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The modulation of inflammatory (auto)immune reactions by nutrients and gut

bacterial metabolites is of great interest for potential preventive and

therapeutic strategies. B cell-derived plasma cells are major players in

inflammatory (auto)immune responses and can exhibit pro- or anti-

inflammatory effects through (auto)antibody-dependent and -independent

functions. Emerging evidence indicates a key role of nutrients and microbial

metabolites in regulating the differentiation of plasma cells as well as their

differentiation to pro- or anti-inflammatory phenotypes. These effects might be

mediated indirectly by influencing other immune cells or directly through B

cell-intrinsic mechanisms. Here, we provide an overview of nutrients and

metabolites that influence B cell-intrinsic signaling pathways regulating B cell

activation, plasma cell differentiation, and effector functions. Furthermore, we

outline important inflammatory plasma cell phenotypes whose differentiation

could be targeted by nutrients and microbial metabolites. Finally, we discuss

possible implications for inflammatory (auto)immune conditions.

KEYWORDS

plasma cells, nutrients, metabolites, autoimmunity, antibodies, IL-10, IgG
glycosylation, metabolism
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2022.1004644/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.1004644/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.1004644/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.1004644/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.1004644/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2022.1004644&domain=pdf&date_stamp=2022-11-18
mailto:bandik.foeh@uksh.de
mailto:marc.ehlers@uksh.de
https://doi.org/10.3389/fimmu.2022.1004644
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2022.1004644
https://www.frontiersin.org/journals/immunology


Föh et al. 10.3389/fimmu.2022.1004644
Introduction

Inflammatory autoimmune diseases are a significant burden

to individual patients and health care systems worldwide. They

are frequently characterized by the appearance of antibodies

(Abs) directed against self-antigens that are generated by B cell-

derived plasma cells (PCs) (1). Inflammatory autoimmune

diseases include, but are not limited to (seropositive)

rheumatoid arthritis (RA), systemic lupus erythematosus

(SLE), diabetes mellitus type 1, polymyositis, autoimmune

hepatitis, and multiple sclerosis (MS) (2). Furthermore, for

other inflammatory diseases, such as inflammatory bowel

disease (IBD), specific autoAbs have not yet been identified,

but inflammatory T and B cell responses, as well as Abs directed

against gut microbes or pharmaceuticals, are implicated in their

pathophysiology (3, 4).

PCs can exert pro- or anti-inflammatory effects via Ab-

dependent and -independent effects, including the secretion of

(anti-)inflammatory cytokines (5, 6). Thus, strategies for

inhibiting or shifting (auto)antigen-specific inflammatory T

and B cell responses and the resulting PCs to a less or even

anti-inflammatory phenotype are of high relevance.

Since activated B cells and PCs rely heavily on high energy

turnover (7), especially in comparison to naïve B cells (8, 9), B

cell-activating signals lead to increased uptake of nutrients (7).

Thus, nutrients are canonically considered to play a passive, but

important role as substrates and/or building materials for PC

metabolism and function (7). In addition, the influence of

nutrients and gut bacterial metabolites on B cell activation and

PC differentiation as well as differentiation to pro- versus anti-

inflammatory PC subtypes are becoming increasingly evident.

Nutrients and metabolites might thereby act indirectly on

different immune cells or directly on B cells to influence B cell

activation and PC differentiation.

Here, we summarize known influences of nutrients and

microbial metabolites on B cell-intrinsic signaling pathways of

B cell activation and differentiation to PCs and their pro- or anti-

inflammatory phenotypes. In addition, we present important

inflammatory PC phenotypes whose differentiation might be

targeted by nutrients and microbial metabolites. Finally,

we discuss possible implicat ions for inflammatory

autoimmune disorders.
B cell activation and plasma cell
differentiation

B cell activation and PC differentiation from naïve B cells are

tightly controlled via a complex network of intracellular

transcriptional regulators (10). PC differentiation can occur

extrafollicularly or via an intermediate stage in the germinal

center (GC) reaction, where class switching and in particular
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affinity maturation occur. The intermediate stage in the GC is

characterized, e.g., by high expression of the transcription factors

B cell lymphoma 6 protein (BCL6) (11, 12), interferon regulatory

factor 8 (IRF8) (13, 14), and activation-induced cytosine

deaminase (AID) (15), whereas PC differentiation in general is

characterized, e.g., by the expression of the transcription factors

interferon regulatory factor 4 (IRF4) (16, 17) and B lymphocyte-

induced maturation protein-1 (BLIMP-1) (18–20). Both

extrafollicular and intrafollicular PC differentiation are

influenced by metabolic signaling pathways.

Glucose is a crucial energy substrate during lymphopoiesis,

inducing B cell development and function while reducing

apoptosis (21). Its uptake and metabolization are rapidly

upregulated after B cell activation (9, 22, 23). Glucose inhibits

AMP-activated protein kinase (AMPK), a metabolic sensor that

is activated by glucose restriction (24) (Figure 1). In its activated

form AMPK inhibits several downstream targets, including

mammalian (mechanistic) target of rapamycin complex 1

(mTORC1) (25). mTORC1, in turn, induces BCL6, which is

crucially important for B cell maturation prior to PC

differentiation (15, 26). Moreover, mTORC1 contributes to the

immediate unfolded protein response (UPR), preparing B cells

for PC differentiation and Ab secretion (27). Accordingly,

deletion of the AMPKalpha1 subunit increases the primary Ab

response, while disruption of mTORC1 impairs PC

differentiation from activated B cells and Ab responses (15,

28, 29).

Similarly, glucose inhibits glycogen synthase kinase 3 (GSK-

3), another metabolic sensor for glucose availability, which is

also activated in glucose-restricted conditions (Figure 1). In its

activated form GSK-3 represses forkhead box protein O1

(FOXO1) and MYC proto-oncogene (c-MYC), thereby

limiting the expression of key transcription factors of PC

differentiation including IRF4 and favoring B cell quiescence

(28–30). Consequently, glucose restriction might inhibit B cell

activation and PC differentiation.

Amino acids serve as additional essential energy substrates

(esp. glutamine) but also as building blocks for the Ab-

producing machinery (7). Similar to glucose, amino acid

uptake (esp. glutamine and leucine) and metabolization are

highly upregulated in activated B cells and PCs (7, 31).

Glutamine was reported to be essential for the differentiation

of PCs in vitro as early as 1985 (32). Furthermore, the amino

acids glutamine, arginine, leucine, and methionine elicit a

complex signaling cascade involving several cytosolic and

lysosomal amino acid (AA) sensors (e.g., Sestrin-2 (SESN2);

Leucyl-tRNA Synthetase (LRS); Cytosolic arginine sensor for

mTORC1 subunit 1 (CASTOR1); and S-adenosylmethionine

sensor upstream of mTORC1 (SAMTOR)) that converge on

Rag GTPases and activate mTORC1 (33–35) (Figure 1).

Additionally, glutamine metabolism, as well as ATP

production via the citric acid cycle, generates a-ketoglutarate
(aKG) (36). aKG acts as a cofactor in demethylation processes
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at histone H3K27me3, thereby activating the transcription of the

BCL6 gene (37). Moreover, aKG might activate mTORC1 (36,

38). Together, these pathways of amino acid metabolism might

contribute to B cell activation and PC differentiation. In contrast,

protein-energy-malnutrition might lead to changed/reduced

PC responses.

In addition, oxygen availability is a key factor for PC

differentiation. Sustained hypoxia or experimental stabilization

of hypoxia-inducible factor (HIF) inhibits mTORC1 thereby

reducing the proliferation and survival of activated B cells

(31) (Figure 1).

Thus, mTORC1 serves as a (positive) metabolic sensor

potentially integrating glucose, amino acid, and/or oxygen

availability to prepare B cells for PC differentiation (15, 26).

Notably, the function of mTORC1 in PC differentiation is

further dependent on adequate mitochondrial function,

particularly oxidative phosphorylation (39).

Another significant source of energy for B cells prior to PC

differentiation is fatty acid oxidation (FAO) (40), making the

availability of corresponding substrates a possible metabolic

checkpoint in regulating PC differentiation (Figure 1). Indeed,
Frontiers in Immunology 03
pharmacological inhibition of FAO decreased the B cell

population with intermediate mitochondrial mass and

membrane potential, which is predetermined for PC

differentiat ion, and consequently also reduced the

differentiation of PCs in vitro (41).

Furthermore, vitamin A and its metabolite all-trans retinoic

acid have diverse effects on B cell development, PC

differentiation, and the Ab response (42, 43), including PC

differentiation and Ab production via activation of the retinoic

acid receptor (RAR) and subsequent induction of IRF4 (44,

45) (Figure 1).

Another essential nutrient, ascorbic acid (vitamin C),

promotes PC differentiation and Ab responses via an

epigenetic pathway involving increased DNA demethylation by

Tet methylcytosine dioxygenase 2 and 3 (TET2/3), leading to

increased BLIMP-1 expression (46) (Figure 1). Moreover, it was

suggested that the presence of vitamin C during early B cell

activation predisposes GC B cells toward the PC lineage (46).

In summary, the availability of several nutrients andmetabolites

is necessary for activation of different signaling pathways for B cell

activation and PC differentiation. Potentially, a reduction of these
FIGURE 1

Simplified overview of the regulatory network used by nutrients and metabolites in regulating B cell maturation and PC differentiation and
function. Black arrows indicate stimulation, and red arrows indicate inhibition. Nutrients, metabolites, and related cellular processes are
indicated in blue, enzymes in light yellow, transcriptional regulators in orange, and other proteins in shades of purple. Anti- or proinflammatory
outcomes of regulatory processes are indicated in green or red, respectively. AID, activation-induced cytidine deaminase; aKG, a-ketoglutarate;
AMPK, AMP-activated protein kinase; B4GALT1, beta-1,4-galactosyltransferase 1; BCL6, B-cell lymphoma 6; BLIMP-1, B lymphocyte-induced
maturation protein-1; cMyc, MYC proto-oncogene; eIF4E, eukaryotic translation initiation factor 4E; FAO, fatty acid oxidation; FOXO1,
Forkhead-Box-Protein; O1GSK-3, glycogen synthase kinase 3; HIF, hypoxia-inducible factor; IRF4, interferon regulatory factor 4; mTORC1,
mammalian (mechanistic) target of rapamycin complex 1; RAR, retinoic acid receptor; SIRT1, sirtuin 1; ST6GAL1, beta-galactoside alpha-2,6-
sialyltransferase 1; UPR, unfolded protein response.
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factors might be a strategy to reduce the differentiation of PCs in

inflammatory autoimmunity diseases.
Antibody-independent plasma
cell functions

In recent years, it has become evident that PCs have an

immunomodulatory role also independent of Ab secretion (5, 6).

PCs can influence inflammatory immune responses by secreting

pro-inflammatory cytokines, including IL-17, or anti-

inflammatory cytokines, including IL-10, IL-35, and TGFb (5,

6). Although metabolic factors are involved in regulating B cell

activation, PC differentiation, and Ab secretion, the metabolic

regulation of Ab-independent functions remains less explored.

Recent studies have started to shed light on metabolic pathways

underlying the expression and secretion of the key anti-

inflammatory cytokine IL-10 in B cells and PCs and therefore

on the induction of IL-10+ regulatory B cells and PCs.

In one study, intracellular cholesterol synthesis (the

multistep conversion of HMG-CoA to cholesterol) was

reported to upregulate IL-10 expression in B cells and PCs

(47). Specifically, geranylgeranyltransferase (GGTase) and its

substrate geranylgeranyl pyrophosphate (GGPP), which is

derived from the cholesterol synthesis pathway, promoted

protein kinase B (AKT) activation, which in turn inhibited

GSK-3 (47) (Figure 1). Inhibition of GSK-3 led, as described

above for glucose, to activation of BLIMP-1 (47). These authors

further showed that BLIMP-1 contributes to the induction of IL-

10 (47). However, the data suggest that - in addition to BLIMP-1

- further discriminating signaling cascades favoring the

induction of IL-10 might be involved but remain to

be determined.

Short-chain fatty acids (SCFAs), which are gut microbial

metabolites of complex carbohydrates (dietary fibers), have also

been reported to induce anti-inflammatory IL-10+ B cells as well

as IL-10+ PCs. In one study, the SCFA butyrate (C4) increased

the mRNA expression of Irf4 and Prdm1, the gene coding for

BLIMP-1, and the anti-inflammatory cytokines Il-10, Tgfb, and

Ebi3, the gene product of which is part of the anti-inflammatory

cytokine IL-35, at the same time and induced IL-10+ PCs (48). In

this study, PC differentiation as well as Il-10, Tgfb, and Ebi3

transcription by butyrate were linked to the inhibition of the

class I histone deacetylase 3 (HDAC3) activity and increased

acetylation of histone H3 at lysine residue 27 (H3K27) (48)

(Figure 1). Notably, the regulatory IL-10+ PCs induced by

butyrate were mostly of the IgM type (48). The potential of

propionate to induce anti-inflammatory cytokines were low in

this study (48). Furthermore, butyrate-induced IL-10+ B cells

were also linked to the reduction of B cell-dependent

inflammatory autoimmune conditions (49).
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Similarly, the SCFA pentanoate (C5) induced IL-10 in B cells

and effectively suppressed inflammatory conditions in murine

models of MS and colitis (50). Mechanistically, pentanoate

increased mTOR expression but also enhanced histone

acetyltransferase (HAT) activity (Figure 1).

Together, the specificity of SCFAs for different HDACs or

HATs seems to be a crucial factor in the induction of anti-

inflammatory IL-10+ B cells and PCs.
Antibody-dependent plasma
cell functions

As naïve B cells express IgM-type B cell receptors, the earliest

PCs of an induced immune response generate IgM Abs.

Subsequently, activated B cells in extrafollicular (T cell-

independent and -dependent) or GC (T cell-dependent)

immune reactions can undergo class switch recombination

into other isotypes and subclasses: IgD, IgG1-4, IgA1-2, and

IgE in humans and IgD, IgG1, IgG2a (or IgG2c), IgG2b, IgG3,

IgA, and IgE in mice (51).

IgG (auto)Abs are frequently associated with inflammatory

(auto)immune conditions. Accordingly, human IgG1 and IgG3

and murine IgG2a/c and IgG2b have strong activating potentials

because of their high affinity and specificity to certain activating

Fc receptors for IgG (FcgRs) and the complement C1q molecule

(52–55). In contrast, human IgG4 and murine IgG1 show no

interaction with C1q, have a higher affinity for the inhibitory

FcgRIIB, and might inhibit hexamer formation of the other IgG

subclasses, which seems to be a prerequisite for their

aforementioned activation potentials (52–55).

Thus, (i) inhibition of (IgG) class switch recombination in

general, (ii) inhibition of the switch to the activating human

IgG1 and IgG3 (murine IgG2a/c and IgG2b) subclasses, or (iii)

induction of human IgG4 (murine IgG1) might be potential

targets to reduce inflammatory (auto)immune conditions by

nutrients and gut microbial metabolites.

Paralleling its crucial role in preparing B cells for PC

differentiation, mTORC1 is also essential for the expression of

AID (15) (Figure 1), the key enzyme for class-switch

recombination (CSR), as well as somatic hypermutation

(SHM) (56), thereby promoting isotype switching and affinity

maturation (15). Since the nutrient-sensing mechanisms for

glucose, amino acids, and oxygen involve mTORC1 as

described above, it seems likely that these metabolic factors are

also involved in regulating CSR and affinity maturation.

Indeed, immunoglobulin class switching to murine IgG was

dramatically decreased under glucose restriction in vitro (9).

Similarly, glutamine restriction dramatically reduced CSR to

murine IgG in an mTORC1-dependent manner (9, 57, 58).

Downstream of mTORC1, these effects were mediated by
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eukaryotic translation initiation factor 4E (eIF4E) and eIF4E-

binding proteins (4E-BPs), which promote the translation of

AID from its mRNA transcripts (58) (Figure 1).

The mTORC1 pathway is additionally utilized by the oxygen

response system to regulate CSR and affinity maturation (31). In

this study, oxygen restriction diminished isotype switching and

reduced the level of murine IgG by limiting the expression of

AID, while simultaneously reducing the level of high-affinity

Abs (31).

Furthermore, glucose can block the class III HDAC sirtuin 1

(SIRT1), leading to enhanced histone acetylation and higher

AID expression (59). In glycolysis, nicotinamide adenine

dinucleotide (NAD+), which is a crucial substrate for SIRT1

activity (60), is reduced to NADH. Thus, intracellular glucose

metabolism leads to decreased NAD+ levels, reduced SIRT1

activity, and increased expression of AID, thereby promoting

class switch recombination and somatic hypermutation (59,

60) (Figure 1).

As mentioned above, specific SCFAs such as butyrate can

induce non-class-switched anti-inflammatory IL-10+IgM+ PCs.

However, the influence of SCFAs on the induction of class-

switched PC is controversial, which will be described in

the following.

One study found that SCFAs can increase FAO in metabolic

tissues (61) and another study described that SCFAs can reduce

AMPK activity, thereby activating mTORC1 and inducing class-

switched PCs (62) (Figure 1).

In contrast, other studies reported an upregulation of B cell-

intrinsic microRNAs (miRNA) by the SCFAs butyrate and

propionate via HDAC inhibition that blocked BLIMP-1 and

AID expression, resulting in reduced class-switched PCs and

(auto)Ab responses (63–65) (Figure 1). Notably, one study

described different outcomes with different doses of the SCFAs.

At low doses propionate and butyrate enhanced class-switching,

while decreasing at higher doses over a broad physiological range,

AID and Blimp1 expression, class-switching, somatic

hypermutation and plasma cell differentiation responses (63).

The study that described the induction of IL-10+IgM+ PCs

by butyrate in mice also showed in the same experiment that

butyrate reduced the gene expression of Aicda, the gene product

of which is AID, most likely also by inhibiting HDAC (3) activity

(48). Interestingly, the switch to IgG2b Abs (and in tendency

toward IgG2a/c) was reduced, whereas the level of IgG1 Abs

seemed to be unchanged, suggesting that in particular the switch

to activating IgG subclasses was diminished (48).

These findings suggest that the SCFA butyrate can enhance

IL-10+IgM+ PC differentiation and simultaneously block class

switching toward PCs expressing activating IgG subclasses,

highlighting butyrate as a potential candidate to reduce pro-

inflammatory and enhance anti-inflammatory PC responses.

However, further studies have to clarify the opposite findings

on the induction of class-switched PCs by SCFAs. Possibly,
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different in vivo and in vitro settings during the investigation of

SCFAs induced non-inflammatory (including IL-10+IgM+ PCs)

versus inflammatory immune responses leading to opposite

findings. In this context, the possibility that pro- and anti-

inflammatory PC subtypes may derive from different B cell

precursors (B2 versus B1 and marginal zone B cells) should be

evaluated. Furthermore, the effects of different SCFA dosages

need to be considered and verified as well (63).

Importantly, the specificity of SCFAs for different HDACs or

HATs seems to be a crucial factor in determining the potential

outcomes. Even more so, different HDACs seem to have

opposite roles, since glucose-mediated inhibition of the HDAC

SIRT1 enhanced AID expression, whereas SCFA-mediated

inhibition of HDACs reduced AID expression by the

upregulation of B cell intrinsic miRNAs (63–65).

The inflammatory potential of Abs is further crucially

dependent on the type of glycans attached to their Fc region.

Complex biantennary N-glycans consist of a core of N-

acetylglucosamines and mannoses that can be modified by

core fucose, a bisecting N-acetylglucosamine, and two terminal

galactose residues that can be further capped by sialic acid. The

current consensus is that Ab Fc N-galactosylation plus terminal

sialylation dampens the inflammatory potential of IgG, IgA, and

IgM Abs (66–70).

Accordingly, low galactosylation and sialylation levels of

autoantigen-specific, as well as total IgG Abs, are linked to

pro-inflammatory effector functions in autoimmune

conditions, e.g., rheumatoid arthritis (RA), whereas

galactosylated plus sialylated IgG Abs are associated with less

inflammatory or even protective functions (71).

Mechanistically, terminally sialylated glycan chains at Asn 297

in the Fc region of IgG Abs reduce the affinity to activating FcgRs
and increase the interaction with glycan-binding receptors of the

C-type lectin receptor family resulting in inhibitory signals (59,

68). Fc sialylation of total blood IgG increases its immunological

buffer potential to up-regulate the IgG inhibitory receptor FcgRIIb
on immune cells, which decreases inflammatory effector functions

of (auto)antigen-specific IgG (68, 72, 73). Accordingly, the

therapeutic efficacy of intravenous immunoglobulins (IVIg; high

amounts of pooled serum IgG from healthy donors to treat

inflammatory (auto)immune conditions) has been attributed to

the terminally sialylated IgG subfraction for re-establishing a non-

inflammatory total IgG Fc pattern (74, 75).

Galactosylation and sialylation of Abs in PCs are exerted by

specific enzymes (beta1,4-galactosyltransferase, B4GALT1;

beta-galactoside alpha-2,6-sialyltransferase 1, ST6GAL1) (72,

73, 76–80) (Figure 1). Recent studies have shown that IgG Abs

with low galactosylation and sialylation levels can be

determined in GC reactions under the influence of IFNg-
producing T follicular helper (TFH1) cells and IL-17-

producing TFH17 cells (66).
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Thus, identifying nutrients, metabolites and metabolic

pathways that increase autoantigen-specific and/or total Ab

galactosylation and sialylation might be a potential strategy for

reducing or re-directing inflammatory (auto)immune conditions.

In addition, the availability of the respective substrates might

also significantly impact the Ab glycosylation patterns, and thus

the inflammatory potential of Abs. For mannose residues it has

been shown that PCs primarily use glucose as a substrate (81),

indicating that glucose availability is already needed for the N-

core glycosylation of Abs. Recently, supplementation with the

sialic acid precursor N-acetyl-D-mannosamine (ManNAc)

increased total blood IgG sialylation levels in mice (82).

However, data on associations of anti-inflammatory Ab Fc

galactosylation and sialylation with substrate availability

currently remain sparse.

Notably, reports on associations of dyslipidemia with the

risk of cardiovascular disease and atherosclerosis with decreased

Ab sialylation patterns indicate a link between metabolic

contributions and Ab Fc glycosylation patterns (83–86).

Moreover, obesity versus fasting has been linked to the

induction of inflammatory conditions and the reduction of

IgG galactosylation and sialylation levels (87, 88). In addition,

a high-fat diet (HFD) recently reduced total blood IgG

sialylation levels (82), and a Western diet - rich in

carbohydrates and fat – was linked to inflammatory conditions

and the reduction of IgG sialylation levels at least in female mice

(86). However, indirect and direct B cell-intrinsic influences of

nutrients or metabolites on B cell and PC signaling pathways

regulating Ab glycosylation are still unclear and largely remain

to be determined.
Implications for inflammatory
(autoimmune) conditions

As noted above, the effects of nutrient-sensing mechanisms

on PC differentiation and secretion of class-switched pro-

inflammatory (auto)Abs and cytokines might contribute to the

induction of inflammatory (auto)immune mechanisms.

Accordingly, inhibiting corresponding signaling pathways by

nutrients and metabolites might inhibit B cell activation and

pro-inflammatory (auto)immune PC responses or even shift B

cell responses to anti-inflammatory PC responses. In the

following we describe findings about the influences of

nutrients and metabolites and signaling pathways on

autoimmune responses.

In SLE, which can be considered a model disease for B cell-

dependent inflammatory autoimmune disorders, histone H3

and H4 acetylation is reduced overall compared with healthy

controls (89). Increasing histone acetylation via the

pharmacological inhibition of class IIb HDAC6 decreased PC
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differentiation, Ab formation, and immune-complex mediated

glomerulonephritis in murine SLE models (90, 91). Moreover,

treatment with the HDAC inhibitors butyrate and valproic acid

(synthetic SCFA) decreased the production of class-switched

and hypermutated autoAbs by hyperacetylation of target host

genes and subsequent upregulation of miRNAs in B cells,

thereby ameliorating disease activity (55). Activation of the

NAD+-dependent opposite acting HDAC, SIRT1, by the

provision of resveratrol also resulted in decreased PC

numbers, autoAb levels, and SLE-like disease.

In contrast, genetic deletion of the demethylases Tet2/Tet3

in murine B cells increased autoreactive B cell activity,

production of autoAbs, and SLE-like disease by reduced

recruitment of HDACs to the Cd86 locus (92).

The role of vitamin A and its derivatives in promoting PC

differentiation and class-switch recombination has been

extensively demonstrated. Accordingly, treatment of an SLE

mouse model with vitamin A and retinoic acid significantly

increased the B cell response and overall disease burden,

although some protective effects on intestinal and renal

pathology were registered as well (93). In contrast, some

human case studies might indicate protective effects of vitamin

A provision on SLE (94, 95) but require verification.

Since nutrient availability contributes to the activation and

differentiation of B cells, caloric restriction is a potential

therapeutic pathway. Indeed, caloric restriction inhibits the

mTORC1 pathway in several immune cell types (96), reducing

disease activity in models of MS (97, 98) and SLE (99) in

congruence with the effects of pharmacological inhibition of

mTORC1 (26, 100, 101). Regarding the B cell lineage, caloric

restriction reduced the development of anti-nuclear antibody

(ANA) depositions in genetically prone mice in comparison to

the control chow diet and particularly a Western diet (86).

Furthermore, high-fat and Western diets had a significant

impact on the induction of total blood IgG Abs with low

sialylation levels (82). B cells further mediate insulin resistance

caused by high-fat diet feeding via the modulation of T cell

function and the production of pathogenic autoAbs (102).

Similarly, a high-fat diet induced a characteristic repertoire of

Abs in visceral adipose tissue-resident B cells (103). Thus,

ablation of B cells in high-fat diet-fed mice effectively

abrogated the development of insulin resistance (102). These

data suggest that high nutrient availability might support the

development of inflammatory autoimmunity by increasing the

production of autoreactive, class-switched Abs with changed

glycosylation patterns by PCs. However, the metabolic pathways

involved in developing autoreactive and particularly

differentially glycosylated Abs remain elusive and warrant

further experimental and clinical studies.

In addition to the production of Abs, B cells contribute to

the immune response via the production of cytokines. In

particular, the expression of anti-inflammatory cytokines by
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so-called regulatory B cells and PCs plays an important role in

limiting inflammatory (auto)immune conditions (104–106).

Notably, the SCFAs butyrate and pentanoate have been

reported to be potent inducers of IL-10 in cells of the B cell

lineage. Furthermore, butyrate inhibited class switching to the

activating murine IgG subclasses (50). Since the levels of

different SCFAs depend on the gut bacterial composition

(107), these results suggest that the microbiota composition

might affect PC differentiation and IL-10 induction via the

production of different SCFAs making the gut bacterial

compos i t ion an in te r e s t ing targe t to man ipu la te

inflammatory (auto)immune conditions.

Additionally, cholesterol synthesis and also vitamin A-

signaling can contribute to IL-10 induction in B cells (86),

indicating that a butyrate, pentanoate, and possibly vitamin A

supply as well as a lack of external cholesterol – potentially

inducing intracellular cholesterol synthesis – might protect

against inflammatory reactions. Further studies are needed to

discriminate which signals induce PC differentiation in general

and which additional signals distinguish between the induction

of pro- or anti-inflammatory phenotypes.

The experimental animal studies are further supported by

real-life observations. Autoimmune diseases are much more

prevalent in developed Western countries than in less

industrialized regions (108). In addition to increased

hygiene and decreased rates of infectious diseases, possible

causes include dietary habits, summarized as “Western diets”

(108, 109). Notably, Western diets are rich in sugars, salt,

cholesterol, and saturated fat while lacking vitamins and

dietary fibers (109). Thus, the high prevalence and

increasing tendency of inflammatory autoimmunity in

Western countries might be partially explained by an

abundance of sugars, amino acids, and fats, while dietary

precursors of vitamin A metabolites and SCFAs are missing

(109). Thus, this dietary imbalance might cause immune

dysregulation, including effects on B cell maturation toward

PCs, as well as their functions. However, controlled clinical

studies demonstrating PC-specific effects of dietary behavior

are missing and are needed for validation.

In summary, preclinical studies indicate that nutrients

and metabolites serve as crucial signaling molecules in the

regulation of B cell activation and PC differentiation and

function. Animal models of autoimmune diseases and

epidemiologic associations indicate that effects on Ab-

dependent and -independent functions of PCs might play a

role in the pathogenesis of inflammatory autoimmune diseases.

Metabolic signaling pathways that not only inhibit PC

differentiation but also discriminate between pro- and anti-

inflammatory PC functions are valuable targets that necessitate

further evaluation in the future. Additional research is needed

where evidence on PC-specific dietary effects in humans is
Frontiers in Immunology 07
missing or for additional nutrients that have generally been

associated with positive effects on inflammatory autoimmune

conditions, such as polyunsaturated fatty acids and phenolic

acids. Dietary or pharmacological interventions aimed at the

metabolic regulation of the B cell compartment are

promising avenues for the prevention and treatment of

inflammatory (auto)immune disorders and further preclinical

and clinical studies could reveal the most efficient strategies.
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