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Infection with the protozoan parasite Toxoplasma gondii (T. gondii) results in

the activation of nucleotide-binding domain leucine-rich repeat containing

receptors (NLRs), which in turn leads to inflammasome assembly and the

subsequent activation of caspase-1, secretion of proinflammatory cytokines,

and pyroptotic cell death. Several recent studies have addressed the role of the

NLRP3 inflammasome in T. gondii infection without reaching a consensus on

its roles. Moreover, the mechanisms of NLRP3 inflammasome activation in

different cell types remain unknown. Here we review current research on the

activation and specific role of the NLRP3 inflammasome in T. gondii infection.
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Overview of NLRP3 inflammasome

The immune system has two subsystems, the innate and adaptive immune systems,

that work together to protect the body from pathogens, such as bacteria, viruses, fungi,

and parasites (1, 2). The innate immune system is the initial line of defense, and its quick

response to pathogens involves the recognition of pathogen-associated molecular

patterns (PAMPs) or danger-associated molecular patterns (DAMPs) by pattern

recognition receptors (PRRs) (3). Based upon their subcellular localization, PRRs are

classified into (i) Toll-like receptors (TLRs) and C-type lectin receptors (CLRs) located in

the plasma membrane and (ii) cytoplasmic PRRs. TLRs and CLRs recognize extracellular

PAMPs and DAMPs. Cytoplasmic PRRs, on the other hand, involve retinoic acid-

inducible gene I (RIG-I)-like receptors (RLRs), AIM2-like receptors (ALRs), nucleotide-

binding and oligomerization domain (NOD)-like receptors (NLRs), and the cytosolic

sensor cyclic GMP-AMP (cGAMP) synthase (cGAS) (4, 5). The signaling cascades

triggered by PRRs play crucial roles in the immune response, including antigen

presentation, cell death, and cytokine secretion (6–8).
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The inflammasomes are large multi-protein complexes

whose assembly is initiated by the different cytoplasmic PRRs,

such as NLRs and ALRs (9). The proteins in the NLR family are

derived from 22 human genes and share common structure

motifs consisting of C-terminal leucine-rich repeat domains and

central nucleotide-binding domains (NBDs) (10). (NBD is a

component of the larger NACHT domain). According to their

variable N-terminal domain, the NLR family has been classified

into a variety of subfamilies, including NLRCs, whose N-

terminal have one or more caspase-recruitment domains

(CARDs), and NLRPs that have pyrin domains (PYD) instead

of CARD. NLRC and NLRP are the two most characterized NLR

subfamilies (11).

The NLRP3 is one of the most well-studied and

characterized protein in the NLR family. The activation of the

NLRP3 inflammasome requires signaling in two steps, with a

priming signal in the first and an activation signal in the second.

The first, priming, step is initiated through the recognition of the

various PAMPs or DAMPs by PRRs, such as TLRs or nucleotide-

binding oligomerization domain-containing protein 2 (NOD2)

or interleukin 1 receptor, type I (IL1R1), that lead to nuclear

factor-kB (NF-kB) activation (12). The NF-kB, once activated,

boosts the transcription and expression of inflammatory

cytokines, including pro-IL-1b and pro-IL-18 (13). The

second, activation, step is triggered by not only bacteria,

viruses, and fungi but also sterile inflammation mediated by

DAMPs or various other stimuli, including ionic flux,

mitochondrial dysfunction, production of reactive oxygen

species (ROS), and lysosomal damage (14–16).

NLRP3 activation leads to the assembling of an oligomeric

protein complex that includes an adaptor protein called

apoptosis-associated speck-like protein containing a caspase-

recruitment domain (ASC) and an effector protein, pro-caspase-

1 (17). Upon Inflammasome activation, the PRRs, such as NLRs

and ALRs, are recruited to bind with the ASC through PYD (18).

Then PRR-ACS complexes, interacting through their CARDs,

recruit pro-caspase-1 (19), converting them into active caspase-1

by proteolytic cleavage (20). In turn, the activated caspase-1

promotes the cleavage of precursor cytokines, such as pro-IL-1b
and pro-IL-18, to generate active cytokines (IL-1b and IL-18),

and then facilitates their secretion (6, 9). Furthermore, the

activated caspase-1 triggers pyroptosis, an inflammatory cell

death, through the cleavage of the protein gasdermin D

(GSDMD) (21).

Several studies have reported that the NLRP3 inflammasome

responds to bacterial pathogens (22–24). More recent studies

have reported that the NLRP3 inflammasome also plays a crucial

role in the host’s response to protozoan parasite infection (25–

27). This review focuses on the current understanding of the

immune response mechanisms that involve the NLRP3

inflammasome in T. gondii infection.
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Toxoplasma gondii is a protozoan parasite that is estimated

to infect at least one-third of the worldwide human population

(28). T. gondii infection is typically asymptomatic in

immunocompetent individuals. However, T. gondii infection

may contribute to focal central nervous system disease and

other severe diseases in immunodeficiency syndrome (AIDS)

patients and poses a risk of congenital infection of a newborn

baby by the mother who got infected during the pregnancy

period (29). Because T. gondii can infect nearly all nucleated cell

types in most species of warm-blooded animals, the range of T.

gondii hosts is extremely broad.
The function of the NLRP3
inflammasome in various cell types
infected with T. gondii

To resist T. gondii infection, components of the innate and

adaptive immune system are recruited in various cell types. These

include inflammatory monocyte, dendritic cells (DCs),

neutrophils, macrophages, NK cells, and Th1 cells (30). TLRs

are responsible for the initial detection of T. gondii. Resistance to

T. gondii infection is mediated by the TLR-associated adaptor

protein MyD88 and the induction of IL-12, interferon-g (IFN-g),
and the synthesis of nitric oxide (NO) (31). TLRs induce the

activation of MyD88 which leads to a downstream signaling

cascade recruiting host resistance. Sher et al. reported that IL-12

and IFN-g responses were reduced but not completely abolished

and parasite infection was highly susceptible in MyD88-deficient

mice (31). These results indicate that, in addition to the crucial

role played by MyD88, there were other mechanisms involved in

the detection of T. gondii that remain to be identified.

Recently, Grigg et al. showed that, compared with C57BL/6J

mice, NLRP3−/− mice harbored greater parasite burdens and

their IL-18 response was significantly reduced (32). In addition,

Robson et al. reported that the P2X7 receptor (P2X7R) activated

by extracellular ATP inhibited T. gondii growth through the

NLRP3 inflammasome and produced reactive oxygen species

(ROS) and IL-1b in murine macrophage (33).

Several studies reported that the sensitivities for activation of

NLRP3 inflammasome were different in the human monocyte/

macrophage and mouse macrophage. Chin and Kostura

reported that, in humans, treatment with low-dose

lipopolysaccharide (LPS) induced pro-IL-1b transcription, but

treatment with a higher dose of LPS lead to the secretion of

activated IL-1b (34). In contrast, both LPS priming and ATP

induction are typically required for the NLRP3 inflammasome

activation in mouse bone marrow-derived macrophages
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(BMDMs) (35). Additionally, Meng et al. showed that LPS

treatment activated the NLRP3 inflammasome in the human

monocyte cell line THP-1 but not in mouse BMDMs (36).

Furthermore, despite the TLRs playing a crucial role in the

detection of T. gondii, TLR11 is a pseudogene and TLR12 is not

expressed in humans. Thus, NLRP3 inflammasome activation

must involve different mechanisms in human and murine

cells. Furthermore, in humans, T. gondii-induced NLRP3

inflammasome activation varies depending on the cell type.

Previous studies reported that T. gondii infection was

implicated in the activation of NLRP3 inflammasomes and in

stimulating IL-1b secretion in human monocytes. To directly

address whether the regulation of IL-1b and IL-18 were

responses to T. gondii infection in human monocytes, Lodoen

et al. infected THP-1 and U937 cells, which are commonly used

as models for human monocytes, with T. gondii and observed T.

gondii-induced IL-1b response in both cell lines (37, 38).

Primary human monocytes showed similar responses to those

observed in the human monocytic cell lines (39). Specifically, T.

gondii infection increases the rapid induction of NLRP3

transcription and IL-1b production. Conversely, treatment

with MCC950, a selective small-molecule inhibitor of NLRP3,

reduced IL-1b production compared with vehicle control (38).

This study further suggested that potassium efflux was

implicated in producing IL-1b since the production of IL-1b
was significantly diminished in primary human monocytes after

high potassium release (38). Another study reported that the

increased IL-1b production in T. gondii-infected THP-1 cells

depended on syk phosphorylation (40). The same study also

showed that rapidly increased syk phosphorylation in human

primary monocytes infected with T. gondii lead to a downstream

cascade in the PKCd-CARD9/MALT-1 pathway, subsequently

leading to the activation of NF-kB, which in turn produces pro-

IL-1b and NLRP3 (40). Taken together, these lines of evidence

support the notion that IL-1b secretion in human monocytes

induced by T. gondii infection requires the NLRP3

inflammasome through potassium efflux or the PKCd-CARD9/
MALT-1 signaling pathway.

Interestingly, the responses to the NLRP3 inflammasome in

human macrophages were different from those in human

monocyte during T. gondii infection. To investigate the role of

the various inflammasome components in PMA-differentiated

THP-1 macrophages infected with T. gondii, Quan et al.

measured the expression of inflammasome-associated genes

and the secretion of inflammatory cytokine IL-1b. The

investigators reported that T. gondii infection significantly

increased the expression of IL-1b in PMA-differentiated THP-

1 macrophages. Furthermore, mRNA expressions levels for

inflammasome sensors, including NLRP1, NLRP3, NLRC4,

NLRP6, NLRP8, NLRP13, AIM2, NAID, ASC, and caspase-1,

were significantly elevated over the levels in mock-infected THP-

1 macrophages (41). In contrast, primary human macrophages

infected with T. gondii did not secrete IL-1b, and NLRP3 was
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unable to fully identify the difference in the mechanisms of T.

gondii infection induced NLRP3 inflammasome activation

between human macrophage cell lines and primary human

macrophages, there are some clues for an explanation.

Huang et al. showed that levels of NLRP3, caspase-1, and IL-

1b were significantly elevated in PMA-differentiated THP-1

macrophages (42). In contrast, Karabina et al. reported that

NLRP3, NLRP6, and NOD2, whose normal levels are already

low in peripheral blood mononuclear cells, were further

decreased during the differentiation of primary human

monocytes to macrophages (43). This raises two possible

explanations: either (i) T. gondii was not sufficient to trigger

the expression of inflammasome components in primary human

macrophages because these cells require a stronger signal to

respond to T. gondii infection, or (ii) the primed state of human

macrophage cell lines and primary human macrophages may be

different (38).

T. gondii infection in FHs 74 Int cells, a human fetal small

intestinal epithelial cell line, significantly increased NLRP3

activation, subsequently leading to IL-1b production.

Furthermore, T. gondii infection of these cells activated

P2X7R, whereas silencing P2X7R significantly reduced T.

gondii-induced IL-1b secretion as well as T. gondii

proliferation (44). In addition, T. gondii-induced NLRP3

inflammasome activation in FHs 74 Int cells involved the

phosphorylation of both p38 MAPK and JNK1/2, even though

the p38 MAPK pathway has a more crucial role than the JNK1/2

pathway (45).

Human neutrophils, which T. gondii manipulates to evade

innate immunity, present a special case. Lodoen et al. showed

that T. gondii infection in the human neutrophils inhibited LPS-

induced IL-1b and NLRP3 transcription and decreased the

expression of pro-IL-1b, mature IL-1b, and the NLRP3

inflammasome by inhibiting both NF-kB signaling and the

activation of the NLRP3 inflammasome (46) (Table 1).

However, as other mechanisms and pathways involving

NLRP3 remain unclear, further experiments are required to

fully understand the role of NLRP3 in T. gondii infection.
The function of other NLR families
in T. gondii infection

The study of NLR inflammasome activation related to the T.

gondii infection was initiated by a report of the susceptibility

alleles involved with human congenital toxoplasmosis. McLeod

et al. reported that T. gondii progression was attenuated and

proinflammatory cytokines, including IL-1b and IL-18, were not

upregulated in the human monocyte with NLRP1 knockout

engineered by RNA interference (47). These results implicated

the NLRP1 inflammasome with a crucial role in limiting T. gondii

replication and the production of pro-inflammatory cytokines.
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Nuñez et al. reported that NOD2 deficiency results in a not fully

functional immune response against T. gondii infection. Specifically,

survival ofT.gondiiwas impairedandIFN-g secretionwas reduced in
Nod2−/− mice. In addition, Nod2 promoted the generation of an

effective Th1 response through T cell-intrinsic signaling against T.

gondii. In contrast, Th cell differentiationwas impaired in association

with reduced IL-2 production and nuclear accumulation of the

transcription factor c-Rel in Nod2−/−mice (48).

AIM2 consists of a C-terminal HIN-200 domain, which

interacts with cytosolic double-stranded DNA; it binds to a

PYD domain of ASC and subsequently activates the AIM2

inflammasome (49). AIM2 detected GPT-promoted T. gondii

and induced atypical apoptosis through ASC and Caspase-8 in

PMA-differentiated THP-1 macrophages (50). Ahmadpour et al.

reported that expression levels for NLRP12, caspase-3, caspase-

1, IL-1b, IL-18, and ASC mRNA were significantly increased in

mice injected with T. gondii live tachyzoites over levels in control

mice. In addition, the intracellular ROS levels in tachyzoite-

injected mice were significantly higher than in control mice.

These results suggest that T. gondii infection may activate the

NLRP12 inflammasome and increase the expression of

proinflammatory cytokines such as IL-1b and IL-18 and

activates the pyroptosis pathway (51).

In summary, despite the presence of several NLR families,

only a few inflammasomes were identified. Thus, further

investigations are required to understand the role of other

NLR proteins, including NLRP1, NLRP3, NLRP12, AIM2, and

NOD2, in T. gondii infection.
Mechanism of pyroptosis
and potential application in
T. gondii infection

Pyroptosis is an inflammatory programmed-necrotic cell

death that is induced by various stimuli such as bacteria,
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viruses, fungi, and protozoa (52). Pyroptosis pathways are

typically classified into caspase-1-dependent canonical

pyroptosis and human caspase-4/5 or mouse caspase-11-

induced non-canonical pyroptosis (53, 54). Several studies

have reported that T. gondii is involved with pyroptosis

through a series of inflammatory reactions. Kimberly et al.

reported that knockdown of Nlrp1 increases replication of

parasites and protects against cell death in pyroptosis-sensitive

macrophages from rats such as Lewis and spontaneously

hypertensive (SHR) (55). Furthermore, Wang et al. reported

that T. gondii upregulated the level of ROS induced by GRA43

resulting in peritoneal macrophages (PMs) pyroptosis in iNOS−/

−-SD rats (56), which indicated that iNOS is considered to be a

key factor that leads to pyroptosis in SD rat PMs. In contrast,

pyroptosis does not occur in macrophages from T. gondii-

susceptible strains of rats such as Brown Norway (BN),

Sprague Dawley (SD), and Fischer (CDF), or T. gondii-infected

mouse macrophages (32, 33, 55). In addition, human monocytes

infected with T. gondii were independent of GSDMD cleavage

and pyroptosis, despite increased IL-1b production via the

NLRP3 inflammasome. Moreover, GSDMD knockout THP-1

cells secreted a not statistically significant amount of IL-1b
production compared with wild-type THP-1 cells after T.

gondii infection (40). Taken together, T. gondii might

manipulate the host cell niche to maintain the integrity of host

cells and immune escape, although the host cell produces a

protective cytokine.

Recently, an elevating incidence rate of clinical diseased,

including atherosclerosis and cancer, have been reported to be

involved with pyroptosis and play a crucial role in pyroptosis

(57). Pyroptosis reveals not only a protective effect against

pathogens but also beneficial effects on tumor suppression.

Wang et al. reported that less amount of pyroptosis cell death

was sufficient to clear the entire tumor graft (58). Furthermore,

several studies reported that granzymes from cytotoxic

lymphocytes cleave GSDMB or GSDME to trigger pyroptosis

and potently suppress tumor growth (59, 60). However, the
TABLE 1 Mechanisms of NLRP3 inflammasome regulation in various T. gondii-infected cell types.

Species Cell type NLRP3 inflammasome Comments Ref.

Mouse Primary macrophage Activated Activation of NLRP3 by P2X7 receptor (33)

Human Monocyte cell line Induction of IL-1b mRNA expression and secretion (38)

syk phosphorylation-dependent IL-1b production (38)

Primary monocyte Activated NLRP3 and potassium efflux-dependent IL-1b secretion (40)

Activated NLRP3 activation by Syk-CARD9/MALT-1-NF-kB signaling pathway (40)

Macrophage cell line Activated Induction of NLRP3 mRNA expression and IL-1b secretion (41)

Primary macrophage – No change in IL-1b and NLRP3 expression (38)

Fetal small intestinal epithelial cell line Activated NLRP3-dependent IL-1b secretion by P2X7 receptor (44)

Activated p38 MAPK and JNK1/2 pathways involved in NLRP3 activation (45)

Neutrophils Inhibited Inhibition of NLRP3 activation. (46)
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relationship between pyroptosis and T. gondii remains unclear,

further experiments are required to understand and clinical

application of pyroptosis will be one of the successful non-

surgical treatments.
NLRP3 response to T. gondii
effector proteins

T. gondii secretes numerous effector proteins from the rhoptry

(ROP) and dense granule (GRA) organelles, which are required to

maintain an equilibrium between host immune responses and the

parasite immune evasion, resulting in the survival of both host and

parasite.TheROPsare secretedbyT.gondiiand injected into thehost

cell during or immediately before the invasion to form the

parasitophorous vacuole (PV) with ROP neck proteins (RON)

(61). After the invasion and the establishment of the PV, T. gondii

secretes GRA proteins that are involved in modifying the PV and

creating an environment for intracellular survival and replication

(62). Several recent reports implicated ROP and GRA secreted by T.

gondii with the inflammasome complex. For example, Cheng et al.

reported that T. gondii-infected PMA-differentiated THP-1

macrophages significantly up-regulate NF-kB and the secretion of

IL-1b, which, depending on the presence ofT. gondii effector protein
ROP7, lead to the assemblyof inflammasome. In addition,ROP7was

shown to interact with the NACHT domain of NLRP3 to induce

inflammasome hyperactivation through the IL-1b/NF-kB/NLRP3-
positive loop (63). GRA7 stimulation induced the expression of pro-

inflammatory cytokine genes, including IL-1b in BMDM, in mice

(64). Further, the T. gondii protein GRA7, after PKCa-mediated

phosphorylation, interacted with the PYD domain of ACS,

facilitating ASC oligomerization and inflammasome activation

(65). Similarly, Yang et al. reported that GRA9, another T. gondii

effector protein, interacted with NLRP3 to block the interaction

between ASC and NLRP3, disrupting the assembly of the NLRP3

inflammasome. GRA9 also showed a potential to protect against

sepsis by increasing anti-inflammatory and anti-bacterial effects

through the polarization of M1 to M2 macrophages (66). Yet

another T. gondii effector protein, GRA15, induced IL-1b
production and secretion through the NLRP3 inflammasome. The

IL-1b derived from THP-1 cells, together with IFN-g, induce iNOS
expression and NO production, resulting in the reduction of IDO1

expression and contributing to T. gondii growth in hepatocytes (67)

(Figure1).Three effectorproteins,GRA35,GRA42, andGRA43,play

an important role in T. gondii infection by inducing pyroptosis and

IL-1b secretion inLewis ratBMDMs (68).Although the involvement

of these effector proteins with NLRP3 has not been studied, several

studies reported that effector proteins of T. gondii induce an

antitumor response. In particular, Shen et al. reported that GRA15

induced macrophage polarization into M1 that suppressed several

hepatic carcinoma cell characteristics, including proliferation,

invasion, metastasis, and reduced the expression of matrix

metalloproteinases (MMP-9 and MMP-2). In addition, both spleen
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tumor tissues and tumorgrowthweredecreased inGRA15-polarized

macrophages-injected tumor-bearing C57BL/6 mice, and IL-6

expression was also decreased in tumor tissue (69). Another study

reported that secretion of several ROPs and GRAs induced an

antitumor immune response in C57BL/6 mice with ovarian

tumors. Deletion of the genes for ROP5, ROP17, ROP18, ROP35

and ROP38, GRA2 or GRA12, and GRA24 markedly impaired the

antitumor response against ovarian tumors in mice (70). Previous

reports indicated that effector proteins resist tumor progression via

enhancing the immune response of hosts. However, recent reports

suggested T. gondii-infection regulated the expression of tumor-

involved factors, which are able to enhance the anti-tumor ability of

hosts. TP53 is a critical tumor-suppressor gene that is frequently

mutated in most types of cancer (71). Lu et al. reported that the p53

signaling pathwaywas altered through up-regulatedGadd45 protein

and down-regulated Fas protein after T. gondii infection (72).

Further, the colorectal cancer pathway involved genes which are

DCC, Smad2, Smad4, hMLH1, hMSH2, and hMSH3 protein

expression were regulated after T. gondii infection. In particular,

DCC, the colorectal cancer suppressor, is a prognostic marker in

patients with stage II or stage III colorectal cancer (73). The DCC

protein expression was elevated after T. gondii infection. The same

study also reported that RASSF1, non-small cell lung cancer

(NSCLC) tumor suppressor, expression was elevated after T. gondii

infection,which indicated thatT. gondii infectionmight be improved

NSCLC. PTEN, BRCA1, BRCA2, PI3K, and CCND1 genes were

involvedwith the breast cancer signalingpathway.T. gondii infection

decreased CCND1 expression and increased BRCA2 expression,

which suggests that T. gondii infection could suppress breast cancer

growth (72).

In summary, although the effector proteins of T. gondii have

various functions implicated in the host immune responses and

the antitumor immune response, the associated mechanisms are

unknown, and understanding them will require further studies.
Conclusion

Inflammasomes are involved with the immune response of the

host combatingT. gondii infection.Despite the considerable number

of studies investigating inflammasomes implicated with T. gondii,

only a few inflammasomeshave been identified so far, pointing to the

need for further investigations, focusing on additional

inflammasome proteins involved in the detection of T. gondii by

the host cells and the molecular mechanisms of the immune

response. In addition, the responses of inflammasomes to T. gondii

infection have been shown to depend on the host cell types. The

reason for this is not well understood. It is hypothesized that NLRP3

inflammasome activation might have different requirements in

different cell types. For instance, although ATP induces P2X7R

signaling that implicates inflammasomes, ATP amount released

differs with cell types (74). Moreover, several proteins involved in

inflammasomes, such asCARD8,POP1, andPOP2, are differentially
frontiersin.org
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expressed in species dependent way (36). Thus, future investigations

will neednewapproaches usingdifferent perspectives, such as species

and cellular characteristics.

T. gondii secretes effector proteins to invade the host cell and

several these are known to be involved with inflammasomes.

However, the function and mechanisms of action of the effector

proteins of T. gondii remain unknown. Recent studies using

transcriptome sequencing analysis of T. gondii-infected mice

reported that differentially expressed genes involved in the p53

signaling pathway, colorectal cancer pathway, non-small cell lung

cancer signaling pathway, and breast cancer signaling pathway were

upregulated or downregulated (72). Other studies reported that

effector proteins of T. gondii suppressed tumor growth and

induced antitumor immune responses (69, 70). Others reported a

protective effect of T. gondii effector proteins against sepsis through

increasing anti-inflammatory and bacterial effects (66). Taken

together, these results are consistent with the notion that the

effector proteins of T. gondii act like a double-edged sword:

support invasion during T. gondii infection but, depending on the

application, they may be beneficial in the treatment of diseases, too.

Therefore, future investigations should focuson theunderstandingof
Frontiers in Immunology 06
the effector proteins derived from T. gondii and their application to

inflammasome-related diseases and cancer as well as other diseases.

Anunderstanding of inflammasome regulation inT. gondii infection

suggests novel strategies for host immune responsemechanisms and

may provide opportunities to develop new treatments for

various diseases.
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FIGURE 1

Effector proteins of T. gondii manipulate signaling pathways of the host cell. T. gondii secrets effector proteins, including ROP and GRA, into the
host cell to influence the signaling pathways of the host. (A) ROP7 of T. gondii interacts with the NACHT domain of NLRP3 and assembles the
NLRP3 inflammasome, leading to IL-1b secretion, which in turn induces an NF-kB/NLRP3-positive loop. GRA7 induces the expression of
proinflammatory cytokine IL-1b through MyD88-dependent ROS generation and TRAF6 activation. GRA7, after PKCa-mediated phosphorylation,
interacts with the PYD domain of ACS, inducing ASC oligomerization and inflammasome activation. GRA35, GRA42, and GRA43, induce pyroptosis
and IL-1b secretion. In contrast, GRA9 binds with NLRP3, which results in blocking the interaction between ASC and NLRP3 and, in turn, the
disrupting of the NLRP3 inflammasome assembly. (B) GRA15 induces IL-1b secretion through the NLRP3 inflammasome. Secreted IL-1b and IFN-g
induce iNOS expression and NO production, resulting in the reduction of IDO1 expression and contributing to T. gondii growth in hepatocytes.
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