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Adoptive cell therapy (ACT) using ex vivo engineered/expanded immune cells

demonstrated poor efficacy against solid tumors, despite its great success in

treating various hematopoietic malignancies. To improve ACT for solid tumors,

it is crucial to comprehend how the numerous components of the tumor

microenvironment (TME) surrounding solid tumor cells influence killing ability

of immune cells. In this study, we sought to determine the effects of

extracellular adhesion provided by extracellular matrix (ECM) of TME on

immune cell cytotoxicity by devising microwell arrays coated with proteins

either preventing or promoting cell adhesion. Solid tumor cells in bovine serum

albumin (BSA)-coated microwells did not attach to the surfaces and exhibited a

round morphology, but solid tumor cells in fibronectin (FN)-coated microwells

adhered firmed to the substrates with a flat shape. The seeding densities of

solid tumor cells and immune cells were tuned to maximize one-to-one

pairing within a single microwell, and live cell imaging was performed to

examine dynamic cell-cell interactions and immune cell cytotoxicity at a

single cell level. Both natural killer (NK) cells and T cells showed higher

cytotoxicity against round tumor cells in BSA-coated microwells compared

to flat tumor cells in FN-coated microwells, suggesting that extracellular

adhesion-mediated firm adhesion of tumor cells made them more resistant

to immune cell-mediated killing. Additionally, NK cells and T cells in FN-coated

microwells exhibited divergent dynamic behaviors, indicating that two distinct

subsets of cytotoxic lymphocytes respond differentially to extracellular

adhesion cues during target cell recognition.

KEYWORDS
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frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2022.1004171/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.1004171/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.1004171/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2022.1004171&domain=pdf&date_stamp=2022-10-27
mailto:jsdoh@snu.ac.kr
https://doi.org/10.3389/fimmu.2022.1004171
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2022.1004171
https://www.frontiersin.org/journals/immunology


Kim et al. 10.3389/fimmu.2022.1004171
Introduction
Adoptive cell therapy (ACT) using ex vivo cultured/

engineered immune cells is an emerging therapy for cancer

treatment since the recent success of chimeric antigen receptor

(CAR) T cell therapy (1, 2). While CAR-T cell therapy has been

tremendously successful in clinical trials and is now being used

to treat refractory cancer patients, it still faces a number of

challenges (3). For example, T cells from cancer patients must be

used to prepare CAR-T cells because T cells from donors can

cause severe allogeneic immune responses, necessitating weeks

of manufacturing time and high manufacturing expenses (4).

While genome editing tools are applied to T cells to minimize

allogeneic immune responses (5), other subsets of lymphocytes

such as natural killer (NK) cells that efficiently kill tumor cells

but exhibit minimal adverse effects in allogeneic settings are

considered to develop allogeneic off-the-shelf immune cell

therapeutics (6). In addition, CAR-T cell therapy has been

successful for B cell-originated blood cancers such as leukemia,

lymphoma, and multiple myeloma, but its application for solid

tumors has not been straightforward (7).

One of the most critical assays to develop immune cells for

ACT-based cancer treatment is the cytotoxicity assay, which

measures the ability of immune cells to kill tumor cells. Standard

cytotoxic assays are performed by mixing immune cells and

tumor cells in test tubes or round-bottomed well plates, and

measuring tumor cell death within them. By quantifying the

release of radioactive materials such as 51Chromium or

fluorescence dyes such as Calcein preloaded in tumor cells, or

the incorporation of fluorescence dyes such as propidium iodide

(PI) into the dead tumor cells, immune cell-mediated tumor cell

death is measured (8, 9). While these assays allow high

throughput assessment of immune cells’ ability to kill tumor

cells, the results may not be fully translated to in vivo therapeutic

efficacy because the microenvironment surrounding tumor cells

also influences immune cell-mediated tumor cell death,

particularly in solid tumors (10, 11).

To overcome this limitation, 3D microfluidic chips

mimicking complex tumor microenvironment (TME) such as

hypoxia, vascularization, extracellular matrix densification, and

immune suppressor cells have been developed and used to

evaluate the performance of ex vivo engineered immune cells

(12–16). While these 3D models enable cytotoxicity assay to be

performed in a 3D TME context, complex heterogeneous 3D

environments preclude detailed mechanistic analysis at the

single cell level. In contrast, microwell arrays that confine

defined number of tumor cells and immune cells within a

microwell allow live cell imaging-based single cell level

detailed analysis of tumor cell-immune cell interactions (17–

21), whereas lack complex 3D TME.

Herein, we developed microwell arrays coated with either

bovine serum albumin (BSA), which prevent cell adhesion, or
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fibronectin (FN), which promotes cell adhesion, thus allow us to

control extracellular adhesion environments of tumor cells.

Tumor cell adhesion on extracellular matrix (ECM) plays a

central role in various stages of cancer metastasis (22–24): tumor

cells in mesenchymal phenotype, formed by epithelial-

mesenchymal transition (EMT), typically exhibit strong

adhesion on ECMs and slowly migrate on ECMs, whereas

tumor cells in amoeboid phenotype, formed by mesenchymal-

amoeboid transition (MAT), relatively weakly adhere on ECMs

and quickly migrate through ECM pores. Tumor cells

undergone intravasation become circulating tumor cells

(CTCs) that do not rely on ECM adhesion, but the CTCs

needs to regain ECM adhesion after extravasation to settle in

metastatic tissues (25–27). Using these microwell arrays, we

investigated the effects of extracellular adhesion on immune cell-

mediated solid tumor cell killing. By directly observing the

interaction between immune cells, such as NK cells and T

cells, and solid tumor cells using live cell imaging, we

demonstrated that extracellular adhesion modulated not only

the susceptibility of solid tumor cells to immune cell-mediated

killing, but also the immune cell dynamics during their target

cell recognition.
Results

Bulk population level assessment of
immune cell cytotoxicity against surface
attached vs. suspended solid tumor cells

Cytotoxicity assays are typically conducted by mixing

immune cells and tumor cells in suspension, regardless of

tumor cells are originated from solid tumors or not. We first

asked whether adhesion status of solid tumor cells influenced

immune cell cytotoxicity by comparing immune cell cytotoxicity

against suspended and surface attached solid tumor cells as

schematically shown in Figure 1A. Three different types of solid

tumor cell lines including HeLa (cervical cancer), PC-3 (prostate

cancer), and A549 (lung cancer) were labeled with 5,6-

carboxyfluorescein diacetate succinimidyl ester (CFSE) and

placed in either flat-bottom cell culture plates or round-

bottom tubes. Cells in flat-bottom plates were incubated for

3 h to allow cells to adhere on the surfaces. NK-92 cells were

added to flat-bottom plates, where tumor cells are firmly

attached and spread, or round-bottom tubes, where tumor

cells are suspended, and incubated for 4 h. Then, propidium

iodide (PI) was added to the cell mixture to label dead cells, and

flow cytometry analysis was performed. Cytotoxicity was

calculated by the percentage of PI+ (dead) cells among CFSE+

(tumor) cells (Figure 1B). NK cells exhibited significantly higher

cytotoxicity against tumor cells in suspension than tumor cells

attached on the substrates, regardless of tumor cell types,

indicating adhesion status of tumor cells influenced NK cell
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https://doi.org/10.3389/fimmu.2022.1004171
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Kim et al. 10.3389/fimmu.2022.1004171
cytotoxicity. However, it is also possible that NK cells mixed with

tumor cell suspension exhibited the higher cytotoxicity simple

because they had the greater chance of encountering tumor cells

than NK cells added to surface-attached tumor cells, due to the

higher local cell density.
Fabrication of microwells that can
control tumor cell adhesion status

In order to more precisely evaluate how immune cell

cytotoxicity against solid tumor cells is influenced by adhesion

status of tumor cells, we devised microwell arrays coated with

either cell-adhesion or cell-repellent proteins, thus can control

adhesion status of tumor cells (Figure 2). Using this setting,

microwells loaded with one tumor cell and one immune cell can
Frontiers in Immunology 03
be selected and directly observed by live cell imaging to assess

single cell level immune cell cytotoxicity. To implement this

idea, microwells were either coated with fibronectin (FN), an

adhesion molecules ubiquitously present in extracellular matrix

of many different tissues/organs (28, 29), or bovine serum

albumin (BSA), a protein widely used to prevent cell-surface

interactions (30).

Tumor cells labeled with fluorophores were seeded in the

microwells, and incubated for 3 h to allow them to adhere on the

surfaces. Then, differential interference contrast (DIC) and

fluorescence images were acquired to assess cell adhesion and

spreading in microwells (Figure 3A). In the BSA-coated

microwells, 80 ~ 90% of tumor cells failed to adhere on the

surfaces and exhibited round shapes, whereas in the FN–coated

microwells, ~ 90% of tumor cells adhered on the surfaces and

exhibited flat shapes (Figure 3B). Consequently, average areas of
FIGURE 2

Schematic illustration of microwell arrays that can control adhesion status of solid tumor cells. As bovine serum albumin (BSA) does not allow
cell adhesion, solid tumor cells in BSA-coated microwells will have a round morphology, whereas fibronectin (FN) promotes cell adhesion, solid
tumor cells in FN-coated microwells will have a flat morphology. Top views are shown in the upper panel, and cross sectional views across the
black dashed lines are shown in the lower panel. Created with BioRender.com.
A B

FIGURE 1

Assessment of NK cell cytotoxicity against solid tumor cells adhering on plates vs. suspended in tubes. (A) Schematic illustration of experimental
settings. (B) Effects of substrate adhesion of various solid tumor cells on NK cell mediated cytotoxicity. Mann-Whitney test was used, * < 0.05.
Created with BioRender.com.
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cells in BSA-coated microwells were two- to three-fold lower

than those of cells in FN-coated microwells (Figure 3C). These

results indicate that we could control adhesion status of tumor

cells by microwell surface coating.
Optimization of one-to-one cell pairing
of immune-tumor cells in microwell

Next, we optimized the probability to have one-to-one

pairing of immune and tumor cells in microwells by varying

cell seeding density. Fluorophore-labeled HeLa suspensions with

three difference cell densities (0.4 × 105 cells/ml, 0.8 × 105 cells/

ml, and 1.6 × 105 cells/ml) were applied on microwell arrays, and

DIC and fluorescence images of microwell arrays loaded with the

tumor cells were acquired (Figure 4A) and analyze cell loading in

each microwell (Figure 4B). At the lowest cell density (0.4 x 105/

ml), ~ 70% of microwells were empty and only ~20% of

microwells were occupied by single tumor cells, whereas ~

50% of single cell occupancy was achieved for the other two

cell densities (0.8 × 105/ml and 1.6 × 105/ml). Next, tumor cell

density was fixed to 0.8 × 105/ml and NK cell suspensions in

three different cell densities (0.25 × 105 cells/ml, 0.5 × 105 cells/

ml, and 1.0 x 105 cells/ml) were added to the tumor cell-loaded

microwell arrays (Figure 4C). For three cell densities tested, the

best one-to-one pairing probability (0.21 ± 0.02) was achieved

for NK cell density of 0.5× 105 cells/ml (Figure 4D). In this way,
Frontiers in Immunology 04
we optimized seeding densities of tumor cells and immune cells

to yield the maximum one-to-one pairing of tumor-immune

cells, which is important for the throughputs of the live cell

imaging-based cytotoxicity assays.
Effects of extracellular adhesion on
immune cell-mediated cytotoxicity

With this experimental setting, we first assessed the effects of

extracellular adhesion of tumor cells on NK cell-mediated

cytotoxicity by acquiring time-lapse images of tumor cell-NK

cell interactions and analyzing them. Time-lapse microscopy

was initiated 15 min after NK cell seeding, and conducted for

5.5 h with a 5 min interval. A motorized stage was used to

acquire images in 15 positions in each time interval. Typically,

2 ~ 3 microwells with one–to-one pair were observed in each

field of view, thus ~ 40 NK-cancer interactions were analyzed in

each experiment.

Interestingly, NK cells interacting with tumor cells exhibited

completely different behaviors depending on microwell coating

proteins [Figure 5A and Movies S1, S2 in supplementary

information (SI)]: NK cells in BSA-coated microwells formed

stable cell-cell contacts with round tumor cells (Figure 5A top

panel and Movie S1), whereas NK cells in FN-coated microwells

continuously migrated on flat tumor cells (Figure 5A bottom

panel and Movies S2). These different modes of interactions
A

B

C

FIGURE 3

Morphology of solid tumor cells in BSA-coated and FN-coated microwells. (A) DIC/fluorescence overlay images of HeLa cells (green) loaded in
microwell arrays (microwell Size: 50 mm x 45 mm) either coated with BSA (left) or FN (right). Scale bars: 10 mm. (B, C) Effects of microwell coating on
morphology (B) and cell area (C) of various solid tumor cells. Mann-Whitney test was used, *** < 0.001.
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were evident by the trajectories of individual NK cells

(Figure 5B): NK cells in BSA-coated microwells made minimal

translocation from the origin where initial engagement with a

tumor cell occurred, whereas NK cells in FN-coated microwells

explored large portions of microwells. Next, cells in the

microwells were fixed 2 h after NK cell seeding, and their 3D

interactions were observed by confocal (Figure 5C) and scanning

electron microscope (SEM) images (Figure 5D). As tumor cells

in BSA-coated microwells exhibited round morphology, NK

cells mostly contacted them from the side and made

horizontal interactions, whereas tumor cells in FN-coated

microwells exhibited flat morphology, thus NK cells frequently

stayed upside of the tumor cells and interacted vertically. Lastly,

single cell level NK cell cytoxicity was evaluated by measuring

the time for killing (Figure 5E), time from the initial NK-tumor

contact to the onset of tumor cell death identified by PI

incorporation in the tumor cells. For all tumor cells, NK cells

BSA-coated microwells exhibited significantly faster cytotoxicity

against tumor cells than NK cells in FN-coated microwells.

Identical experiments were performed for T cells using OT-1

T cells, which recognize ovalbumin-expressing tumor cells, and

B16F10-OVA tumor cells, a melanoma cell line expressing

ovalbumin. T cells in BSA-coated microwells behaved similarly

to NK cells in that they maintained stable contact with round

tumor cells (Figure 6A and Movie S3 in SI). In contrast, T cells in

FN-coated microwells formed stable contact on flat tumor cells

with minimal translocation (Figure 6A and Movie S4 in SI),

entirely distinct from NK cells in FN-coated microwells, which

continuously crawled on flat tumor cells. Individual T cell

trajectories of demonstrated that T cells in both types of

microwells did not migrate considerably from their initial

interaction places with tumor cells (Figure 6B). Despite
Frontiers in Immunology 05
exhibiting identical dynamic characteristics, T cells in BSA-

coated microwells killed tumor cells significantly faster than T

cells in FN-coated microwells (Figure 6C).

Taken together, round tumor cells in BSA-coated microwells

were more susceptible for killing by both T cells and NK cells

than flat tumor cells in FN-coated microwells. These results

suggest that the morphology of tumor cells determined by their

adhesion microenvironments is a crucial factor in regulating

immune cell-mediated cytotoxicity.
Discussion

In this study, we devised microwell arrays coated with either

cell repellent (BSA) or cell adhesion (FN) molecules to control

tumor cell adhesion status, and to investigate whether tumor cell

adhesion status influenced immune cell cytotoxicity. Solid tumor

cells hardly adhere on the surfaces of BSA-coated microwells and

exhibited a round morphology, whereas they firmly adhered to

the bottom surfaces of FN-coated microwells with a flat

morphology (Figure 3). By performing live cell imaging of

one-to-one immune-tumor cell pairs, the detailed interaction

dynamics of immune-tumor cell was observed, and the duration

of interactions required for an immune cell to kill a tumor cell

was measured at the single cell level (Figures 5, 6).

Both NK cells and T cells demonstrated greater cytotoxicity

against round tumor cells in BSA-coated microwells than against

flat tumor cells in FN-coated microwells (Figures 5E, 6C),

indicating that adhering and spreading on the substrate itself

may render solid tumor cells more resistant for killing by

immune cells. This is the first demonstration that adhesion

microenvironments of tumor cells influence immune cell
A
B

D
C

FIGURE 4

Optimization of one-to-one cell pairing in microwells. (A) DIC/fluorescence overlay images of HeLa cell (green)-loaded microwell arrays with
various seeding density of HeLa cells. Scale bars: 10 mm. (B) Distributions of cancer cell number/microwell. (C) DIC/fluorescence overlay images
of HeLa cell (green)-NK-92 cell (Blue) loaded microwell arrays with fixed cell seeding density of HeLa cells (0.8 × 105/ml) and various cell
seeding density of NK-92 cells. Scale bars: 10 mm. (D) Distribution of tumor:NK ratio/microwell. All data representative of three independent
experiments.
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cytotoxicity. Microwell arrays coated with BSA or FN made it

possible to vary adhesion status of tumor cells while keeping

most other experimental parameters, such as tumor cell types

and cell density, constant and to directly observe immune cell

mediated tumor killing in a single cell level, making them

suitable for addressing this issue.

Detailed mechanisms underlying immune cells’ enhanced

cytotoxicity against round tumor cells would be an interesting
Frontiers in Immunology 06
subject for future research. As identical solid tumor cells with

different adhesion status were directly compared in this study,

we speculate biophysical properties of tumor cells (31, 32), such

as mechanical properties and curvatures, somehow influenced

immune cell-mediated killing. Alternatively, the adhesion status

of tumor cells may alter the expression of molecules to either

promote or inhibit the activation of immune cells. We examined

surface expression of an intercellular adhesion molecule 1
A

B

D E

C

FIGURE 5

Dynamic behaviors and cytotoxicity of NK cells in microwells coated with BSA or FN (A) Representative time-lapse images of NK-HeLa
interactions in microwells coated with BSA or FN. Scale bars: 10 mm. (B) Representative trajectories of NK cell centroid. For each case, 15 NK
cells were traced over 5 h and plotted with the initial NK-tumor contact points as the origin. (C) Representative confocal images of NK-92 (red)
HeLa (green) pairs in microwells and their distributions in BSA- and FN-coated microwells. Scale bars: 15 mm. (D) Representative SEM images of
NK-92-HeLa pairs in BSA- and FN-coated microwells. Scale bar: 2 mm. (E) Effects of microwell surface coating on time for killing. Mann-
Whitney test was used, ** < 0.01, *** < 0.001.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1004171
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Kim et al. 10.3389/fimmu.2022.1004171
(ICAM-1), a key adhesion molecule for both T cell and NK cell

synapses (33), and found that their expression levels and surface

densities were not significantly influenced by the adhesion status

of tumor cells (Figure S1 in SI). To identify tumor cell adhesion

status-dependent molecules that may either promote or inhibit

immune cell-mediated killing, an extensive screening process

would be necessary.

Immune cells kill tumor cells by either directly releasing lytic

granules to tumor cells or engaging death receptors expressed on

the surface of tumor cells to induce apoptosis (34). Typically,

lytic granule-mediated killing is much faster than death

receptor-mediated killing (35, 36), and NK cells first utilize

lytic granules, and then switch to death receptors when lytic

granules are depleted during serial killing (37). As we primarily

assessed immune cell cytotoxicity in an early stage when

immune cells encountered their first targets, lytic granule-

mediated cytotoxicity was probably the predominant mode of

killing in our study. Visualization of lytic granule dynamics

revealed that NK cells interacting with round tumor cells in

BSA-coated microwells converged and polarized lytic granules

to the immune synapse much quickly than the NK cells

interacting with flat tumor cells in FN-coated microwells

(Figure S2 in SI), implying that the adhesion status of tumor
Frontiers in Immunology 07
cells influenced the early stage of tumor cell recognition by

immune cells (38). Importantly, an enhanced cytotoxicity was

observed against the round tumor cells suspended in tubes

compared to the flat tumor cells attached on substrates when

NK cells were treated with concanamycin A (CMA) which

blocks lytic granule-mediated cytotoxicity (39) (Figure S2 in

SI). This result suggests that immune cell-mediated cytotoxicity

is influenced by the adhesion status of tumor cells regardless of

the killing mechanisms of immune cells.

Both NK cells and T cells in BSA-coated microwells formed

stable cell-cell conjugates with round solid tumor cells

(Figures 5A, 6A), similar to their interactions with blood

cancer cells frequently observed during in vitro cytolytic

synapse studies (40–42). In contrast, NK cells in FN-coated

microwells predominantly climbed up on flat solid tumor cells

and migrated continuously on them (Figure 5A), whereas T cells

in FN-coated microwells maintained stable contact with flat

solid tumor cells with low translocation (Figure 6A). Indeed, the

Bousso group reported similar cellular dynamics in their

intravital microscopy of mouse tumor tissues (43): NK cells

exhibited dynamic motility during their tumor cell recognition

and killing, whereas T cells contacting tumor cells were

predominantly stationary. Given that solid tumor tissues are
A

B
C

FIGURE 6

Dynamic behaviors and cytotoxicity of T cells in microwells coated with BSA or FN. (A) Representative time-lapse images of OT-1-B16F10-OVA
interactions in microwells coated with BSA or FN. Scale bars: 10 mm. (B) Representative trajectories of T cell centroid. For each case, 15 T cells
were traced over 5 h and plotted with the initial T-tumor contact points as the origin. (C) Effects of microwell surface coating on time for killing.
Mann-Whitney test was used, *** < 0.001.
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abundant in various types of extracellular adhesion molecules

(44), these distinct behaviors are likely attributable to differences

between NK cells and T cells in their exposure to extracellular

adhesion molecules, in particular FN, during target cell

recognition. Importantly, extracellular FN substantially altered

NK-tumor cell interactions while having a negligible effect on T-

tumor cell interactions. This discrepancy is likely attributable to

differences in decision-making systems between NK cells and T

cells. T cell receptor (TCR)-mediated signals play a predominate

role in determining T cell behaviors (45); consequently, a strong

TCR-mediated ‘stop’ signal is likely to override FN-induced ‘go’

signal. In contrast, NK cells express panels of receptors and

weigh their signals relatively evenly when making decisions (46).

Therefore, it is possible that extracellular FN signals destabilized

NK-tumor cell synapses, similar to other NK inhibitory

receptors (47, 48), to reduce NK cell cytotoxicity. Alternatively,

extracellular FN can promote NK cells to surveil large area rather

than focusing on a single target cell, and eventually promote serial

killing of target cells (21).

The morphology of solid tumor cells in BSA-coated

microwells is nearly identical to that of circulating tumor cells

(CTCs) formed during metastasis, as both cell types share

adhesion environments that prevent their firm attachment on

substrates. Based on our observation that both NK cells and T

cells demonstrated enhanced cytotoxicity against round solid

tumor cells lacking substrate adhesion, they may serve as

gatekeepers preventing tumor metastasis by efficiently killing

CTCs in blood vessels before their colonization to other organs.
Materials and methods

Cell culture

A549 and PC-3 cells were cultured in RPMI 1640 media

supplemented with 10% FBS and 1% penicillin/streptomycin.

HeLa and B16F10-OVA cells were cultured in DMEM media

supplemented with 10% FBS, 1% penicillin/streptomycin. NK-

92 cells were cultured in MEM a supplemented with 12.5% FBS,

12.5% horse serum, 1% penicillin/streptomycin and 20 ng/mL of

human IL-2.

OT-1 T cell were isolated and expanded from OT-1 T cell

receptor transgenic mice. All experiments were performed

according to a protocol approved by the institutional animal

care and use committees of Seoul National University. On day 0,

cells from spleen and lymph nodes of OT-1 mice were

stimulated with 1 mg/ml OVA 257-264 peptide (SIINFEKL,

Peptron,Inc., Korea) and cultured in RPMI 1640 media

supplemented with 10% FBS and 1% penicillin/streptomycin,

and 50 mM of beta-mercaptoethanol (sigma). On day 2, 5 ng/ml

murine IL-2 (Peprotech) was added to the cells. Cells on day 4

were used for experiments.
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Flow cytometry-based cytotoxicity assay

A549, PC-3 and HeLa cells were harvested and suspended in

serum-free medium, labeled with CFSE at 37 °C or 10 min, and

the CFSE-labeled tumor cells were washed with serum-

containing medium. To assess NK cell cytotoxicity against

suspended tumor cells, the CFSE-labeled tumor cells were

placed in 5mL Falcon round-bottom polystyrene tube (5 × 104

cells/tube) and mixed with the same number of NK-92 cells at 37

°C or 4 h. To assess NK cell cytotoxicity against surface adhering

tumor cells, the CFSE-labeled tumor cells were plated in a flat-

bottom 96 well plates (5 × 104 cells/well), incubated for 3 h to

allow tumor cells adhere, the same number of NK-92 cells were

added to the plates and incubated at 37 °C or 4 h, and the cell

mixtures were harvested. PI was added to the cell mixture to

label dead cells, and flow cytometry was performed using LSR

Fortessa (BD Bioscience). Data was analyzed using FlowJo

(FlowJo, LLC). Cytotoxicity were measured by the percentage

of PI+ cells among CFSE+ cells.
Tumor cell loading in microwell

Microwell arrays on glass coverslips were fabricated as

previously described (49–51) by replicating silicon masters

fabricated by standard photolithography twice. An array of

rectangular microwells with a dimension of 50 mm × 45 mm
was fabricated on a silicon wafer using a negative photoresist

SU-8 50. The silicon master was treated with trichloro

(1H,1H,2H,2H-perfluorooctyl) silane (Sigma Aldrich), and

replicated using poly (dimethyl siloxane) (PDMS) by pouring

PDMS precursor mixture (Sylgard 184, base: curing agent = 10:

1) and curing at 70°C for 4 h. The patterned PDMS mold was

placed on a glass coverslip functionalized with acrylate group,

perfused with a precursor solution (20% (v/v) poly (ethylene

glycol) dimethacrylate (PEGDMA, Mn 750 Da) and 1% (w/v)

1-hydroxycyclohexyl phenyl ketone in 70/30 ethanol/water

mixture) and cured with a UV for 1 min. The microwell

array was extensively washed with deionized water for 3 ~

5 days.

For surface coating, microwell arrays were treated with

air-pasma (100 W, Femto Science, Korea) for 1 min, and

incubated in protein solution containing either FN (2.27 mM,

Sigma) or BSA (2.27 mM, Sigma) at 37 °C for 1 h. Tumor cell

suspensions with various cell densities labeled with CellTrace

Far Red were applied on the protein-coated microwell

arrays, and briefly centrifuged to facilitate tumor cell loading

in the microwells (1500rpm, 2 min). The FN-coated microwell

arrays were incubated in in humidified incubator maintaining

37°C with 5% CO2 for 3 h to allow tumor cells to spread on

the surface.
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Live cell imaging of immune cell-tumor
cell interactions using fluorescence
microscope

A modified Olympus IX 83 epi-fluorescence microscope

with a 40X (UPlanFLN, NA=1.30) objective lens and a

ANDOR Zyla 4.2 sCOMS CCD camera was used for imaging.

A U-LH75XEAPO Xenon lamp (75W, Olympus) and eGFP (EX

BP470/40, BS 495, EM/BP 525/50), Yellow (EX/BP 530/30, BS

550, EM/BP 575/40), Cy5 (EX/BP 620/60, BS 660, EM/BP 770/

75) filter sets were used for fluorescence imaging. The

microscope was automatically controlled by Micro-manager,

and acquired images were analyzed and processed with Image J.

The microwell arrays loaded with the fluorophore-labeled

tumor cells were mounted on magnetic chamber (Chamlide CF,

Live Cell Instrument, Korea). Immune cell suspensions (either

NK-92 or OT-1) containing 0.5 mM SYTOX Orange

(Invitrogen), which labelled dead cells, were added.

Subsequently, time-lapse imaging was initiated.
Confocal microscopy

Tumor cells were labeled with 1 mM CFSE and NK-92 cells

were labeled with CellTrace Far-red. The microwell arrays

loaded with NK-92 cells and HeLa cells were maintained at 37

°C with 5% CO2 in humidified incubator for 2 hours. Then, DIC

and fluorescence images of microwell arrays loaded with NK-92

and HeLa cells were acquired using a confocal laser scanning

microscope (FV1200, Olympus) with a 20X (UPLSAPO 20X;

NA =0.75) objective lens through optical z-stack (depth: 60 mm,

interval 2mm). The acquired images were processed and analysed

using ImageJ fiji and FV10-asw Viewer (Olympus).
Scanning electron microscopy

Cells were fixed in Karnovesky’s fixative (0.1M cacodylate,

10% paraformaldehyde, and 8% glutaraldehyde in distilled water

(DW)) at 4°C for 2 h. After washing the fixed cells with 0.05M

sodium cacodylate buffer three times, they were further fixed in

the second fixative (1% osmium tetroxide in 0.1M sodium

cacodylate buffer) at 4°C for 1 h. Then, the fixed cells were

washed three times with DW, and dehydrated in a series of

ethanol solutions (from 30% to 100%) and finally in

hexamethyldisilazane. Finally, cells were air-dried, coated with

Pt, and observed using SUPRA 55VP (Carl Zeiss).
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SUPPLEMENTARY VIDEO S1

A representative movie showing an NK-92 cell (yellow boundary)
interacting with a HeLa cell (blue labeled with white boundary) in a

BSA-coated microwell. Scale bars: 10 mm. Time stamp: hh:mm.

SUPPLEMENTARY VIDEO S2

A representative movie showing an NK-92 cell (yellow boundary)

interacting with a HeLa cell (blue labeled with white boundary) in a FN-
coated microwell. Scale bars: 10 mm. Time stamp: hh:mm.
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SUPPLEMENTARY VIDEO S3

A representative movie showing an OT-1 cell (yellow boundary)
interacting with a B16F10-OVA cell (blue labeled with white boundary)

in a BSA-coated microwell. Scale bars: 10 mm. Time stamp: hh:mm.

SUPPLEMENTARY VIDEO S4

A representative movie showing an OT-1 cell (yellow boundary)

interacting with a B16F10-OVA cell (blue labeled with white boundary)
in a FN-coated microwell. Scale bars: 10 mm. Time stamp: hh:mm.
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