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Introduction: Colorectal cancer (CRC) ranks second for mortality and third for

morbidity among the most commonly diagnosed cancers worldwide. We

aimed to investigate the heterogeneity and convergence of tumor

microenvironment (TME) in CRC.

Methods:We analyzed the single-cell RNA sequencing data obtained from the

Gene Expression Omnibus (GEO) database and identified 8major cell types and

25 subgroups derived from tumor, para-tumor and peripheral blood.

Results: In this study, we found that there were significant differences in

metabolic patterns, immunophenotypes and transcription factor (TF)

regulatory patterns among different subgroups of each major cell type.

However, subgroups manifested similar lipid metabolic patterns,

immunosuppressive functions and TFs module at the end of the differentiation

trajectory in CD8+ T cells, myeloid cells and Fibroblasts. Meanwhile, TFs

regulated lipid metabolism and immunosuppressive ligand-receptor pairs were

detected by tracing the differentiation trajectory. Based on the cell subgroup

fractions calculated by CIBERSORTx and bulk RNA-sequencing data from The

Cancer Genome Atlas (TCGA), we constructed an immune risk model and

clinical risk model of CRC which presented excellent prognostic value.

Conclusion: This study identified that the differentiation was accompanied by

remodeling of lipid metabolism and suppression of immune function, which

suggest that l ipid remodeling may be an important tr igger of

immunosuppression. More importantly, our work provides a new perspective

for understanding the heterogeneity and convergence of the TME and will aid

the development of prognosis and immunotherapies of CRC patients.
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1 Introduction

Colorectal cancer (CRC) accounts for about 10% of all

malignant neoplasms in humans which is the third most

common cancer worldwide and its mortality rate (9.4%) was the

second highest among malignancies, only after lung cancer. As of

2020, more than 935,000 people worldwide died from CRC or its

complications (1). The traditional mode of surgery combined with

chemoradiotherapy has not achieved the ideal curative effect (2).

In this context, immunotherapy emerged and quickly became the

main treatment mode for a variety of tumors, including CRC, and

achieved long-term and sustained remission in a small number of

patients, however, the majority of patients did not achieve long-

term tumor control after a temporary immune response. This

indicates that although immunotherapy has great prospects in

tumor treatment, there are still considerable deficiencies at

present. We believe that the fundamental solution is to improve

the understanding of the tumor microenvironment (TME).

TME plays an important role in the occurrence, development

and metastasis of tumors, including not only tumor cells, but also

immune cells, stromal cells, cytokines, extracellular matrix and

other extracellular components (3). There have been extensive

studies on the heterogeneity of TME, most of which focus on the

heterogeneity of tumor cells, but the heterogeneity of immune cells

and stromal cells is still insufficient. In recent years, more and more

studies have confirmed that tumor Infiltrating T lymphocytes

(TILs) will gradually differentiate into a dysfunctional state

which is known as exhaustion under long-term antigen

stimulation, which is one of the main obstacles to anti-tumor

immunotherapy in the process of tumor development. The

exhausted CD8+ T cells (Tex) were characterized by progressive

and hierarchical loss of cytokine production, high co-expression of

inhibitory receptors (programmed cell death 1 (PD-1), lymphocyte

activation gene 3 protein (LAG3), T cell immunoreceptor with

immunoglobulin and ITIM domain (TIGIT), etc.), altered

expression of key transcription factors and metabolic

derangement (4). Meanwhile, immune checkpoint inhibitor

therapy has achieved unprecedented clinical success in a variety

of cancers particularly PD-1 antibodies (5). T-cell receptor (TCR)

persistent activation, transcription factors (including Signal

transducer and activator of transcription 3 (STAT3), STAT4,

Nuclear factor of activated T-cells, cytoplasmic 1 (NFATC1) and

Blimp-1) and epigenetic components (including DNA

methylation) were reported to regulate the expression of

immune checkpoints (6–8). However, the metabolic

reprogramming was associated with the development and

maintenance of Tex while the detailed mechanism remained

unclear. In addition, tumor associated macrophages (TAMs) and

cancer associated fibroblasts (CAFs) have also been reported as

potential targets of tumor immunotherapy. They are

heterogeneous cell types which contributed to malignancy

through production of angiogenic growth factors, extracellular

matrix (ECM) remodeling, and immunosuppression (9, 10). The
Frontiers in Immunology 02
immunotherapy targeted TAMs has been applied in clinic while

the minimal monotherapy efficacy was observed (11). Similarly,

altered metabolism in the development of TAMs and CAFs has

also been reported while the specific mechanism remains

unknown. Notably, investigation of heterogeneity and

convergence of above cell types in TME may contribute to

clarify the relationship between immunosuppression and

metabolic remodeling and find potential therapeutic targets.

Single-cell RNA sequencing (scRNA-seq) is a huge

innovation and technological progress in the field of life

science. It provides us with gene expression information at the

level of individual cells and is an indispensable tool to unravel

cellular heterogeneity (12). In this study, we obtained scRNA-seq

data from the public database, re-identified and annotated cell

populations and constructed cell differentiation tracks, identified

multiple cell subpopulations, and found that different types of

cells always showed similar phenotypes at the end of their

differentiation tracks, which was called convergence. While

recent studies have attempted to fully elucidate the TME

heterogeneity identified by scRNA-seq in human cancers,

there are significant deficiencies in the elucidations of

convergence in TME. In this study, we not only focus on the

heterogeneity of TME, but also identified the convergence and

detected common targets of different cell types which may be

potential therapeutic targets and help improve the treatment

strategy and clinical prognosis of patients with CRC.
2 Materials and methods

2.1 Data acquisition

The scRNA-seq profiles included 10,398 cells from 10

human CRC samples (accession number GSE146771) (13),

which were obtained from the Gene Expression Omnibus

(GEO, http://www.ncbi.nlm.nih.gov/geo/) database. This

dataset contains 5169 cells from tumor cores, 2400 cells from

paratumor tissues and 2829 cells from peripheral blood,

performed using the SMART-seq2 platform. Normalized

matrix files for the dataset were downloaded. The bulk RNA-

seq data of CRC samples, including 398 tumor samples and 39

normal samples, were obtained from the The Cancer Genome

Atlas (TCGA) database (https://portal.gdc.cancer.gov/). We

excluded samples with an overall survival (OS) time< 7 days

or insufficient clinical information regarding age, gender, or

TNM stage.
2.2 Processing of the CRC
scRNA-seq data

The Seurat package in R 4.0.3 was used for quality control

(QC) (14). The quality standards were as follows: 1) genes
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detected in< 3 cells were excluded; 2) cells with< 50 total

detected genes were excluded; 3) cells with ≥ 5% of

mitochondria-expressed genes were excluded. For the

remaining cells, cell-cycle scores were calculated using Seurat’s

CellCycleScoring function since the cell cycle phase effect was

observed. Batch effects among the patients had already been

eliminated by the data donator. The gene expression matrices

were further normalized to RNA counts, mitochondrial

percentages, and cell cycle scores using the top 3000 variable

genes. PCA was used to calculate the significantly available

principal components (PCs). We then applied the t-distributed

stochastic neighbor-embedding (tSNE) algorithm for

dimensionality reduction with 20 initial PCs to perform cluster

classification analyses across all cells (15).
2.3 Cell type recognition

We performed differential expression analysis among all

genes within cell clusters using Seurat’s FindAllMarkers

function to identify the marker genes in each cluster (16). An

adjusted P-value< 0.05, expression percentage > 0.25, and | log2

[fold change (FC)] | > 0.25 were considered as cutoff criteria for

identifying marker genes (Table S1). Subsequently, different cell

clusters were determined and annotated by the singleR package

according to the composition patterns of the marker genes and

were then manually verified and corrected with the CellMarker

database. The malignant cells were annotated by correlation with

the data donator’s cell annotation.
2.4 Pseudotime trajectory analysis

Single-cell pseudotime trajectories were constructed using the

Monocle 2 algorithm, an R package designed for single-cell

trajectories by Qiu et al (17). This algorithm applies a machine

learning technique to reduce the high-dimensional expression

profile to a low-dimensional space, visualized as a tSNE plot.

Single cells were projected onto this space and ordered into a

trajectory with branch points. The dynamic expression heatmap

was constructed using the plot_pseudotime_heatmap function. In

addition, differential expression analysis between branches was

performed using the plot_genes_branched_heatmap function.
2.5 Functional enrichment analysis

Differentially expressed genes (DEGs) analysis was

performed using Seurat’s FindMarkers function. The following

cutoff threshold values were used: adjusted P-value< 0.05 and |

log2 [FC]| >1. The DEGs were loaded into Metascape (http://

metascape.org), a tool for gene list enrichment analysis (18).
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The Gene Set Variation Analysis (GSVA) algorithm was

performed to explore the activity variation of biological process

and pathways in each cell types. Gene Oncology gene sets

“c2.all.v7.4.symbols.gmt” and Kyoto Encyclopedia of Genes and

Genomes sets “c5.all.v7.4.symbols.gmt” from Molecular Signatures

Database (MSigDB, http://www.gsea-msigdb.org), which were used

for functional analyses. The GSVA analysis was performed in R

4.0.3 to calculate the enrichment score of the pathways in each cell

and when the P-value was less than 0.05, the enriched gene set was

considered to be statistically significant.
2.6 Cell-cell communication analysis

CellChat is a novel toolkit used to infer intercellular

communication networks from scRNA-seq data quantitatively

(19). Based on the ligand-receptor interactions database for

human and pattern recognition approaches, CellChat can

predict major signaling inputs and outputs for cells and

establish how those cells and signals coordinate their

functions. Ligand-receptor pairs with a P-value< 0.05 were

filtered to evaluate the relationship between different cell types.
2.7 Gene regulatory network analysis

We used SCENIC (Aibar et al., 2017) (20), an algorithm that

can reconstruct transcriptional states and regulatory networks

from scRNA-seq data, to evaluate the gene regulatory networks

relating to TFs and regulons in individual cells. The gene

expression matrix was input into SCENIC and a co-expression

matrix was constructed using GENIE3. Direct binding by DNA-

motif analysis was identified based on a motif dataset (hg19-

500bp-upstream-7species.mc9nr.feather, hg19-tss-centered-

10kb-7species.mc9nr.feather) to construct regulons for each

TF. Finally, regulon activity was analyzed using AUCell (Area

under the Curve), where a default threshold was applied to

binarize the specific regulons. Regulon modules were then

identified based on the Connection Specificity Index (CSI) to

confirm specific associating partners (21). Hierarchical

clustering with Euclidean distance was then performed to

identify different regulon modules. We then used 0.65 as a

cutoff to construct the regulon association network, to

investigate the relationship between different regulons.
2.8 Correlation with bulk RNA-seq data

CIBERSORTx is a new machine learning method developed

from CIBERSORT for estimating the abundance of cell clusters

in bulk RNA-seq data (22). This tool was used to digitally purify

the transcriptome of individual cell clusters from the bulk data
frontiersin.org
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without isolating single cells. We extracted the transcripts per

million (TPM) normalization datasets of selected cell types

including CD8+ T cells, myeloid cells, fibroblasts and

epithelial cells to create the signature matrix in 1000

permutations and without batch correction. Then we separated

the CRC patients from TCGA database into training and testing

cohorts according to a 1:1 ratio using a randomization method

based on survival status and used CIBERSORTx to estimate the

fraction of each cell cluster in training and testing cohorts

respectively. Notably, the bulk RNA-seq data from TCGA was

first normalized to TPM values. Furthermore, stepwise

multivariate Cox regression was applied to select the optimal

coefficient for each cell cluster to construct the risk model in

training cohort. The riskscore were then divided into “high

risktype” and “low risktype” according to the median risk

score which equaled 1.263 in the training cohort. The formula

for the model is as follows:

Riskscore =o
n

i=1
Coefi*Fractioni

Finally, we incorporated the riskscore, TNM stage, gender,

and age to construct a clinical risk model using stepwise

multivariate Cox regression to construct clinical risk model in

the training cohort. The clinical riskscores was then divided into

“high clinical risktype” and “low clinical risktype” according to

the median risk score which equaled 0.900 in the training cohort.

The formula for the model is as follows:

Clinical Riskscore =o
n

i=1
Coefi*Factori

The associations of immune risktype and clinical risk type

with OS were analyzed using Kaplan-Meier (KM) survival

analysis, with receiver operating characteristic (ROC) curve

analysis used to verify the sensitivity and specificity of the

model for the training cohort. The immune risk model and

clinical risk model was then applied to the testing cohort, and the

reliability of the model was verified by KM curve and ROC

curve analyses.
2.9 Statistical analyses

Statistical analyses were conducted using R software (version

4.0.3; R Foundation for Statistical Computing, Vienna, Austria).

All statistical tests were two-sided, with P-values< 0.05

considered statistically significant.
3 Results

The samples, including tumor, Para-tumor and blood from

10 treatment-naive CRC patients were involved in this study.
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According to the annotation of SingleR package and CellMarker

database, we finally identified 8 major cell types including CD4+

T cells, CD8+ T cells, B cells, myeloid cells, innate lymphoid cells

(ILCs), fibroblast cells, endothelial cells, and epithelial cells

(Figure 1A). Each cell type was extracted and further grouped

for annotation, and finally 25 cell subtypes were identified

(Figure 1B). The top five markers identified by the differences

in the main cell types were visualized as a bubble plot

(Figure 1E). Interestingly, when we traced the tissue origins, it

was noted that immune cells, especially Tex, TAMs, dendritic

cells (DCs) and fibroblast cells were highly enriched in tumor

tissues (Figures 1C). To investigate the network of interactions in

the TME, we used CellChat to calculate potential ligand-receptor

pairs. Network visualization was performed to visualize the

interactions (Figure 1D). Notably, Tex, macrophages, TAMs,

and DCs possessed the most interaction pairs with cells from

other lineages, revealing the dominant roles in the TME.
3.1 CD8+ T cells

The CD8+ T cells were divided into nine sub-clusters and

annotated into four cell types; naïve CD8+ T cells, effector

memory CD8+ T cells (Tem), effector CD8+ T cells (Teff) and

Tex (Figure 2A). To clarify the function of each cell type, we

extracted the marker genes (Table S1) and loaded these into the

Metascape (http://metascape.org/) (Figure 2B, C). The

pseudotime trajectory revealed that CD8+ T cells became

exhausted (Figure 2D), and inhibitory receptors (IRS)

expression increased in a stepwise manner (Table S2). We

clustered all the transcription factors surrounding the CD8+ T

cells by single-cell regulatory network inference and clustering

(SCENIC) analysis and divided them into nine modules using a

clustering algorithm (Figure 3E; Table S3). Notably, Module 1

transcription factors including Nuclear receptor ROR-gamma

(RORC), Nuclear receptor subfamily 1 group D member 1

(NR1D1), Peroxisome proliferator-activated receptor gamma

(PPARG) and Sterol regulatory element-binding protein 2

(SREBF2) were significantly activated in Tex (Figure 3F).
3.1.1 Loss of effector function during
exhaustion of CD8+ T cells

The loss of Tex effector function is classed into three major

categories: (1) upregulation of cell surface IRS, (2) inhibitory

soluble factors and environmental factors such as interleukin10

(IL10), IL4, transforming growth factor-beta (TGF-b), and
interferon alpha/beta (IFNa/b), and (3) immunosuppressive

cells (11). We examined the immune checkpoints in different

cell types (Table S1). Notably, IRS, including the inhibitory

receptor T-cell immunoglobulin and mucin domain 3 (TIM3),

lymphocyte activation gene 3 protein (LAG3), programmed cell

death protein 1 (PDCD1), TIGIT, CD27, cytotoxic T-
frontiersin.org
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lymphocyte protein 4 (CTLA-4), and tumor necrosis factor

receptor superfamily member 9 (TNFRSF9), were upregulated

in Tex. Enrichment analysis showed that Teff was enriched in

numerous proinflammatory pathways such as the IL-2, -3, -17,

and -18 signaling pathways, whereas Tex was enriched in IL-4

and -10 immunosuppressive pathways and PD-1 signaling

pathways (Figures 2B, C). GSVA analysis confirmed these

results (Figure 2G). At the same time, the pseudotime analysis
Frontiers in Immunology 05
revealed that genes related to IRS were significantly upregulated

along with the differentiation such as PD-1 and CTLA-4 (Table

S2). The expression of immunosuppressive-related genes such as

IL4, IL1RN, and IL4I1 were enhanced, whereas expression of

immune activation-related genes such as IL18BP and IL5RA

were reduced. This finding agrees with previous results where T

cell exhaustion usually manifests as a stepwise loss of effector

functions. CellChat analysis was undertaken to determine
B

C D

E

A

FIGURE 1

Overview of single cells derived from tumors, adjacent tumor tissues, and peripheral blood of CRC patients. (A–C) tSNE plots of all the single
cells color-coded for (A) eight major cell types, (B) 25 sub-cell types, (C) tissue origins (tumor, adjacent to tumor or blood). (D) Interaction
network among major cell types constructed by CellChat; circle sizes represent interaction weights; the thicker line indicates more weight and
strength of the interactions between variable major cell types. (E) Bubble heatmap showing top five marker genes of eight major cell types. Dot
size indicates fraction of expressing cells, colored according to expression levels.
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further the interaction between Tex and other cells in the TME.

First, we analyzed the immunosuppressive receptors expressed

by Tex, including TIGIT, CTLA-4, ICOS, and PDCD1, and

found that different cells produced different ligand-receptor

modes (Figure 3A). Endothelial and tumor cells mainly

secreted poliovirus receptor (PVR) and NECTIN2, which

acted on the TIGIT receptor on the surface of Tex. CD80 and

CD86 secreted by DCs and TAMs interacted with CTLA-4.

Regulatory T cells (Tregs) mainly secreted CD274 to act on

PDCD1. Furthermore, analysis of the PD-L1 pathway regulatory

network showed that Tregs were the main senders of PD-L1,

with Tex being the main receivers (Figure 3B). Besides, cytokines

such as PVR and NECTIN2 also participate in building the

tumor immunosuppressive microenvironment. Analysis of the

PVR pathway regulatory network showed that tumor and
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e n d o t h e l i a l c e l l s w e r e t h e ma i n s e n d e r s , a n d

immunosuppressive cells such as Tex were the receivers

(Figure 3D). More interestingly, the fibroblast subgroup served

as a mediator in this regulatory network, and this implies that

this subgroup could be a potential target for new drugs. The

NECTIN2 pathway regulatory network also showed multiple

ligand-receptor modes; DCs, endothelial cells, fibroblasts, and

TAMs were the main senders, and Tregs, Teff, and Tex were the

main receivers (Figure 3C). Because PVR and NECTIN2 can

both act on TIGIT, compared to the currently popular PDL1/

PDLD1 blockers, TIGIT may not only reverse the exhaustion

state of CD8 T cells but may also improve the tumor

immunosuppressive microenvironment to a certain extent.

Hence, we hypothesized that inhibition of TIGIT could be a

new treatment for CRC. Our analyses showed that Tex play
B C

D

E

F G

A

FIGURE 2

CD8+ T cells tend to exhaust in the tumor microenvironment. (A) tSNE plots showing 4 sub-cell types of CD8+ T cells (upper) and their tissue
origins (lower). (B) GO and (C) KEGG pathway enrichment analyses of marker genes of Tex (blue color) and Teff (green color). The height of
each barplot shows the log10 of P-value calculated using the Metascape database. (D) Differentiation trajectory of CD8+ T cells in CRC, color-
coded for pseudotime (upper) and sub-cell types (lower). (E) Pseudo-heatmap of genes altered in the differentiation process of CD8+ T cells in
CRC, divided into four clusters. (F) The bubble plot shows the GO and KEGG pathway enrichment analysis of genes in cluster 1 identified in
Pseudo-heatmap using the Metascape database. (G) The heatmap illustrates the activity of biological process and signaling pathway in each cell
type by GSVA.
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major roles in the immunosuppressive microenvironment, and

the depletion of CD8+ T cells is an inevitable outcome in TME.

3.1.2 Metabolic remodeling in the CD8+ T cell
exhaustion process

We constructed the differentiation trajectory of CD8+ T cells

using pseudotime analysis, in which effector memory CD8+ T

cells were present at the initial location of the differentiation

trajectory, gradually differentiated into Teff and finally convert
Frontiers in Immunology 07
into Tex which located at the end of the differentiation trajectory

(Figure 2D). As we all know, under chronic inflammation such

as during cancer, autoimmunity, and chronic infections, Teff

transform into Tex (23). Thus, we identified the DEGs (Table

S1) among the Teff and Tex and performed enrichment analysis

(Figures 2B, C). It was found that the metabolic patterns of Teff

and Tex were significantly different. The glucose metabolic

process was enriched in Teff while lipid metabolism processes

such as lipid biosynthesis and the cholesterol metabolic pathway
B

C D

E F

A

FIGURE 3

The interaction network and transcription regulatory network of CD8+ T cells. (A) Summary of selected ligand-receptor interactions between CD8+ T
cells and TME-infiltrated cell types detected by CellChat. P-values are represented by the size of each circle. The color gradient indicates the level of
interaction; blue and red colors correspond to the smallest and largest values respectively. (B–D) Hierarchical plot showing the inferred intercellular
communication networks for PD-L1 (B), NECTIN2 (C), and PVR (D) signaling, respectively. The interactions are divided into sources and targets and were
labeled by solid circle and hollow circle, respectively. The circle sizes in the hierarchical plot are proportional to the number of each cell type and the
edge width represents the communication probability. (E) Heatmap of 9 identified regulon modules based on the regulon CSI matrix. (F) t-SNE map for
all CD8+ T cells based on the regulon activity scores (RAS) of the respective regulon modules.
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were highly enriched in Tex. GSVA also support this finding

(Figure 2G). We extracted genes whose expression increased in

the differentiation trajectory and then conducted enrichment

analysis. The pathways such as fatty acid biosynthesis and

omega-3, -6, and -9 fatty acids (FAs) synthesis were all

enriched (Figure 2E). These results implied that the

differentiation of T cells was related to lipid metabolism

remodeling, and abnormal lipid accumulation may be the

energy source for Tex. The DEGs analysis, Pseudotime

analysis and GSVA all showed that the PPARG pathway was

highly expressed in Tex. A previous study showed activation of

the PPAR pathway in the metabolic regulation of lipid and

lipoprotein levels (24). Based on these results, we suspect that the

lipid metabolism remodeling in Tex is attributed to the

activation of the PPARG pathway. To verify this hypothesis,

we performed SCENIC analysis to reveal the abnormal

transcriptional regulatory network of Tex. Without

suspension, PPARG was significantly enriched in Tex. This

further demonstrates that the PPARG transcription factor may

play an important role in lipid reprogramming in Tex. In

addition, we also enriched the RORC, NR1D1, and SREBF2

transcription factors in the M1 module, which are also closely

associated with lipid metabolism (25–27). Our results suggested

that transcription factors (TFs) such as PPARG and SREBF2

may participate in the metabolic remodeling in Tex and act as

latent targets to reverse this process.
3.2 Myeloid cells

Myeloid cells are abundant critical components of the TME

which are heterogeneous mixture of cell types having both

tumor stimulating and suppressing activities. Analysis of the

myeloid cells revealed five distinct sub-clusters: monocytes,

macrophages, TAMs, DCs, and mast cells (Figure 4A). Among

them, macrophages and TAMs can be activated and polarized

into M1 (classically activated) and M2 (selectively activated)

phenotypes under the influence of external conditions and

stimulus factors. M1 cells usually show pro-inflammatory

activity, while M2 cells exhibit tumor-promoting phenotypes

characterized by high levels of immunosuppressive markers and

anti-inflammatory factors (28).

Interestingly, when traced back to the tissue source,

monocytes were present primarily in the blood, while

macrophages and TAMs occurred in most tumor tissues

(Figure 4A). Pseudotime analysis showed that monocytes

differentiated into macrophages when they entered the TME

from the blood and finally differentiated into TAMs (Figure 4D).

3.2.1 TAMs are engaged in constructing the
immunosuppressive microenvironment

Enrichment analysis revealed that Pathways associated with

proinflammation were enriched in macrophages, such as IL-1,
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-2, -3, -11, -17, -18, -21, TNF alpha and interferon alpha/beta

signaling pathways while macrophages also exhibit few M2-like

function such as IL-4, -10, and TGF-beta receptor signaling

(Figure 4B). In contrast, pathways associated with tumor

promotion and immunosuppression were enriched in TAMs

such as arachidonic acid metabolism, matrix metalloproteinase

(MMP), the vascular endothelial-derived growth factor (VEGF),

IL-4, -10, -13 and PD-1 signaling. Few M1-like functional

pathways were also present in TAMs such as interferon

gamma and TNF signaling pathways. GSVA analysis also

disclosed that IFN alpha/beta signaling was enriched in TAMs,

while IL-5, -6, -7 and -17 were enriched in macrophages

(Figure 4C). In conclusion, macrophages and TAMs exhibit

mixed M1 and M2 phenotypes among which macrophages

mainly exhibit M1 phenotype, whereas TAMs mainly exhibit

M2 phenotype. Combined above results with tissue origination

and pseudotime analysis, we speculated that once monocytes

from the peripheral blood entered the tumor tissues, they

initially differentiated into M1-type macrophages and finally

differentiated into M2-type TAMs, alongside enhanced

immunosuppressive effects.

SCENIC analysis was performed to determine the changes in

TFs during the transformation of macrophages into TAMs

(Figures 4F, G). We found that STAT4, NFkB1, NFkB2 and

RUNX1 were enriched in macrophages (Table S5) in which

STAT4 has been proved to mediates the JAK-STAT-related

pathways and participates in the conduction of the IL-12, -21,

-23 and -35 signaling pathways (29). NFkB1 and NFkB2 can

promote the polarization of macrophages to M1 type (30).

Conversely, MAF, ETV5 and EGR2 were highly expressed in

TAMs in which MAF regulates the activation of IL-4 pathway

and ETV5 is related to blood vessel growth and activation of the

IL-10 pathway (31–33). The expression of EGR2 was found to be

related to the activation of the IL-4 and TGF-b functional

pathways (34, 35).

Finally, we utilized CellChat to investigate the interactions

between TAMs and other cell subtypes in TME (Figure 5D).

Compared to macrophages, TAMs participated more in

constructing the immunosuppressive microenvironment.

The immunosuppressive ligands secreted by TAMs, such as

CD80, CD86, CD274, ICOSL and NECTIN2 showed evident

interactions with other receptors such as CTLA-4, PD-1, ICOS

and TIGIT expressed by other cells, especially T cells

(Figure 5E–G). In addition to IRS, TAMs also secreted

immunosuppressive soluble cytokines such as IL-10 and

SPP1 (Figure 5A). Interestingly, TAMs were the main

secretors of IL-10, whereas macrophages were the main

receivers of IL-10 (Figure 5B). This suggested a possible

positive feedback loop between macrophages and TAMs.

Once macrophages had differentiated into TAMs, TAMs

possibly secrete IL-10 acting on macrophages to promote the

differentiation process (Figure 5B). TAMs also secreted SPP1

which have been found mediating macrophage polarization
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and facilitates immune escape in lung adenocarcinoma (36).

SPP1 secreted by TAMs could interact with almost all cells in

TME, including DCs, Tregs, Tex, fibroblasts, and malignant

cells (Figure 5C). Interestingly, TAMs were not only the main

secretors of SPP1 but also the main receivers. It may be

attributable to the M2 phenotype of TAMs in this study.
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3.2.2 Lipid metabolism reprogramming
in TAMs

Lipid metabolism associated genes such as PPARA were

highly expressed in the TAMs. In order to explore whether there

was lipid metabolism remodeling in TAMs similar to that in T

cell exhaustion, marker genes of macrophages and TAMs were
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A

FIGURE 4

Macrophages resulted from M1 polarization, whereas TAMs resulted from M2 polarization in CRC. (A) tSNE plots showing 4 sub-cell types of
CD8+ T cells (upper) and their tissue origins (lower). (B) GO and KEGG pathway enrichment analyses of marker genes of TAMs (blue color), Teff
(green color) and DCs (orange color). The height of each barplot shows the log10 of P-value calculated using the Metascape database. (C) The
heatmap illustrates the activity of biological process and signaling pathway in each cell type by GSVA. (D) Differentiation trajectory of
monocytes, macrophages and TAMs in CRC, color-coded for pseudotime (upper) and sub-cell types (lower). (E) Pseudo-heatmap of genes
altered in the differentiation process of monocytes, macrophages, and TAMs in CRC, grouped into four clusters. (F) Heatmap of 12 identified
regulon modules based on the regulon CSI matrix. (G) Selected regulon models which upregulated in TAMs (M1) and Macrophages (M2, M7)
showed in t-SNE map for myeloid cells.
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extracted for functional enrichment analysis. The results showed

that, compared to macrophages, TAMs are enriched in more

lipid metabolic pathways such as cholesterol biosynthesis and

fatty acid metabolism, such as the “PPAR Alpha Pathway”.
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“Regulation of cholesterol biosynthesis by sterol regulatory-

element binding proteins (SREBP)” and “ Oxysterols receptor

LXR-beta (NR1H2) and Oxysterols receptor LXR-alpha

(NR1H3) Mediated signaling “(Figure 4B). GSVA also further
B C
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A

FIGURE 5

The interaction network of macrophages and TAMs. (A) Summary of selected soluble factor-receptor interactions among macrophages, TAMs
and TME-infiltrated cell types. (G) Summary of selected immune checkpoints-receptor interactions between TAMs and TME-infiltrated cell
clusters. P-values are represented by the size of each circle. The color gradient indicates the level of interaction; blue and red colors
correspond to the smallest and largest values respectively. (B, C, E–G) The heatmap plot showed the inferred intercellular communication
network for SPP1 (B) and IL-10 (C), CD80 (E), CD86 (F), and ICOSL (G) signaling of myeloid cells and TME-infiltrated cell clusters, respectively.
The interactions are divided into sources (labeled on y-axis) and targets (labeled on x-axis). The color gradient represents the communication
probability; white and red colors correspond to the smallest and largest values respectively.
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confirmed enhanced synthesis of cholesterol and lipid droplets

in TAMs (Figure 4C). Pseudotime analysis showed that the

expression of genes related to lipid output, such as ABCA1 and

ABCG1, was gradually enhanced during macrophage

differentiation (Table S4). It is reasonable to speculate that the

differentiation of macrophages into TAMs is accompanied by

lipid metabolism remodeling.

Among the functional pathways enriched in TAMs, three

transcription factors attracted our attention, namely SREBF,

NR1H2 and NR1H3. Further SCENIC analysis reported the

abnormal transcriptional regulatory network in TAMs (Table

S5). As shown in Figure 4G, transcription factors in module 1

were significantly activated in TAMs, which include the SREBF

and NR1H3. Among them, SREBF functions in the transcriptional

regulation of genes involved in the biosynthesis and uptake of

lipids, promoting fatty acid synthesis and inducing M2 phenotype

of TAMs (37, 38). NR1H2 and NR1H3 act as transcription factors

engaged in lipid metabolism synthesis and are important

modulators of the SREBP-1c pathway at the transcription level,

where they regulate gene expression linked to cholesterol transport

and efflux in hepatic lipogenic cells (39). We were particularly

interested in the cholesterol efflux function mediated by NR1H2

and NR1H3. Increased cholesterol outflow increased lipid content

in the TME to provide nutrition for tumor cell growth and

destroyed the lipid raft of TAMs to weaken the Toll-like

Receptor 4 (TLR4) signaling pathway (39). It also enhanced the

IL-4 pathway, weakened the interferon pathway (40), and has an

unexpected role in the polarization of TAMs to M2.We speculated

that reprogramming of lipid metabolism in TAMs is involved in

the remodeling of immune functions, to a certain extent.

Therefore, SREBF and NR1H3 play important roles in lipid

metabolism reprogramming in TAMs. TAMs and Tex have both

undergone lipid metabolism remodeling, reflecting the

important role of lipid metabolism in the process of T cell

exhaustion and TAMs polarization to M2 type. However, there

are significant differences between these two kinds of cells, which

are mainly manifested in the differences in the transcription

regulatory factors. Hence, we suspect that SREBF and NR1H3

may be important targets to prevent or reverse the polarization

from TAMs to M2.

3.2.3 DCs exhibit a similar pattern to
TAMs in metabolism remodeling and
construction of the
immunosuppressive microenvironment

DCs are the most potent antigen-presenting cells in the

immune system and are central players in the adaptive immune

response. DEGs analysis revealed that DCs exhibited highly

expressed immunosuppressive cytokines, such as IL-4, -10, and

IFNa/b (Table S1). Further enrichment analysis showed that IL-4,

-10, and -13, interferon alpha/beta, PD-1, and CTLA-4 inhibitory

signaling pathways were enriched in DCs (Figure 4B). CellChat

analysis foundDCs exhibited a similar pattern to TAMs in secreting
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immunosuppressive cytokines, especially ICSO (Figure 5E), CD80

(Figure 5F) and CD86 (Figure 5G). These heatmaps indicated that

DCs and TAMs were the main secretors participating in the

exhaustion process of CD8+ T cells, synergistically promoting the

construction of the immunosuppressive microenvironment.

At the same time, enrichment analysis showed that lipid

metabolism, fatty acid metabolism, and PPARA signaling

pathways were highly enriched in DCs (Figure 4B). Except for

aberrant lipid storage, the PPARs pathway also enhances TCA

cycle, resulting in citric acid accumulation. These conditions

provide the substrate for the de novo synthesis of fatty acids and

intracellular lipid droplets. Other pathways were also enriched,

including Wnt signaling and CDK-beta-catenin activity. Wnt5

has been proved to act on Frizzled (FZD) family receptors on

DCs and trigger the activation of downstream PPAR pathways

through activation of b-catenin signals to remodel lipid

metabolism in melanoma (41) (Figure 4B). Transcriptional

regulation by RUNX2 and RUNX3, regulating Wnt signaling

was enriched in DCs. SCENIC analysis demonstrated that

RUNX2 was highly expressed in DCs (Figure S3D). These

results implied that lipid metabolism remodeling in DCs

might also depend on the core Wnt/b-catenin/PPAR signaling

pathway regulated by the RUNX family.

Based on the above analysis, we speculate that lipid

metabolism reprogramming in DCs is involved in

reconstructing the immunosuppressive microenvironment.
3.3 Fibroblast cells

We extracted 145 fibroblast cells classified into two clusters:

fibroblast-1 and fibroblast-2 (Figures 6A, B). Pseudotime

analysis revealed that fibroblast-1 was present at the initial

stage of the differentiation trajectory, and fibroblast-2 was

present at the end. Interestingly, fibroblast_2 also differentiated

into two distinct subtypes, state2 and state3 (Figure 6C).

3.3.1 Similar metabolic and functional
remodeling in fibroblasts

Enrichment analysis showed that compared to fibroblast-1,

fibroblast-2 is more involved in extracellular matrix (ECM)

degradation and promotion of cell motility regulated by MET

signaling pathway (Figure 6D). Interestingly, the metabolic

patterns between the two clusters are totally different. The

pathways related to lipid cholesterol and fatty acid metabolism

were significantly enriched in fibroblast-2. In contrast,

fibroblast-1 exhibited carbohydrate metabolism pattern

(Figure 6E). Furthermore, the two subgroups of fibroblast-2

both exhibited patterns of ECM regulation and lipid

metabolism, while the state2 subgroup showed stronger

patterns of lipid metabolism remodeling, ECM degradation

and promotion of cell motility regulated by MET signaling

pathway compared to state3 (Figure 6F). Among these, several
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pathways highly enriched in fibroblast-2 aroused our attention,

such as”NR1H2&NR1H3 regulate gene expression linked to

cholesterol transport and efflux”, “NR1H2 and NR1H3

Mediated signaling” and “transcriptional regulation by

RUNX2”. SCENIC analysis also showed that NR1H2,

NR1H3and RUNX were upregulated in fibroblast-2 (Figure

S3D). It was highly consistent with that of TAMs. Above

results revealed that enhanced lipid metabolism and abnormal

lipid accumulation may also occur in the differentiation from

fibroblast-1 to fibroblast-2.
3.4 The infiltration of tumor-educated
immune cells is associated with a worse
prognosis in CRC

We performed digital cytometry analyses using

CIBERSORTx to evaluate the abundance of tumor stromal and
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immune cell subsets analyzed previously in patients from The

Cancer Genome Atlas-Colon Adenocarcinoma (TCGA-COAD)

data. We established a new risk model using stepwise regression

to evaluate the association between cell fractions and prognostic

outcomes and identify the optimal coefficient for each subgroup

in the training cohort. Finally, we selected sixteen subgroups to

construct the model. The formula for the risk model is as follows:

Riskscore=-2.373*Fibroblast_cells.0+9.172*Fibroblast_cells.1

+6.570*Myeloid.cell.0+5.484*Myeloid.cell.1-827.566*Myeloid.cell.2

+9.532*Myeloid.cell.5+18.344*Myeloid.cell.6-.645*Myeloid.cell.7

+16.412*CD8_T_cells.0-0.766*CD8_T_cells.1+7.595*CD8_T_cells.

2+40.164*CD8_T_cells.3+7.233*CD8_T_cells.4-28.620

*CD8_T_cells.5+8.862*CD8_T_cells.7+4.852*CD8_T_cells.8 (The

correspondence between each subgroup and sub cell type was

applied in Supplementary Table 9).

Then, we evaluated the prognostic value of the risk model for

overall survival (OS). Patients in the high-risk group had a

significantly worse OS than the low-risk group both in training
B
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A

FIGURE 6

Similar metabolic and functional remodeling in fibroblasts. (A) tSNE plots showing 2 sub-cell types of fibroblasts. (B) The volcano plot illustrated
the DEGs of each sub cluster, statistically significant DEGs were defined with p< 0.05 and [logFC] > 1 as the cut-off criterion. (C) Differentiation
trajectories of fibroblasts color-coded for pseudotime (upper) and sub-cell types (median) and states (lower). (D) The heatmap illustrates the
activity of biological process and signaling pathway in each cell type by GSVA. (E) GO and KEGG pathway enrichment analyses of marker genes
of fibroblast-2 (blue) and fibroblast-1 (green). (F) Enrichment analyses of marker genes of state2 (blue) and state3 (green) cluster. The height of
each barplot shows the log10 of P-value calculated using the Metascape database.
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and testing cohort (p<0.001 and p=0.03, respectively)

(Figures 7A, B). The model’s accuracy was verified using time-

dependent receiver operating characteristic (ROC) curves, which

confirmed the reliability of the prognoses for both cohorts. The

area under the ROC curve for the risk score was 0.823, 0.774, and

0.696 for 1-, 2- and 3-year OS in the training cohort, versus

0.709, 0.709, 0.711 in the testing cohort. (Figures 7C, D).

Furthermore, we used a stepwise multivariate Cox regression

to construct a new clinical model incorporating riskscore, TNM

stage, gender, and age in the training cohort and selected

riskscore and TNM stage to construct the model. The formula

for the clinical risk model is as follows:

Clinical riskscore = 0:472*riskscore + 0:582*stage

Interestingly, riskscore and TNM stage were both

independent prognosis factors (p<0.001 and p=0.038,

respectively). The patients were separated into two subgroups

according to the median clinical riskscore. KM survival analysis

revealed that high clinical risktype had a significantly worse OS

than low clinical risktype both in training cohort and testing

cohort (p<0.001 and p=0.0012, respectively) (Figures 7E, F). The

areas under the ROC curve for 1-, 2-, and 3-year OS was 0.885,

0.746, and 0.734 for 1-, 2- and 3-year OS in the training cohort,

versus 0.827, 0.780, 0.780 in the testing cohort. (Figures 7G, H),

which was better than the immune risk model.

We also applied other immune risk model that have been

reported and TNM stage for validation. Patients in the high-risk/

high-stage (III-IV) group showed a significantly worse OS than

the low-risk/low-stage (I-II) group (p<0.001 and p=0.015,

respectively) (Figures S6B, S6A). The area under the ROC

curve for the risk score was 0.758, 0.760, and 0.717 for 1-, 2-

and 3-year OS for the immune risk model, versus 0.726, 0.636,

0.650 for the TNM stage model (Figures S6D, S6C).
4 Discussion

Currently, the treatment of CRC, especially advanced CRC,

still remains challenging. Although ICB has made some

progress, only a small number of people benefit from it due to

low efficiency, high drug resistance, severe toxicity and potential

for relapse. A recent study found that both tumor cells and

tumor-infiltrating cells are involved in the development of drug

resistance (42). As for the other defects are due to insufficient of

systematic cognization of immunotherapy. Recent studies

related the heterogeneity identified by scRNA-seq in human

cancers to cell types found in murine tumor models and

identified many functional sub clusters responsible for the

poor immunotherapy response such as CXCL13+BHLHE40+

Th1-like cell population (43), C1QC+SPP1+TAMs (13), XCR1

+CADM1+cDC, CD1A+ CD172A+cDC (44), which provides
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many valuable insights for the development of clinical strategies.

Although recent studies have made significant progress in

resolving the problem of heterogeneity, there are obvious

shortcomings in elucidating the common features of newly

defined immunosuppressive cells such as Tex and TAMs.

In this study, we leverage the advantage of integrated

scRNA-seq and bulk RNA-seq as well as a variety of

bioinformatics analyses to clarify the heterogeneity and

convergence of TME in CRC. Eight main cell types were

identified preliminarily and 25 sub cell types were further

distinguished after improving the resolution. It was found that

the metabolic patterns and immunophenotypes displayed by

each cell type were extremely different. However, we were

surprised to find that multiple sub cell types manifest similar

metabolic patterns and immunosuppressive functions at the end

of differentiation trajectory. Meanwhile, we found similar

immunosuppressant ligand-receptor pairs in Tex, TAMs, and

fibroblast-2 sub cell types by intercellular communication

network analysis, and similar TFs regulating lipid metabolic

remodeling were found in transcription factor regulatory

network analysis.

Since it is impossible to adequately characterize the tumor

microenvironment in CRC, we selected several specific cell types,

such as CD8+ T cells, myeloid cells and fibroblasts representing

the main components of the TME, to illustrate its heterogeneity

and convergence. Our key conclusions are as follows:

First, we identified that the immunosuppressive

microenvironment of CRC was co-shaped by immune cells,

stromal cells and tumor cells. Meanwhile, for each cell type the

cells closer to the end of their differentiation trajectory showedmore

immunosuppressive characteristics, such as exhaustion in CD8+ T

cells and polarization to the M2 phenotype in TAMs. In this

process, proinflammatory functions were inhibited, whereas

immunosuppression functions were enhanced. In addition, the

intercellular communication network showed more active

secretion of immunosuppressive cytokines by cells closer to the

end of their differentiation trajectory. For example, in the regulation

of IRS, exhaustion was the inevitable outcome of CD8+ T cells

mediated by various cells in the TME. At the same time, different

cells manifested different ligandmodes. Tumor cells mainly secreted

PVR and NECTIN2 to act on the TIGIT receptor. CD80 and CD86

secreted by DCs and TAMs interacted with CTLA-4 and Tregs

mainly secreted CD274 to act on PDCD1. Soluble cytokines such as

IL-10 and SPP1 were secreted by TAMs. More importantly, there

are multiple positive feedback loops among intercellular subgroups.

For example, the network analysis of IL-10 implied a potential

positive feedback loop between macrophages and TAMs to

promote the differentiation process. The positive feedback loop

may equally be applied to SPP1 in TAMs to maintain the M2

phenotype. Therefore, we speculate that these inhibitory ligand-

receptor pairs and positive feedback loops of cytokines are involved
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in the construction and maintenance of the immunosuppressive

microenvironment, and are also important potential targets for our

immunotherapy and targeted therapy.

As mentioned above, we mapped the differentiation

pathways of each cell type and found that different subgroups
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of each cell type had different metabolic patterns. Interestingly,

although the metabolic patterns of each subgroups within the

certain cell types were diverse, those cells close to their terminal

differentiation trajectory showed similar metabolic patterns,

namely enhanced l ip id metabol ism and abnormal
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FIGURE 7

Infiltration of tumor-educated immune cells is associated with a worse prognosis in CRC. (A, B) Kaplan–Meier survival curves of immune risk
model for the training (A) and testing cohorts(B), respectively. (C, D) The time-dependent ROC curves of immune risk model for 1-, 2- and 3-
OS year in the training (C) and testing cohorts (D), respectively. The areas under the ROC curve for 1-, 2- and 3- year OS were 0.823, 0.774, and
0.696 in the training cohort and 0.709, 0.709 and 0.711 for 1-, 2- and 3- year OS in the testing cohort. (E, F) Kaplan–Meier survival curves of
clinical risk model for the training (E) and testing cohorts(F), respectively. (G, H) The time-dependent ROC curves of clinical risk model for 1-, 2-
and 3- OS year in the training (G) and testing cohorts (H), respectively. The areas under the ROC curve for 1-, 2- and 3- year OS were 0.823,
0.774, and 0.696 in the training cohort and 0.709, 0.709 and 0.711 for 1-, 2- and 3- year OS in the testing cohort.
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accumulation of intracellular lipid. SCENIC analysis revealed

that the transcription factors that regulate lipid metabolism

remodeling in each cell type partially overlapped. The most

representative transcription factors are PPARG, SREBF, NR1H2,

and NR1H3. The genes regulated by NR1H2 and NR1H3 were

linked to cholesterol transport and efflux, and the outflow of

cholesterol could destroy the lipid rafts on cell membranes,

attenuating the TLR4 signaling pathway. Furthermore, increased

cholesterol outflow also enhanced the IL-4 pathway and attenuated

the IFN pathway. This phenomenon implied that enhanced

intracellular lipid metabolism might be an important factor in the

transformation of immune function, and transcription factors

involved in lipid metabolism remodeling in cells may be potential

therapeutic targets to reverse immunosuppression.

We applied CIBERSORTx algorithm to quantitatively

assess the association between the proportion of cell

subgroups in TME and prognosis in CRC. KM survival

analysis and ROC curve analysis suggest that our immune

risk model is an effective clinical prediction tool, which can

improve the accuracy of survival prediction in CRC patients.

Furthermore, the clinical risk model constructed by

incorporating immune risk type and TNM stage could not

only predict the survival prognosis of colorectal cancer

patients, but also had significantly better AUC values at 1, 2

and 3 years than immune risk model both in training and

testing cohorts. In addition, validation prognostic model

showed similar prognostic value to our immune risk model

whereas worse than our clinical risk model. This indicates that

the risk prognosis model based on cell proportion in TME can

supplement the existing clinical prognosis criteria and is a

method with great prospects in clinical practice applications.

Currently, conventional RNA sequencing is the mainstream

sequencing technology, but its gene expression level is the mixed

expression of all cells in the tissue after lysis. Although simple

and intuitive, it cannot reflect the gene expression of a single cell

or a single cell group. With the further analysis, the accuracy of

sequencing is required to be higher and higher. With its high-

precision sequencing analysis, scRNA-seq has become a

powerful technology in modern medical research, but this

technology cannot be applied to most preserved tissue samples

and is expensive, so it cannot be used as a routine clinical

treatment project. The deconvolution algorithm CIBERSORTx

can not only deconstruct ordinary RNA-seq to achieve the

secondary utilization of data, but also to some extent make up

for the shortcomings of scNA-SEQ tissue samples, such as high

requirements, high price and insufficient sample size. More

importantly, with the progress of sequencing technology, the

cost of ordinary RNA-SEQ will gradually decrease, while the

accuracy and data volume of scRNA-seq will continue to
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improve. Meanwhile, deconvolution algorithms like

CIBERSORTx will also continue to improve, which means that

in the near future, more and more patients with colorectal cancer

can benefit from the high-precision analysis of scRNA-seq while

enjoying the low cost of ordinary RNA-seq.

Although the heterogeneity and convergence of CRC

microenvironment were further analyzed by using scRNA-seq and

constructed an immune risk prognostic model based on

CIBERSORTx algorithm and bulk RNA-seq data in this study,

there are still some limitations. First of all, our data sources are all

public databases, so we cannot obtain all clinical information that is

meaningful for the study, such as tumor size, location, differentiation

degree, pathological classification, immunohistochemical results,

surgical methods, postoperative radiotherapy and chemotherapy,

and patients’ underlying diseases, etc. This will inevitably lead to the

introduction of confounding factors in the construction of the

prognostic model, and cause certain deviations in the final results.

Secondly, although our single-celled sequencing analysis at the

cellular level to reveal the gene expression, and through a variety of

biological information analysis method to predict and infer the

trajectory, regulation and control of transcription factors, cell

differentiation and intercellular communication network, but has

not been experimental verification, the follow-up still need further

perfect the related experiments in vivo and in vitro in order to

strengthen the reliability of conclusions.
9 Conclusion

This study further revealed the heterogeneity and

convergence in TME, especially the high consistent lipid

metabolism remodeling and immunosuppressive phenotype

during the differentiation of each cell subpopulation, providing

a new perspective for the targeted therapy and immunotherapy

of colorectal cancer. Meanwhile, CIBERSORTx algorithm was

used to integrate scRNA-seq and bulk RNA-seq data to

construct immune risk model and clinical risk model,

providing reference value for prognostic analysis of colorectal

cancer patients. In conclusion, this study provides a new

perspective for understanding the heterogeneity and

convergence of the TME and will aid the development of

immunotherapies to treat CRC.
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Glossary

CRC colorectal cancer

SCENIC single-cell regulatory network inference and clustering

TCGA The Cancer Genome Atlas

HER2 human epidermal growth factor receptor 2

EGFR epidermal growth factor receptor

TME tumor microenvironment

Tex exhausted CD8 T cell

TAM tumor-associated macrophages

CAF cancer-associated fibroblasts

ICB Immune checkpoint blockade

PD-1 programmed cell death 1

CTLA-4 cytotoxic T lymphocyte-associated protein 4

dMMR mismatch-repair-deficient

MSI-H microsatellite instability-high

MSI microsatellite instability

IRS inhibitory receptors

scRNA-seq single-cell RNA sequencing

TNM the tumor

nodes and metastasis

QC quality control

ILC innate lymphoid cell

DC dendritic cells

BEAM branch expression analysis modeling

Teff T effector cell

DEG differentially expressed genes

AMPK Adenosine 5&rsquo;-monophosphate -activated protein
kinase

GSVA gene set variation analysis

FA fatty acid

SREBP Sterol regulatory element binding protein

FASN atty acid synthase

ACC Acetyl-CoA Carboxylase

HMG-CoA 3-hydroxy-3methylglutary-coenzyme A

ACLY ATP-citrate lyase

PPAR peroxisome proliferator-activated receptor

TF transcription factors

TGF-&beta; transforming growth factor-beta

(Continued)
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IFNa/b interferons alpha and beta

TNF tumor necrosis factor

IL interleukin

Treg regulatory T cells

PVR poliovirus receptor

TIGIT T cell immunoreceptor with immunoglobulin and ITIM
domain

ICOSL/
ICOS

Inducible Co-Stimulator Ligand/Inducible Co-Stimulator

TIM3 the inhibitory receptor T-cell immunoglobulin and mucin
domain 3

LAG3 lymphocyte activation gene 3 protein

MSI-L microsatellite instability-low

VEGF vascular endothelial-derived growth factor

ZEB1 zinc finger E-box binding homeobox 1

MMP matrix metalloproteinase

TLR4 Toll-like Receptor 4

TCA tricarboxylic acid

FZD Frizzled

GPCR G-protein-coupled receptor

BMP bone morphogenetic protein

Dvl Disheveled

AhR aryl hydrocarbon receptor

EMT epithelial&ndash;mesenchymal transition

TCGA-
COAD

The Cancer Genome Atlas-Colon Adenocarcinoma

OS overall survival

ROC receiver operating characteristic

KM Kaplan-Meier

GEO Gene Expression Omnibus

PC principal component

tSNE t-distributed stochastic neighbor-embedding

CSI Connection Specificity Index

TPM transcripts per million

NR1H3 Liver X receptors alpha

NR1H2 Liver X receptors beta
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