in protein folding

(16). Refining that concept, the proposed Snowflake algorithm

defines the HLA protein-specific surface accessibility, taking into

account structural deviations between HLA proteins. Amino

acid mismatches at solvent accessible positions of the respective

donor HLA are hypothesized to increase risk of B cell

allorecognition (16). Within this work, we evaluated the

correlation between the number of such HLA Class I-specific

solvent-accessible amino acid mismatches (Snowflake score) and

the incidence of donor-specific HLA antibodies (DSA) after

kidney transplantation and child-specific HLA antibodies

(CSA) during pregnancy, respectively (collectively immunizer-

specific antibodies, ISA). For reference, we compared the

Snowflake score to Eplet scores and PIRCHE-II scores. The

considered algorithms were only applied to HLA-mismatched

cases, allowing to evaluate value added to “classic” HLA-

matching. We hypothesized, (i) Snowflake scores are higher in

ISA-positive patients and (ii) that Snowflake scores correlate well

with Eplet matching, given they both aim on defining B cell

epitopes by HLA protein structure analysis.
Method

Pregnancy cohort

The previously described pregnancy cohort (PC) of the

University Hospital Basel consists of 231 pregnant women

who gave live birth between September 2009 and April 2011

(11, 17–19). The study was approved by the local ethics

committee. The median age of the mothers was 31 years

(Q1 = 28, Q3 = 35). Prior immunization events (blood
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transfusions, transplantations, or miscarriages) were ruled out.

High-resolution typing for HLA-A, -B, -C, -DPA1, -DPB1,

-DQA1, -DQB1, -DRB1, and -DRB3/4/5 was available for all

study participants (i.e. women and children) by means of next-

generation HLA sequencing (NGSgo® HLA amplification and

library preparation (www.gendx.com, GenDx, Utrecht, the

Netherlands), sequencing on Illumina® MiSeq™ (www.

illumina.com, Illumina, San Diego, USA)). Maternal HLA

antibody specificities were assessed previously, by single

antigen beads (LabScreen™ Single HLA Antigen Beads (SAB),

OneLambda Thermo Fisher, Canoga Park, CA, USA)) on sera

collected between days 1 and 4 after delivery. Antibody data were

mapped to the child HLA typing to identify CSA, considering a

sample-specific biological cutoff of MFI values above 100 and

exceeding the mean of all SABself-HLA mother+ 3 SDs as reported

previously (11).
Kidney transplant cohort

The kidney transplant cohort (KTC) of the Charité University
Hospital consists of 305 patients who underwent kidney

transplantation between 2000 and 2019. The study was

approved by the institutional review boards of the Charité
hospital. HLA typing of the recipient was prospectively obtained

by serological (HLA Class I) and DNA-based techniques (HLA

Classes I and II). Serological typing was done by using the

commercially available serological HLA typing trays HLA-Ready

Plate ABC 144 (inno-train, Kronberg, Germany). DNA-based

typing was achieved by using sequence-specific primer (SSP)

(Olerup, Stockholm, Sweden) and reverse sequence-specific

oligonucleotide (SSO) (One Lambda Thermo Fisher, Canoga

Park, CA). All assays were performed according to the
Frontiers in Immunology 03
manufacturer’s instructions. Following local regulations,

recipients were typed twice by the transplant center. HLA

typing of deceased donors was provided by the donor center

and confirmed by SSO in the transplant center. Living donors

were typed on two occasions in the transplant center by serology

and SSO or SSP. HLA typing data were collected on an

intermediate resolution level allowing the assignment of

serological equivalents.

Patients were regularly screened for the presence and

identification of HLA antibodies prior to transplantation and

during their follow-up at least on an annual schedule

(Luminex®-based LABScreen™ mixed and SAB assay,

OneLambda Thermo Fisher, Canoga Park, CA). HLA antibody

specificities were mapped to kidney donor HLA typings to

identify DSA. Enrolled patients did not have DSA prior to

transplantation (i.e. MFI exceeding 1000) and had a negative

complement-dependent-cytotoxicity crossmatch using

unseparated as well as isolated T and B lymphocytes.

The long observation period allowed to consider all applied

donor allocation schemes equally, the cohort comprises four

matched groups: (1) highly sensitized patients that have been

transplanted via the Acceptable Mismatch (AM) allocation

program of Eurotransplant (94 patients), (2) Eurotransplant

Kidney Allocation System (ETKAS)-allocated patients

transplanted with a reported panel-reactive antibody level

(PRA) of ≤ 5%(92 patients), (3) ETKAS-allocated patients

transplanted with a reported PRA of >5% and < 85% (87

patients), and (4) highly-sensitized patients with PRA levels ≥

85% allocated through ETKAS (32 patients). Additional

demographic data on the KTC is provided in Table 1. In the

full kidney transplant cohort of the Charité University Hospital,

both B cell and T cell epitope matching algorithms were

previously shown to correlate with DSA development and
TABLE 1 KTC characteristics and demographics.

Characteristic Value

follow up, mean years, (SD) 6.6 (4.5)

recipient age at TX, mean years, (SD) 47.3 (12.2)

recipient male, number, (percentage) 164 (53.8%)

primary graft function, number, (percentage) 140 (45.9%)

cold ischemia time, hrs, (SD) 14.7 (4.8)

donor age at TX, mean years, (SD) 46.8 (13.5)

donor male, number, (percentage) 160 (52.5%)

waiting time, mean months, (SD) 56.3 (39.3)

antigen mismatches A-B, median, (IQR) 1 (1)

antigen mismatches A-B-DR, median, (IQR) 2 (1)

PRA at TX, median percentage, (IQR) 27% (41%)

peak PRA, median percentage, (IQR) 70% (48.5%)

blood group identical, number, (percentage) 45 (85.2%)
fro
Antigen mismatches considering serologic split typing. SD, standard deviation; IQR, interquartile range.
ntiersin.org

http://www.gendx.com
http://www.illumina.com
http://www.illumina.com
https://doi.org/10.3389/fimmu.2022.1005601
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Niemann et al. 10.3389/fimmu.2022.1005601
graft survival (20). Notably, the considered cohort was allocated

via ETKAS and AM, both optimizing for the number of HLA-A-

B-DR mismatches, which leads to a significantly lower average

HLA-A-B and HLA-A-B-DR number of mismatches compared

to reported US data (21). Although the allocation algorithms

have not specifically matched for HLA-C and -DQB1, pre-

formed donor-specific HLA antibodies against all five loci

(including HLA-C and -DQB1) were considered as

contraindication for donor offers.
Snowflake epitope matching algorithm

The Snowflake algorithm is an integrated computational

pipeline counting the number of HLA protein-specific solvent

accessible amino acid mismatches between donor and recipient.

It has been shown, solvent-accessibility is protein-specific, and

thus proposed to be considered individually (16). For that

purpose, Niemann et al. extracted 676 experimental HLA

Class I structures of the Protein Data Bank (www.rcsb.org)

and supplemented these by 37 predicted structures using the

AlphaFold predictor (DeepMind Technologies Limited, London,

UK) (22–24). Predicted structures have been augmented to 329

structures by adding known binding peptides into the HLA

binding groove through docking simulation via the Anchored

Peptide-MHC Ensemble Generator (APE-Gen) (25). The total

set of structures covers all HLA Class I antigenic groups.

Protein-residue-specific surface area was calculated considering

the Shrake-Rupley algorithm (26). In order to extrapolate

surface information to all known HLA Class I, a deep-learning

neural network predictor was trained by considering amino acid

sequence as input and surface area as output neurons. The

predictor was used to create a comprehensive database of

accessibility for all known HLA Class I proteins. This allowed

solvent accessibility to be evaluated HLA protein-specifically,

considering individual donor-HLA exposed amino acid

positions to be matched with recipient HLA amino acid

configurations. Comparisons with recipient HLA considered

HLA-A, -B and -C simultaneously (i.e. interlocus). The full

matching pipeline was implemented as a web service, featuring

CSV input and output formats for batch processing (www.

pirche.com, version 3.47) (16).
Reference epitope matching algorithms

For comparison of the Snowflake algorithm with other

epitope matching concepts within the clinical validation

cohorts, the number of interlocus-mismatched donor eplets

(AllEPS) and interlocus-mismatched antibody-verified eplets

(AbvEPS) as defined by the HLA Epitope Registry (www.

epregistry.com.br, version 3.0) was determined (9).

Furthermore, the number of PIRCHE-II (www.pirche.com,
Frontiers in Immunology 04
version 3.47) was calculated (reviewed in (27)), considering

the prediction of indirect T cell epitopes. In the PC, high

resolution genotyping data on 11 loci allowed for PIRCHE

analysis of HLA-DRB1 (i.e PIRCHE-II), -DRB3/4/5, -DQ and,

-DP as independent donor-derived peptide presenters, as

suggested before (19), yielding four separate PIRCHE

matching scores.
Imputation of HLA typing data in the KTC

The underlying core algorithms of all epitope matching

methods ultimately require unambiguous protein-level HLA

typing. To apply epitope matching using intermediate

resolution level typings in the KTC, the previously described

multiple imputation approach was refined (28). Multi allele

codes were converted into antigen-specific candidate lists

(https://hml.nmdp.org/MacUI/, IPD-IMGT/HLA version 3.47)

(29). Given the rather homogenous cohort, potential haplotype

pairs were fetched from the 2011 EURCAU NMDP haplotype

dataset (30). The low-resolution-converted input typing-

matched haplotype pairs were filtered by multi allele code

candidate lists respectively. The remaining haplotype pairs’

frequencies were normalized by all remaining haplotype pairs.

High-resolution pairs were only considered if the normalized

frequency exceeds 1%. Epitope matching scores were calculated

for each high-resolution recipient-donor-combination and

summed up weighted by respective pair’s frequency. For

PIRCHE, AllEPS, AbvEPS and Snowflake, this process is

automated and integrated as a web-service (www.pirche.com).
Pooling immunizer-specific
antibody data

Snowflake score distributions in ISA-negative and ISA-

positive cases were visualized by boxplots for each HLA locus

individually. Regression analyses were carried out on pooled

datasets of the respective cohort to increase sample size. To that

extent, each mismatch of the PC and its corresponding CSA

status was considered individually. Given the PC is haplotype-

matched by design, each pregnancy translates into up to three

data points in the pooled PC dataset, excluding homozygous and

matched data points. Prior to aggregation, Snowflake, AllEPS

and AbvEPS were centered by subtracting the respective mean

and scaled by dividing the respective standard deviation to

account for locus-specific ranges. PIRCHE scores were log-

transformed based on previously reported logarithmic hazards

(20). For the KTC, the respective locus’ epitope scores were

normalized similarly. As organ donors may be mismatched on

both HLA per locus, epitope scores were defined locus-specific

rather than mismatch-specific. Correspondingly, the DSA status

considers DSA against only one or both HLA of the donor as
frontiersin.org
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positive. Given low-resolution HLA typing data in the KTC,

defining HLA mismatches is non-trivial, as allele-level

mismatches may still occur in zero mismatch donor-recipient

pairs. To still exclude the bias of HLA-matched data points, cases

with zero PIRCHE, zero AbvEPS, zero AllEPS and zero

Snowflake were excluded from analyses.
Statistical analysis

In the pooled PC dataset, stepwise binomial logistic

regression based on Akaike information criterion (31) was

applied to evaluate independence of Snowflake and reference

epitope matching algorithms. In the KTC dataset regression

analyses were carried out by Cox proportional hazard and Cox

multiple regression. Wilcoxon signed-rank test was applied to

differences in epitope match score distributions between ISA-

negative and ISA-positive cases. Correlation between epitope

matching scores was analyzed by Spearman’s rank-correlation

coefficient (Spearman’s Rho rs).

p-Values of less than 0.05 were considered statistically

significant. Statistical calculations for the PC were executed in

R software (R 4.2.0, R Foundation for Statistical Computing,

Vienna, Austria), for the KTC in SPSS software (SPSS 27.0.0.0,

IBM Corp., Armonk, NY).
Results

Snowflake score calculations considered the median solvent

accessibility score (0.3717) in the panel of reference alleles as

reported by (16). The interlocus-restricted locus-specific

Snowflake scores in the PC were significantly higher in the

CSA-positive compared to the CSA-negative groups for HLA-A,

-B and -C (Figure 1), considering only locus-mismatched cases.
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Within the pooled PC dataset, 566 HLA-mismatches were

analyzed within a single model, corresponding to 121 child-

specific antibodies. Correlation analysis revealed weak to

moderate correlation between Snowflake and PIRCHE (0.36 ≤

rs ≤ 0.49, p < 0.001) and a strong correlation with AllEps (rs =

0.63, p < 0.001) as well as AbvEPS (rs = 0.72, p < 0.001)

(Supplementary Figure 1). Univariable logistic regression

identified all considered models (except for PIRCHE-DRB3/4/

5) as statistically significant. However, stepwise binomial

multiple logistic regression suggested a minimal combination

of Snowflake and PIRCHE presented by HLA-DP as

independent contributors (Table 2).

Also in the KTC, statistically significantly higher HLA-A-

and HLA-C-specific Snowflake scores were observed in cases

with HLA-A- and HLA-C-specific DSA, respectively. Despite

higher median HLA-B-specific Snowflake scores in HLA-B-

specific DSA positive cases, the difference of distributions was

not statistically significant (Figure 2).

In the pooled KTC dataset, 635 locus-specific epitope match

scores were correlated with 66 DSA events. Correlation analysis

indicated a strong correlation between PIRCHE presented by

HLA-DRB1 and the remaining applied matching algorithms

(0.64 ≤ rs ≤ 0.71) and very strong correlations between AbvEPS,

AllEPS and Snowflake (0.81 ≤ rs ≤ 0.89, Supplementary Table 1).

In univariable Cox regression, all four scores were significantly

correlated with DSA (Table 3). Neither Cox multiple regression

considering all four methods in a single model (Supplementary

Table 2), nor pairwise Cox multiple regression (Supplementary

Table 3) yielded statistically significant results.

To identify potential cross-reactivity between immunizing

locus (e.g. HLA-A) and antibody target locus (e.g. HLA-B), for a

subset of HLA-A-B-C mismatched cases of the PC (n=140),

locus-specific Snowflake distributions were calculated

(Supplementary Table 4). For HLA-A and -B CSA, multiple

logistic regression suggests independent value of considering
B CA

FIGURE 1

Snowflake score distribution of interlocus-restricted locus-specific HLA mismatches resulting in paternal mismatch-specific antibodies for (A)
HLA-A, (B) -B and (C) -C. Red labels indicate the number of cases per box. Boxplots depict the median (horizontal line), mean (triangle), and first
to third quartile (box); the highest and lowest values within 1.5× IQR (whiskers) and outliers (circles), respectively. *, p ≤ 0.05; ***, p ≤ 0.001;
HLA, human leukocyte antigen; CSA, child-specific HLA antibody; IQR, interquartile range.
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Snowflake from HLA-A and -B simultaneously. For CSA against

HLA-C univariable regression does not find statistically

significant correlation. As the supposed cross-reactivity may

also be a proxy for T cell help due to variable dependency,

PIRCHE-II scores were added to this regression analysis

(Table 4). For the HLA-A and -B-specific models, indirect T

cell epitopes derived from HLA-B mismatches were considered

as independent contributors to developing CSA. Given the

dependency of Snowflake and PIRCHE on the same locus, p

values increase (i.e. Snowflake B and PIRCHE-DRB1-B).
Frontiers in Immunology 06
Counterintuitively, the model for HLA-A CSA considers

PIRCHE from HLA-B. The model for HLA-B CSA however

does not benefit from inclusion of PIRCHE derived fromHLA-A

but improves by inclusion of HLA-A Snowflake scores.
Discussion

Confirming our hypothesis, Snowflake scores were

significantly higher in mismatched cases of both cohorts across
B CA

FIGURE 2

Interlocus-restricted Snowflake score distributions depending on HLA locus and presence of donor-specific antibodies (DSA). (A) HLA-A-
specific Snowflake score in A-specific DSA negative/positive patients. (B) HLA-B-specific Snowflake score in B-specific DSA negative/positive
patients. (C) HLA-C-specific Snowflake score in C-specific DSA negative/positive patients. Red labels indicate the number of cases per box.
Boxplots depict the median (horizontal line), and first to third quartile (box); the highest and lowest values within 1.5× IQR (whiskers) and outliers
(circles, rhombi), respectively. **, p ≤ 0.01; ns, p > 0.05; HLA, human leukocyte antigen; ISA, immunizer-specific antibodies; DSA, donor-specific
HLA antibody; IQR, interquartile range.
TABLE 3 Cox regression analyses of PIRCHE-DRB1, AbvEPS, AllEPS and Snowflake predicting donor-specific antibodies in the KTC.

Algorithm Cox regression

Odds ratio CI Significance (p)

PIRCHE-DRB1 1.65 1.24-2.19 0.001

AbvEPS 1.58 1.25-1.98 < 0.001

AllEPS 1.64 1.29-2.09 < 0.001

Snowflake 1.32 1.09-1.60 0.004
CI, 95% confidence interval.
TABLE 2 Univariable binomial logistic regression and minimal model created by stepwise binomial logistic regression of considered epitope
matching algorithm scores and the development of child-specific HLA antibodies.

Algorithm Univariable regression Multiple logistic regression

Odds ratio CI Significance (p) Odds ratio CI Significance (p)

PIRCHE-DRB1 1.40 1.06-1.88 0.020

PIRCHE-DRB3/4/5 1.24 0.98-1.58 0.075

PIRCHE-DQ 1.35 1.11-1.67 0.004

PIRCHE-DP 1.46 1.15-1.86 0.002 1.25 0.98-1.62 0.079

AbvEPS 1.59 1.29-1.96 < 0.001

AllEPS 1.52 1.24-1.88 < 0.001

Snowflake 1.63 1.33-1.99 < 0.001 1.55 1.25-1.91 < 0.001
CI, 95% confidence interval.
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HLA-A, -B and -C if they developed ISA against the respective

locus (Figures 1 and 2, except for HLA-B in the KTC). By design,

Snowflake considers HLA allele-matched pairs with a score of

zero. Consequently, there is added value in prediction of ISA to

classical HLA antigen matching by applying Snowflake

matching. Previous reports on the extended KTC have shown

correlations of epitope mismatch and DSA (20). Similarly, in the

PC, correlation of epitope mismatch and CSA has been reported

(11, 18, 19, 32). Correlation analyses revealed a moderate to

strong correlation between all evaluated epitope matching

approaches, which is in line with the literature (20, 33, 34).

Notably, in both cohorts Spearman’s rho was highest between

Snowflake and Eplets, confirming our second hypothesis. Both

approaches aim on predicting HLA protein surface patches that

are antibody accessible and thus potential targets for antibodies.

Univariable regression analyses confirmed that all tested epitope

matching strategies are significantly predictive of ISA (Tables 2

and 3). Multiple regression however is inconclusive about the

independence of tested predictors. In the PC, the combination of

Snowflake and PIRCHE-DP formed a minimal model with best

CSA prediction (Table 3). In the KTC, the cohort size and

number of events were insufficient to devise a combination of

scores to independently predict DSA (Supplementary Table 3).

Restricting the Snowflake algorithm to intralocus comparison
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also resulted in significant correlation with immunizer-specific

antibodies but with reduced correlation to the reference epitope

matching algorithms (data not shown).

It has been shown previously that the HLA protein surface

varies between HLAs. HLA molecular matching algorithms

applying locus- or class-wide maps of solvent-accessibility may

thus over- or underestimate the proteins’ actual surface-residues.

Consequently, the Snowflake algorithm has been proposed,

considering surface-accessible amino acid positions defined per

individual allele (16). This is the first study on the novel

Snowflake algorithm to correlate HLA protein-specific surface-

accessible amino acid mismatches and immunizer-specific

antibody development. Our study features a back-to-back

analysis of two cohorts with simultaneous analyses of

reference epitope matching algorithms and the Snowflake

algorithm allowing to evaluate overlap analyses between the

different approaches.

However, there are also limiting factors that need to be

considered. Contrary to the well-characterized and

immunologically homogeneous PC, the KTC is immunologically

muchmore diverse, with only intermediate-resolution HLA typings

available, differing observation periods, varying donor-

histocompatibility and immunosuppressive medication. Despite

the advantage of epitope matching in kidney transplant cohorts
TABLE 4 Univariable binomial logistic regression and minimal model created by stepwise binomial logistic regression of considered Snowflake
and PIRCHE scores of different loci and the development of child-specific HLA antibodies against a specific locus.

Algorithm CSA Univariable regression Multiple logistic regression

Odds ratio CI Significance (p) Odds ratio CI Significance (p)

Snowflake A A 1.42 1.17-1.75 < 0.001 1.50 1.22-1.87 < 0.001

Snowflake B 1.19 0.94-1.50 0.154 1.23 0.94-1.61 0.122

Snowflake C 1.15 0.95-1.41 1.164

PIRCHE-DRB1-A 1.56 0.95-2.71 0.093

PIRCHE-DRB1-B 1.81 0.96-3.54 0.073 1.84 0.92-3.84 0.092

PIRCHE-DRB1-C 1.03 0.63-1.71 0.916

Snowflake A B 1.22 1.02-1.47 0.034 1.31 1.08-1.61 0.007

Snowflake B 1.36 1.09-1.71 0.008 1.38 1.07-1.78 0.013

Snowflake C 1.21 1.00-1.47 0.056

PIRCHE-DRB1-A 1.01 0.66-1.58 0.963

PIRCHE-DRB1-B 2.08 1.13-4.00 0.022 1.87 0.97-3.75 0.067

PIRCHE-DRB1-C 1.17 0.73-1.91 0.53

Snowflake A C 1.22 0.98-1.53 0.068 1.26 1.01-1.58 0.044

Snowflake B 1.18 0.89-1.54 0.241 1.23 0.93-1.62 0.142

Snowflake C 1.23 0.97-1.57 0.091

PIRCHE-DRB1-A 0.86 0.51-1.49 0.58

PIRCHE-DRB1-B 1.25 0.61-2.65 0.55

PIRCHE-DRB1-C 1.48 0.81-2.91 0.222
CI: 95% confidence interval, PIRCHE-DRB1-A: log-transformed HLA-A mismatch-derived allo-peptides presented by recipient DRB1, PIRCHE-DRB1-B: log-transformed HLA-B
mismatch-derived allo-peptides presented by recipient DRB1, PIRCHE-DRB1-C: log-transformed HLA-C mismatch-derived allo-peptides presented by recipient DRB1.
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(20, 35), age, non-adherence, comorbidities and several other

factors thus confounding observations (36, 37). Although some of

these confounders can be ruled out by backing the observations in

the KTC by data from the PC, the immunological difference

between organ transplantation and pregnancy have to be taken

into consideration.

Reed et al. (38) have shown HLA sensitization being

detectable already in the first trimester of pregnancy, yet the

delivery has to be considered as an additional sensitizing event

due to increased exposure to fetal cells. Thus, antibody levels

may still increase after the sample collection period of up to four

days post delivery. Unfortunately, in the PC dataset no further

serum samples were collected prior and post delivery, to analyze

kinetics of detected antibodies.

In the rather homogenous KTC, imputation has been

applied to extend intermediate resolution typings to two-field

typing levels. Although imputation is known to introduce

inaccuracies into epitope analysis (39), the clinical impact of

mispredictions seems limited for a vast majority of cases (28).

Further studies examining kidney transplant recipients with

equally comprehensive DSA follow-up but with two-field

typing resolution of both the recipient and the donor are

suggested to further support our findings and to rule out

imputation-introduced bias. In addition, the Snowflake

prediction pipeline is planned to be extended to also consider

HLA Class II loci, which is challenging due to their

heterodimeric structures.

Although solvent accessibility of antibody epitopes is

necessary for antibody binding, it must be considered that

other factors like molecular complementarity between epitope

and binding site, size differences, physicochemical dissimilarity

from self antigen, HLA expression levels and confirmation by T

cell help impact the process. Consequently, the suggested

Snowflake prediction pipeline may be further improved in the

future by considering inclusion of these concepts.

Although the Snowflake prediction pipeline allows real-time

analysis of new allele sequences, the surrounding Snowflake web

service is as of now restricted to a specific IMGT version. Future

versions of Snowflake may support upload of novel alleles.

Our analysis also revealed co-occurrence of cross-reactive

elevated Snowflake scores (Supplementary Table 4, Table 4). In a

multiple logistic regression of the PC, Snowflake scores of HLA-

B mismatches were independently from Snowflake scores of

HLA-A mismatches correlated with CSA against HLA-A (and

for HLA-B respectively), despite HLA-A and -B having little

overlap in surface-exposed amino acid configurations. It must be

noted though, that the applied regression analysis of Snowflake

quantities may not be capable of ruling out this phenomenon

being an artifact of linkage disequilibrium or cross-locus T-cell

help. To some extent, this is supported by selection of PIRCHE

scores in multiple stepwise regression, yet for HLA-B-specific

CSA, the Snowflake score against HLA-A remains a significant
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contributor. In order to confirm Snowflake scores inducing

interlocus cross-reactivity that promotes antibody production

and to dissect masking (potentially interlocus) effects of indirect

T cell help, further studies are warranted.

Similar to the recently described HLA-EMMA matching

algorithm (14), Snowflake predicts the number of solvent-

accessible amino acid mismatches between donor and

recipient. Opposed to HLA-EMMA however, each HLA’s

surface is evaluated individually, rather than by locus. As

indicated by (16), the individual amino acid configuration may

alter the solvent-accessibility profile of HLA proteins.

Although the presence of DSA is known to be a major risk

factor for graft rejection and loss of graft function (40–43) in all

organ transplant domains, the Snowflake algorithm does not

predict the clinical impact of each of the developed DSA. The

applied epitope matching approaches - including Snowflake - do

not weigh individual immunogenicity patterns. Similar to

antigen mismatches varying in their immunogenicity, also

epitope mismatches’ immunogenicity varies (11, 12, 19, 32).

Although the current epitope matching strategies add prognostic

value to classic antigen matching as implemented by many

allocation organizations, further refinements of these

approaches may specifically integrate epitope immunogenicity,

antigenicity and hierarchy (44–46). Despite the current

algorithms’ imperfections, simulation studies have shown the

beneficial impact of currently available epitope matching

algorithms in organ allocation (47, 48). Applied to a broad

population, organ donor allocation supported by epitope

matching may decrease overall frequency of immunological

events that ultimately cause graft rejection. Consequently,

improved average graft survival and fewer complications in

post-transplant care may be hypothesized. In addition to

further confirmatory allocation simulation studies and studies

on individual patient level, evaluations of health economic

benefits are desirable and will support the process of

implementing and reimbursing such algorithms in national

health systems.

In summary, we herein presented the first clinical evidence

of the recently proposed Snowflake score correlating with ISA

development. The strength of our study is the parallel analysis of

two independent cohorts of pregnant women and patients who

received kidney transplantation. In both cohorts, the number of

HLA protein-specific surface-accessible amino acid mismatches

(i.e. Snowflake score) was significantly associated with

immunizer-specific antibody development, confirming the

relevance of structural differences between HLA proteins for

allorecognition. As hypothesized, a stronger correlation between

Eplet (i.e. B cell epitopes) and Snowflake than between PIRCHE

(i.e. indirect T cell epitopes) and Snowflake was observed.

Further studies are warranted to elucidate the independence

and contribution of Snowflake with respect to established

epitope matching methods.
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