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Osteosarcoma was the most frequent type of malignant primary bone tumor

with a poor survival rate mainly occurring in children and adolescents. For

precision treatment, an accurate individualized prognosis for Osteosarcoma

patients is highly desired. In recent years, many machine learning-based

approaches have been used to predict distant metastasis and overall survival

based on available individual information. In this study, we compared the

performance of the deep belief networks (DBN) algorithm with six other

machine learning algorithms, including Random Forest, XGBoost, Decision

Tree, Gradient Boosting Machine, Logistic Regression, and Naive Bayes

Classifier, to predict lung metastasis for Osteosarcoma patients. Therefore

the DBN-based lung metastasis prediction model was integrated as a

parameter into the Cox proportional hazards model to predict the overall

survival of Osteosarcoma patients. The accuracy, precision, recall, and F1 score

of the DBN algorithmwere 0.917/0.888, 0.896/0.643, 0.956/0.900, and 0.925/

0.750 in the training/validation sets, respectively, which were better than the

other six machine-learning algorithms. For the performance of the DBN

survival Cox model, the areas under the curve (AUCs) for the 1-, 3- and 5-

year survival in the training set were 0.851, 0.806 and 0.793, respectively,

indicating good discrimination, and the calibration curves showed good

agreement between the prediction and actual observations. The DBN survival
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2022.1003347/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.1003347/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.1003347/full
https://orcid.org/0000-0001-8262-5749
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2022.1003347&domain=pdf&date_stamp=2022-11-18
mailto:chengliangyin@163.com
mailto:34302603@qq.com
mailto:fxw600@qq.com
https://doi.org/10.3389/fimmu.2022.1003347
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2022.1003347
https://www.frontiersin.org/journals/immunology


Li et al. 10.3389/fimmu.2022.1003347

Frontiers in Immunology
Cox model also demonstrated promising performance in the validation set. In

addition, a nomogram integrating the DBN output was designed as a tool to aid

clinical decision-making.
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Introduction

Osteosarcoma is a malignant bone tumor with a low

incidence but a high mortality rate, mainly occurring in

children and adolescents (1, 2). Osteosarcoma frequently arises

in the extremities, but it is also found in the axial skeleton and

can be diagnosed at any age. At present, the combined treatment

for Osteosarcoma includes tumor resection, radiotherapy, and

chemotherapy. In addition, preoperative neoadjuvant

chemotherapy and preoperative radiotherapy are increasingly

important (3–5). Despite these advances, the prognosis of

patients with Osteosarcoma is still poor due to the aggressive

and metastatic behavior of the tumor (6, 7). Previous studies

have shown that the major predictors of prognosis include age,

gender, tumor dimension, response to chemotherapy,

involvement of the proximal extremity or within the axial

skeleton, and the presence of metastasis at diagnosis (8, 9).

Osteosarcoma can metastasize to distant sites, mainly to the

lungs, and occasionally to bone or lymph nodes (10, 11).

Metastases can be detected in about 15%-20% of newly

diagnosed Osteosarcoma patients, and the 5-year survival rate

for these patients with metastases is only 20% (12–14).

Therefore, early identification of patients at high risk of

metastasis and timely assessment of overall survival is

particularly important for reducing mortality and improving

patients’ quality of life.

In most situations, researchers conducted survival analyses

often used Cox proportional hazards model (15). The model can

analyze the influence of multiple factors on survival time

simultaneously without estimating the distribution type of

survival data, applying survival outcome and survival time as

the dependent variable. The model assumes that the risk of a

clinical outcome is a linear combination of the patient’s

covariates. However, this method may be too crude for many

intricate clinical outcomes such as tumor metastasis.

Machine learning (ML) is a significant subfield of Artificial

intelligence (AI) to build decision-making models, it

concentrates on making predictions by learning from

available data. Deep learning (DL) is a sub-field of ML that
02
concentrates on making predictions using multi-layered neural

network algorithms. Compared to other ML methods such as

logistic regression, the neural network architecture of DL

enables the models to scale exponentially with the growing

quantity and dimensionality of data (16). The deep belief

network (DBN) model is a DL algorithm that stacks

simpler models known as restricted Boltzmann machines

(RBMs) (17). The unsupervised learning builds a multi-level

structure layer-by-layer, automatically extracting more

abstract representations from the layers. It makes DBN

particularly useful for solving complex computational

problems such as large-scale image classification, natural

l anguage proces s ing and speech recogn i t ion and

translation (17).

Recently, numerous ML-based studies have been carried out

for cancer prediction, prognosis, or even assessing treatment

response (18–20). They predict survival time in years

(particularly for the pre-operative prognosis of tumor patients)

by using regression or categorizing it into long-term or short-

term based on phenotypic features extracted from various types

of pre-operative clinical characteristics or image data, i.e., blood

tests, computed tomography (CT), magnetic resonance imaging

(MRI) data before operation. The ML algorithms used in these

studies include Decision Trees (DT), Gradient Boosting

Machine (GBM), Random Forest (RF), Naive Bayes Classifier

(NBC) and DL. However, few studies have compared the

diagnostic performance of various ML algorithms with DL

algorithms in assessing lung metastasis in OS patients.

In this study, the performance of DBN and six machine

learning algorithms in predicting lung metastasis for

Osteosarcoma patients was compared to find the optimal

algorithm. The optimal DBN algorithm was subsequently used

to construct a pulmonary metastasis predictive model for

pulmonary metastasis in Osteosarcoma patients, the predictive

model was integrated with other important variables into the

Cox model to predict overall survival in Osteosarcoma patients.

The study demonstrated that the DBN survival Cox model had

good discrimination and calibration, which would provide great

help for clinical decision-making.
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Materials and methods

Applications of deep learning in
medical field

DL has developed into an innovative field in the exploration

part of ML and data mining (21, 22), which can break through

the limitations of human eyes and reveal hidden information

(23–25). CNN is a representative deep neural network (DNN)

model, which is considered one of the most commonly used DL

methods (26), it eliminates the need for tedious steps such as

manual feature extraction of medical images and significantly

improves the ability to classify images and detect objects in

images. CNNs have been gradually used by the medical

community to assist in the early diagnosis of clinical diseases

and to predict clinical outcomes of disease progression since the

introduction of AlexNet in 2012 (27–30). Research shows that

deep CNNs can achieve state-of-the-art performance in tumor

detection and diagnosis compared to other machine learning

methods and human experts (31–33). JY et al. developed and

validated a deep learning signal (DLS) from diffusion tensor

imaging (DTI) using a deep CNN model, identified key

pathways for DLS in a radiogenomics cohort (n=78) from

paired DTI and RNA-seq data, and could improve

stratification of gliomas by identifying risk groups that affect

survival outcomes for dysregulated biological pathways. Gun

Woo Lee et al. created a CNN model to diagnose spinal cord

cervical spondylosis (CSM) by receiving input from multiple

channels of two-dimensional data and performing iterative

transformations using convolution and pooling operations to

identify features of lateral cervical spine radiographs of patients

with or without spinal cord cervical spondylosis (CSM) with

high diagnostic accuracy (34). This also provides new ideas and

references for the treatment and diagnosis of clinically relevant

diseases (35–37).
Dataset and preprocessing

The training set for this study was derived from the

Surveillance, Epidemiology and End Results (SEER) database

using the SEER*stat software (version 8.6.3) from 2010 to 2016.

Inclusion criteria included: (1) patients with histologically proven

osteosarcoma (ICD-0-3 8936/3); (2) the primary tumor had to be

localized in the limb bone; and (3) osteosarcoma was the first

primary tumor. Patients with missing survival data or data on

tumor size, metastasis, stage, or surgical modality were excluded.

Collected variables included age, sex, race, grade, primary sites,

laterality, bone metastases, T, N stage, lymph node surgery, surgery,

radiation, chemotherapy survival status, and survival time. The

validation set was collected from the inpatient Electronic Medical

Record database at the Second Hospital of Jilin University, the
Frontiers in Immunology 03
Second Hospital of Dalian Medical University, Xianyang Central

Hospital, and Liuzhou People’s Hospital in China. The variables to

be collected were the same as before. Time-to-event or censoring

was based on the date of diagnosis or the date of the last contact.

The Osteosarcoma’s tumor node metastasis (TNM) stage was

evaluated based on the 7th edition of the American Joint

Committee on Cancer (AJCC) staging manual. “SEER Combined

Mets at DX-lung (2010 +)”was used to identify the presence of lung

metastasis in a newly diagnosed. Osteosarcoma patient. The Ethics

Review Board of the Xianyang Central Hospital approved this study

(Ethics Committee number: 20210022).
Variables screening for overall survival in
OS patients

Cox proportional hazards with the least absolute shrinkage

and selection operator (LASSO) penalty were employed to

identify clinical variables that were linked with the overall

survival of Osteosarcoma patients. LASSO penalized

estimation methods shrank the estimates of the regression

coefficients towards zero relatives to the maximum likelihood

estimates. The shrinkage was to prevent overfitting due to either

collinearity of the covariates or high dimensionality.
Deep learning algorithm versus machine
learning algorithms

To compare the DBN algorithm with other ML algorithms

for pulmonary metastasis in OS patients, several supervised

classification methods were evaluated to determine better

classification accuracy. The evaluated conventional classifiers

include DT, GBM, logistic regression (LR), NBC, RF, and

XGBoost (XGB). For parameters identification of six ML

algorithms, univariate and multivariate logistics regression

analyses were conducted. The preprocessed labelled dataset

was used to train and test the model of different classifiers

using 10-fold cross-validation as the experimental setting. The

10-fold cross-validation is a method to validate the studied/built

model by iterating through the labelled data 10 times with

different subsets of training and testing for each iteration.

DBN comprises multilayer random variables and binary la-

tent variables and is a probabilistic deep learning algorithm. The

model training performed is arranged in two main steps. Step 1:

Train each layer of the RBM Network separately in an

unsupervised manner and ensure that the maximum feature

information is retained when the feature vector is mapped to a

different feature space. Step 2: The BP Network is set as the final

layer of the DBN, and the output feature vectors of the RBM are

used as its input feature vectors to train the entity relationship

classifier in a supervised manner.
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In this study, the number of attribute features was obtained

from the non-negative matrix decomposition as K = 14. After

training the DBN, the last layer is the output features. The

dimensionality of the feature vector is the number of nodes in

the last layer. The number of nodes is determined by parameter

sensitivity experiments based on the characteristics of our data.

We finally chose 4 as the number of nodes.

In lung metastasis prediction, the attribute vector V of each

case sample was used after the dimensionality reduction process

as the input of DBN. In this training phase, the input vector V of

the visible layer was passed to the hidden layer. Conversely, the

input V of the visible layer was randomly selected to reconstruct

the original input data. Finally, these new visible neuron

activation units forwarded the reconstruction of the hidden

layer activation units to obtain h1 and h2. Gibbs sampling was

used to repeat the above process during the training. The

correlation differences between the hidden layer activation

units and the input visible layer were used as the basis for

updating the weights W1 and W2.

The above seven algorithms were evaluated by the

following indexes: accuracy, precision, recall, and F-measure

(F1-Score). In addition, the feature importance of the optimal

ML algorithm was calculated and compared with the

DBN algorithm.
Model development and visualization

The previous screening variables selected by the LASSO Cox

proportional hazards model were combined with output of the

pulmonary metastasis predictive model to construct an

integrated Cox model for predicting overall survival in

Osteosarcoma patients. A web calculator and a clinical

dynamic nomogram for those screening variables were

planned to calculate and visualize the relationship between the

variables and predicted probabilities of overall survival.
Model validation

The performance of the DBN survival Cox model was

internally validated using the training set and externally

authorized using the validation set. Discrimination for the

model was evaluated by the area under the curve (AUC) of the

receiver operating characteristic (ROC) curve. AUC values can

range from 0 to 1, with values of 0.5-0.7 demonstrating poor

discrimination, 0.7-0.8 acceptable, and >0.8 excellent

discrimination (38). The calibration curve was used to assess

the agreement between model-predicted and actual overall

survival. The closer the calibration curve is to the 45-degree

diagonal, the more perfect the model will be (39).
Frontiers in Immunology 04
Assessment of clinical utility

Decision curve analysis (DCA) was used to explore the net

benefit of the prognostic model over the entire range of

probability thresholds (40, 41). DCA calculates the clinical net

benefit acquired by applying the studied DBN survival Cox

model to make clinical decisions. In the plot of DCA, the X-

axis indicates thresholds probability for survival, and the Y-axis

demonstrates net benefits depending on different thresholds

probability. The pink horizontal line parallel to the X-axis

represents no clinical action taken by any patient (“treat

none”) and their net clinical benefit is 0. The smooth arc line

represents that all patients took clinical action (“treat all”), and

their net clinical benefit is a backslash with a negative slope. The

curve of “treat by DBN survival Cox model” is then compared to

“treat all” and to “treat none”.
Statistical analysis

The baseline categorical variables were represented as their

counts and percentage, and continuous variables were expressed as

means with standard deviation (SD) and medians [interquartile

ranges (IQR)]. The COX proportional hazards with the LASSO

penalty were used to identify predictor variables for survival. The

lambda (l) parameters in LASSO regression analysis were chosen

for minimized expected model deviance. To compare deep learning

and six machine learning algorithms, univariate and multivariate

logistic regression analysis were conducted for parameter selection.

After a univariate logistics regression analysis of all collected

variables, those with a P-value < 0.05 were included in

multivariable logistics regression. Variables with P-value < 0.05 in

multivariable analysis were used to build the model. Accuracy,

precision, recall, and F-measure were used to assess the

performance of algorithms. The discrimination and calibration of

the model in training and validation sets were evaluated by using

the AUC and calibration curve. Clinical applicability was analyzed

using DCA. P values < 0.05 indicated statistical significance. The

statistical analyses were performed using RStudio software version

1.1.414 (Boston, MA, USA).
Results

Data characteristics

In total, 1,094 eligible Osteosarcoma patients from the SEER

database were identified and designated as the training set. The

validation set included 107 patients from the Second Hospital of

Jilin University, the Second Hospital of Dalian Medical

University, Xianyang Central Hospital and Liuzhou People’s
frontiersin.org
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Hospital. An overview of the total datasets combining the

training set and validation set is shown in Figure 1A.
Predictor variables of overall survival

Among 14 candidate survival-associated variables, 8

variables with statistically significant hazard ratios were

selected based on LASSO Cox regression analysis (Figures 1B,

C). These were sex, age, primary site, grade, T stage, surgery,

bone metastases, and lung metastases.
Compare with other machine learning
classifiers

Uni- and multivariate logistic regression analysis identified

that sex, bone metastasis, surgery, N and T were significant

factors for predicting pulmonary metastasis (Table 1). For

training set, the results of DBN algorithm and six ML

algorithms (DT, GBM, LR, NBC, RF and XGB) are shown in

Figure 2. The accuracy, precision, recall, and F-Score of DBN

were 0.917 ± 0.017, 0.896 ± 0.022, 0.956 ± 0.018 and 0.925 ±

0.018, respectively. Among the six ML algorithms, the accuracy,

precision, recall and F- Score of the best algorithm (XGB) were

0.712 ± 0.014, 0.689 ± 0.026, 0.754 ± 0.044 and 0.724 ± 0.017,

respectively. For the validation set, the comparison result is

shown in Figure 3. The accuracy, precision, recall, and F-Score of

DBN and XGB were 0.888/0.665, 0.642/0.326, 0.900/0.750 and

0.750/0.455, respectively. Figure 4 shows the ranking of the top

12 feature importance according to the DBN and the XGB

algorithm. As shown, ‘N stage’ and ‘T stage’ was the most two

important predictors of lung metastasis in the DBN algorithm.

‘Surgery’ was the most important predictor, and ‘T stage’ was the

second most important predictor of lung metastasis in the

XGB algorithm.
Model development

The variables of sex, age, primary site, grade, T, surgery, and

bone metastases were combined with the output of DBN-based

lung metastasis predictive model to construct an integrated DBN

survival Cox model for predicting overall survival in OS patients.

To make the DBN survival Cox model more intuitional, a

nomogram (Figure 5) was then constructed. An online web

calculator embedding a dynamic nomogram with our DBN

survival Cox model was also developed, which is available at

https://drwenleli0910.shinyapps.io/ODSapp/. After filling in the

online form as required in the webpage, the webpage will
Frontiers in Immunology 05
automatically generate a personalized nomogram, together

with the probability of survival at 1-, 3-, and 5-years.
Performance of the prediction model

The AUC of the DBN survival Cox model at 1-, 3-, 5-years in

the training set were 0.851, 0.806, and 0.793, respectively

(Figures 6A–C). Calibration curves showed that the predicted

and actual survival rates matched very well at 3 and 5 years, and

were acceptable at 1-year (Figures 6D–F). In the validation set,

the AUC of DBN survival Cox model at 1-, 3-, 5-years were

0.876, 0.827, and 0.814, respectively (Figures 7A–C). The

predicted and actual survival rates matched very well at 1-year,

and were accepted at 3- and 5-years (Figures 7D–F). The risk

curve, survival status and time, and expression of features in the

DBN survival Cox model were also represented according to the

high- and low-risk groups in the training and validation

set (Figure 8).
Assessment of clinical utility

The decision curves for 1-, 3- and 5-years in the training set

and validation set (Figures 9A, B) demonstrated relatively good

performance for the DBN survival Cox model in terms of clinical

application. As shown, when the threshold probability in the

clinical decision was more than 0.063, 0.151, and 0.193 for 1

year, 3 years, and 5 years, respectively, the DBN survival Cox

model provided more of a net benefit than “ treat all “ or “

treat none”.
Discussion

Although the effectiveness of the localized Osteosarcoma

treatment has gradually improved, the 5-year overall survival of

Osteosarcoma patients with lung metastasis is less than 30%,

suggesting that these patients still fare poorly (12–14). Several

studies have explored potential risk factors for tumor metastasis

to facilitate early management (8, 9). However, these articles

mainly concentrated on the impact of a single factor on

metastasis, a study on the combined impact of multiple factors

on metastasis is still lacking.

Cox proportional hazards model is the traditional

statistical approach for survival analysis and risk prediction.

The data in this model are required to meet prior assumptions,

including the proportional hazard assumptions and linear

relationships between continuous covariates and the log

hazard function.
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FIGURE 1

Overview of the total datasets combining the training set and validation set and LASSO model profile plots. (A), Heatmap of each clinical factor
in the total datasets. (B), Coefficient profile plots showing how the size of the coefficients of clinical factors shrinks with increasing value of the
penalty, with the factors and their regression coefficients selected for the model based on the optimal for the LASSO model. (C), Penalty plot for
the LASSO model; color error bars indicate standard error. LASSO, least absolute shrinkage and selection operator.
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TABLE 1 Univariate and multivariate Logistics regression for pulmonary metastasis of osteosarcoma.

Characteristics Univariate logistics regression Multivariable logistics regression

OR CI P OR CI P

Age 1 1-1.01 0.637 NA NA NA

Bone metastases

No Ref Ref Ref Ref Ref Ref

Yes 8.58 4.92-14.96 <0.001 5.29 2.88-9.73 <0.001

Chemotherapy

No Ref Ref Ref Ref Ref Ref

Yes 1.48 0.99-2.22 0.058 NA NA NA

Grade

Well differentiated Ref Ref Ref Ref Ref Ref

Moderately differentiated 3.61 0.4-32.75 0.254 NA NA NA

Poorly differentiated 6.39 0.85-48.03 0.072 NA NA NA

Undifferentiated; anaplastic 5.95 0.8-44.32 0.082 NA NA NA

unknown 5.11 0.68-38.58 0.113 NA NA NA

Laterality

Left Ref Ref Ref Ref Ref Ref

Right 1.13 0.83-1.56 0.431 NA NA NA

Other 0.84 0.51-1.37 0.475 NA NA NA

Lymph node Sur

No Ref Ref Ref Ref Ref Ref

Yes 0.56 0.33-0.95 0.031 0.83 0.47-1.45 0.512

N

N0 Ref Ref Ref Ref Ref Ref

N1 2.61 1.28-5.31 0.008 1.54 0.67-3.57 0.31

NX 2.82 1.72-4.62 <0.001 2.06 1.17-3.62 0.012

Primary Site

Ref Ref Ref Ref Ref Ref

Primary Site1 0.82 0.58-1.17 0.271 NA NA NA

Primary Site2 0.81 0.46-1.43 0.471 NA NA NA

Race

White Ref Ref Ref Ref Ref Ref

Black 1.12 0.72-1.72 0.62 NA NA NA

Other 1.08 0.73-1.59 0.7 NA NA NA

Radiation

No Ref Ref Ref Ref Ref Ref

Yes 1.74 1.16-2.6 0.007 1.38 0.87-2.19 0.174

Sex

Male Ref Ref Ref Ref Ref Ref

Female 0.63 0.46-0.85 0.003 0.57 0.41-0.79 0.001

Surgery

No Ref Ref Ref Ref Ref Ref

Yes 0.27 0.2-0.38 <0.001 0.39 0.27-0.58 <0.001

T

T1 Ref Ref Ref Ref Ref Ref

T2 2.56 1.73-3.78 <0.001 2.46 1.63-3.71 <0.001

T3 6.03 2.93-12.41 <0.001 4.29 1.94-9.52 <0.001

TX 3.58 2.23-5.73 <0.001 2.23 1.31-3.77 0.003
Frontiers in Immunology
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OR, odds ratio; CI, confidence interval; Ref, reference; NA, not available.
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However, in the complex biomedical field, there are many

nonlinear relationships (42, 43). In this context, a single Cox

model with proportional hazards is likely to produce less

accurate estimations of survival outcomes. Therefore, new
Frontiers in Immunology 08
solutions containing these potentially nonlinear variables are

highly needed to accurately predict the survival of individuals,

DBN, a relatively new computational algorithm that has

become a popular research topic, has been rapidly developed and
FIGURE 3

Comparison of DBN algorithm and other 6 machine learning algorithms including DT, GBM, LR, RF, NBC and XGB for accuracy, precision, recall,
and F-measure (F1-Score) in validation set. DBN, Deep Belief Networks; DT, Decision Tree; GBM, Gradient Boosting Machine; LR, Logistic
Regression; RF, Random Forest; NBC, Naive Bayes Classifier; XGB, XGBoost.
A B D

E F G

C

FIGURE 2

Comparison of DBN (A) algorithm and other 6 machine learning algorithms including DT (B), GBM (C), LR (D), RF (E), NBC (F) and XGB (G) for
accuracy, precision, recall, and F-measure (F1-Score) in training set. DBN, Deep Belief Networks; DT, Decision Tree; GBM, Gradient Boosting
Machine; LR, Logistic Regression; RF, Random Forest; NBC, Naive Bayes Classifier; XGB, XGBoost.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1003347
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2022.1003347
widely used in medical research. It is a DL-based generative

model, when a network contains a large number of deep layers,

which addresses the problem of vanishing gradients that suffer

from traditional gradient-based learning algorithms. In cancer

research, the advantages of DBN model for survival analysis are

as follows: First, this model shows a modified fit for features with

a nonlinear relationship, which applies to the nonlinear

associations that are abundant in real-world practice. Second,

as a DL model, the DBN automatically learns complex mapping

by transforming the features through the multi-layer structure.
Frontiers in Immunology 09
At present, most ML algorithms have applied shallow-

structured architectures.

These models are specifically effective in solving well–

constrained problems. However, several studies have confirmed

reasons for using deep structures (44–46). Deep models may be

more robust in the wide variety of functions that can be

parameterized by composing non-linear transformations (47).

They also allow more efficient representation of highly varying

functions than shallow architectures. In addition, a prominent

problem with traditional algorithms is the requirement for a
A B

FIGURE 5

Feature importance. The top 12 feature importance results for the DBN (A) model and XGB (B) model trained on training set. DBN, Deep Belief
Networks; XGB, XGBoost.
FIGURE 4

Nomogram for predicting overall survival for 1-, 3-, and 5-years in OS patients. Each variable value for the individuals was determined according
to the top Points scale, and then the points for each variable were added. Finally, a personalized survival probability was obtained according to
the bottom Total Points scale.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1003347
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2022.1003347
certain level of domain expertise to design a feature extractor that

converts raw data into a suitable feature vector (16). DBN allows a

system to be fed with raw data and to automatically discover the

required representations. This study shows that the DBN-based

model can achieve better prediction performance than other

machine learning algorithms.

Our predictive models currently use seven clinical variables,

including common demographic and clinical characteristics and
Frontiers in Immunology 10
histopathological outcomes. The SEER database was used with

relatively complete data during the model development, while

some data were missing in the external validation set. Our model

has tolerance for missing data, and we still achieved high

performance on the external validation set even missing 30%

data of the patients. In addition, a dynamic nomogram can

provide dynamic assessments as missing data are supplemented

during subsequent treatment.
A B

D E F

C

FIGURE 7

The AUC and calibration curves of DL survival Cox model at 1-, 3-, 5-years in the validation set. (A–C), the AUC of model at 1-, 3-, 5-years.
(D–F), the calibration curves of model at 1-, 3-, 5-years. AUC, area under the curve; DL, deep learning.
A B

D E F

C

FIGURE 6

The AUC and calibration curves of DL survival Cox model at 1-, 3-, 5-years in the training set. (A–C), the AUC of the model at 1-, 3-, 5-years.
(D–F), the calibration curves of model at 1-, 3-, 5-years. AUC, area under the curve; DL, deep learning.
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There were aols some limitations despite the promising results.

First, the training set was extracted from the SEER database with a

relatively small sample size, although an independent validation

group from various hospitals was used. Thus, a large sample of

multicenter data was required to fully evaluate the generalization

ability of the DBN survival COXmodel. Second, the SEER database

only provided limited clinical variables, and many variables closely

associated with tumor metastasis and survival, such as tumor

markers and gene expression, were not available. Future studies
Frontiers in Immunology 11
could incorporate these potentially essential factors and construct a

more comprehensive predictive model.
Conclusion

In our study, a DBN survival Cox model was established to

predict the overall survival in Osteosarcoma patients. Compared

to the other six ML algorithms, this DNB algorithm
A B

FIGURE 9

Decision curves for the DL survival Cox model for 1-, 3-, 5-years in the training set (A) and validation set (B). The X-axis indicates thresholds
probability for lung metastasis risk, and the Y-axis indicates net benefits depending on different thresholds probability. The pink horizontal line
parallel to the X-axis represents no clinical action taken by any patient (“treat none”) and their net clinical benefit is 0. The smooth arc line
represents that all patients took clinical action (“treat all”), and their net clinical benefit is a backslash with a negative slope. The curve of “treat by
DL survival Cox model” is then compared to “treat all” and to “treat none”.
A B

FIGURE 8

Risk score analysis of deep learning survival Cox model in training (A) and validation (B) set.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1003347
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2022.1003347
demonstrated better performance. Both internal validation and

external validation revealed good generalizability. In addition, an

individualized risk estimate of survival can be calculated through

the nomogram and online web calculators developed by this

study. This allows the model to be applied to clinical practice and

helps with clinical decision-making.
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