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Urine metabolomics and
microbiome analyses reveal
the mechanism of anti-
tuberculosis drug-induced
liver injury, as assessed for
causality using the updated
RUCAM: A prospective study

Ming-Gui Wang1,2†, Shou-Quan Wu1† , Meng-Meng Zhang1

and Jian-Qing He1*

1Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University,
Chengdu, China, 2Department of Emergency Medicine, Sichuan Provincial People’s Hospital,
University of Electronic Science and Technology of China, Chengdu, China
Background: Anti-tuberculosis drug-induced liver injury (ATB-DILI) is one of

the most common adverse reactions that brings great difficulties to the

treatment of tuberculosis. Thus, early identification of individuals at risk for

ATB-DILI is urgent. We conducted a prospective cohort study to analyze the

urinary metabolic and microbial profiles of patients with ATB-DILI before drug

administration. And machine learning method was used to perform prediction

model for ATB-DILI based on metabolomics, microbiome and clinical data.

Methods: A total of 74 new TB patients treated with standard first-line anti-TB

treatment regimens were enrolled from West China Hospital of Sichuan

University. Only patients with an updated RUCAM score of 6 or more were

accepted in this study. Nontargeted metabolomics and microbiome analyses

were performed on urine samples prior to anti-tuberculosis drug ingestion to

screen the differential metabolites and microbes between the ATB-DILI group

and the non-ATB-DILI group. Integrating electronic medical records,

metabolomics, and microbiome data, four machine learning methods was

used, including random forest algorithm, artificial neural network, support

vector machine with the linear kernel and radial basis function kernel.

Results: Of all included patients, 69 patients completed follow-up, with 16

(23.19%) patients developing ATB-DILI after antituberculosis treatment. Finally,

14 ATB-DILI patients and 30 age- and sex-matched non-ATB-DILI patients

were subjected to urinary metabolomic and microbiome analysis. A total of 28

major differential metabolites were screened out, involving bile secretion,

nicotinate and nicotinamide metabolism, tryptophan metabolism, ABC
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transporters, etc. Negativicoccus and Actinotignum were upregulated in the

ATB-DILI group. Multivariate analysis also showed significant metabolic and

microbial differences between the non-ATB-DILI and severe ATB-DILI groups.

Finally, the four models showed high accuracy in predicting ATB-DILI, with the

area under the curve of more than 0.85 for the training set and 1 for the

validation set.

Conclusion: This study characterized the metabolic and microbial profile of

ATB-DILI risk individuals before drug ingestion for the first time. Metabolomic

and microbiome characteristics in patient urine before anti-tuberculosis drug

ingestion may predict the risk of liver injury after ingesting anti-tuberculosis

drugs. Machine learning algorithms provides a new way to predict the

occurrence of ATB-DILI among tuberculosis patients.
KEYWORDS

metabolomic, microbiome, anti-tuberculosis drug-induced liver injury (ATB-DILI),
machine learning, cohort, updated RUCAM
Introduction

Tuberculosis (TB) is caused by Mycobacterium tuberculosis

infection, which is an infectious disease with the highest

mortality before the novel coronavirus pneumonia pandemic

(1). According to the report of the World Health Organization,

there were 9.9 million new cases of tuberculosis worldwide, and

approximately 1.3 million patients died in 2020 (1). After

treatment with a first-line anti-tuberculosis regimen containing

isoniazid and rifampicin, 86% of patients were treated

successfully (1–3). However, it is often accompanied by

various adverse drug reactions, such as gastrointestinal

reaction, drug-induced liver injury (DILI), hyperuricemia,

leucopenia, allergy, peripheral neuritis and so on (3–7). Anti-

tuberculosis drug-induced liver injury (ATB-DILI) is one of the

most common adverse reactions in the treatment of tuberculosis

(4–6) and may lead to treatment interruption, prolonged

treatment time, decreased treatment success rate and increased

hospitalization rat (8–10). Early identification and evaluation of

ATB-DILI will provide new ideas for the precise treatment of

tuberculosis patients.

Currently, the identification of biomarkers by metabolomics

has been widely used in pathophysiological mechanisms in

many scientific fields, such as plant biology (11), toxicology

(12) and disease diagnosis and prognosis (13–16). Ultrahigh

performance liquid chromatography tandem mass spectrometry

(UPLC‒MS) is one of the most effective means of metabolomics

research (17). Through metabolomics research, Xie et al. found

that 31 metabolites were related to DILI and were closely related

to the severity of DILI (18). Prospective studies show that there
02
are significant differences in serummetabolites between the DILI

group and the non-DILI group prior to polygonum multiflorum

ingestion, and the unique metabolic characteristics may be used

to predict the risk of DILI after taking polygonum multiflorum

(19). This suggests that metabolomics can be used to evaluate

and predict DILI. There are a few clinical and animal

experiments using metabolomics to explore the toxic

mechanism and biomarkers of ATB-DILI (20–25).

Nontargeted metabolomics found that 28 metabolites can be

used as important distinguishing factors between ATB-DILI and

non-ATB-DILI patients, and ATB-DILI affects the tricarboxylic

acid cycle, arginine and proline metabolism, purine metabolism

and pentose phosphate pathway (24). In our previous study, 11

urine differential metabolites were identified between ATB-DILI

patients and non-ATB-DILI patients by gas chromatography-

mass spectrometry (GC‒MS) (26). These studies indicate that

metabolomics is helpful for a new understanding of the

pathophysiological process of ATB-DILI and for screening

new markers of ATB-DILI. Moreover, no study has evaluated

the metabolic characteristics of ATB-DILI patients and non-

ATB-DILI patients before taking anti-tuberculosis drugs.

There are thousands of microbial species in the human

microbial ecosystem that play a key role in maintaining host

immunity, metabolism, drug metabolism, vitamin production

and carbohydrate metabolism (27–29). Research interest has

been focused on the interaction between the microbiota and the

host, and how the composition of the human microbiota may

have a potential impact on the development of certain diseases,

such as metabolic syndrome, obesity (30), diabetes (31) and liver

injury (26, 32, 33). Previous studies have shown that the
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quantities of the urine microbiota differ significantly between

patients with ATB-DILI and without ATB-DILI (26).

At present, the data on metabolomic or microbiota changes

related to ATB-DILI are limited, especially premedication data.

In addition, a model for the prediction of ATB-DILI is lacking.

In this study, we hypothesized that the metabolome and

microbiome are related to ATB-DILI. Therefore, we performed

urine metabolomic and microbiota analyses of ATB-DILI prior

to medication. Meanwhile, four machine learning methods was

used to establish a clinical prediction model of ATB-DILI based

on metabolomics, microbiome and clinical data.
Methods

Study population and sample collection

This prospective cohort study included patients with

tuberculosis who visited the tuberculosis clinic of West China

Hospital of Sichuan University from March 2021 to December

2021. The study was approved by the Ethics Committee of West

China Hospital of Sichuan University. All research subjects were

required to sign a written informed consent form by themselves

or their representatives before being included in the study.

Demographic datasets of patients with laboratory test data

were obtained through electronic medical records

and questionnaires.

Inclusion criteria are as follows: 1) age≥16 years and <80

years old; 2) newly diagnosed TB patients, including etiologically

confirmed, pathologically confirmed and clinically diagnosed

cases; 3) standard first-line anti-TB treatment regimens

(including 2-month HRZE intensive treatment and at least 4

months of HRE consolidation therapy), and can be followed up

regularly; 4) Han nationality in Southwest China; 5) voluntarily

participate in this study and sign the informed consent form

when included in the study. Those who do not meet the above

diagnostic criteria are referred to as non-ATB-DILI.

The exclusion criteria were as follows: 1) abnormal liver

function at baseline; 2) concomitant liver diseases such as

alcoholic hepatitis, viral hepatitis or liver cirrhosis; 3) taking

immunosuppres s ive drugs , an t i tumor drugs , and

acetaminophen and other drugs that may cause liver damage;

4) patients with diabetes, autoimmune diseases, malignant

tumors, or tuberculosis with severe heart, lung, and renal

insufficiency; and 5) patients with HIV infection or who died

during follow-up from causes other than adverse drug reactions.

The diagnostic criteria for ATB-DILI used in this study are

(9, 34–36) as follows: alanine aminotransferase (ALT)≥3 normal

upper limit of normal value (ULN) and/or total bilirubin (TBil)≥

2ULN; or aspartate aminotransferase (AST) or alkaline

phosphatase (ALP) and TBil are elevated at the same time,

and at least one of them is ≥2 ULN. In addition, considering that

the updated Roussel Uclaf Causality Assessment Method
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(RUCAM) was the recognized standard for the diagnosis of

DILI, no matter what drug was used (37). Here, for patients who

met the DILI diagnostic criteria (ALT≥5ULN or ALP≥2ULN) in

the updated RUCAM, we conducted a subgroup analysis. All

patients diagnosed with ATB-DILI completed a causality

assessment using the updated RUCAM scale (37). Only

patients with a RUCAM score of 6 or more were accepted in

this study.

Urine nontargeted metabolomics and microbiome analyses

were performed in ATB-DILI and gender and age-matched non-

DILI patients, and patients with urinary system diseases were

excluded. Urine samples were self-collected from the subjects

according to the provided instructions prior to antituberculosis

treatment and immediately sent to the laboratory. Once in the

laboratory, samples were stored at −80°C until metabolomic and

microbiome analysis.
Sample preparation

Urine is the common sample type used to perform

metabolomics studies (38, 39). Compared to other samples,

urine has easy sampling, low protein levels and less complexity

(38). Also the urine metabolites are products of normal and

abnormal cellular biological processes and can reflect a wide

range of phenotypes including genetic modifications (38).

Therefore, urine is more advantageous compared to other

sample types and was used as a study sample in this study.

Clean midstream urine from patients before medication was

collected, divided into three 1 ml aliquots, and immediately

stored at −80°C. We discarded samples that were at room

temperature for >2 hours.

Metabolite extraction was primarily performed according to

previously reported methods (40, 41). In short, 100 µL samples

were extracted by directly adding 300 µL of precooled methanol

and acetonitrile (2:1, v/v), and internal standards mix (contains:

L-Leucine-d3, L-Phenylalanine (13C9, 99%), L-Tryptophan-d5,

Progesterone-2,3,4-13C3) were added for quality control of

sample preparation. After vortexing for 1 min and incubating

at -20°C for 2 h, the samples were centrifuged for 20 min at 4000

rpm, and the supernatant was then transferred for vacuum freeze

drying. The metabolites were resuspended in 150 µL of 50%

methanol and centrifuged for 30 min at 4000 rpm, and the

supernatants were transferred to autosampler vials for LC‒MS

analysis. A quality control (QC) sample was prepared by pooling

the same volume of each sample to evaluate the reproducibility

of the whole LC‒MS analysis.
Metabolite detection and comments

This experiment used a Waters 2D UPLC (Waters, USA)

tandem Q Exactive HF high resolution mass spectrometer
frontiersin.org
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(Thermo Fisher Scientific, USA) for separation and detection of

metabolites. To provide more reliable experimental results

during instrument testing, the samples are randomly ordered

to reduce system errors. A QC sample was interspersed for every

10 samples.

The samples were analyzed on a Waters 2D UPLC (Waters,

USA), coupled to a Q-Exactive mass spectrometer (Thermo

Fisher Scientific, USA) with a heated electrospray ionization

(HESI) source and controlled by the Xcalibur 2.3 software

program (Thermo Fisher Scientific, Waltham, MA, USA).

Chromatographic separation was performed on a Waters

ACQUITY UPLC BEH C18 column (1.7 mm, 2.1 mm ×

100 mm, Waters, USA), and the column temperature was

maintained at 45°C. The mobile phase consisted of 0.1%

formic acid (A) and acetonitrile (B) in the positive mode, and

in the negative mode, the mobile phase consisted of 10 mM

ammonium formate (A) and acetonitrile (B). The gradient

conditions were as follows: 0-1 min, 2% B; 1-9 min, 2%-98%

B; 9-12 min, 98% B; 12-12.1 min, 98% B to 2% B; and 12.1-

15 min, 2% B. The flow rate was 0.35 mL/min and the injection

volume was 5 mL.
The mass spectrometric settings for positive/negative

ionization modes (ESI+/-) were as follows: spray voltage, 3.8/

−3.2 kV; sheath gas flow rate, 40 arbitrary units (arb); aux gas

flow rate, 10 arb; aux gas heater temperature, 350°C; capillary

temperature, 320°C. The full scan range was 70–1050 m/z with a

resolution of 70000, and the automatic gain control (AGC)

target for MS acquisitions was set to 3e6 with a maximum ion

injection time of 100 ms. The top 3 precursors were selected for

subsequent MSMS fragmentation with a maximum ion injection

time of 50 ms and resolution of 30,000, and the AGC was 1e5.

The stepped normalized collision energy was set to 20, 40 and

60 eV.
LC‒MS/MS analysis

The original data (raw file) collected byLC‒MS/MS were

imported into Compound Discoverer 3.1 (Thermo Fisher

Scientific, USA) for data processing, including peak extraction,

retention time correction, background peak labeling, and

metabolite identification. We calculate the coefficient of

variation of the relative peak area in all QC samples, and

delete the compounds with coefficient of variation greater than

30%. The identification of metabolites was a combined result of

the BGI Metabolome Database (BMDB), mzCloud and

ChemSpider (Human Metabolome Database (HMDB), Kyoto

Encyclopedia of Genes and Genomes (KEGG), LipidMaps)

databases. Main parameters of metabolite identification:

Precursor Mass Tolerance <5 ppm, Fragment Mass Tolerance

<10 ppm, RT Tolerance <0.2 min. The identification level of

metabolites was divided into five confidence levels, and the

credibility of Level 1 to Level 5 decreased in order. The
Frontiers in Immunology 04
original data exported by LipidSearch were imported into

metaX for data preprocessing and subsequent analysis (42).

Multivariate statistical analysis (principal component analysis

(PCA) and partial least squares-discriminant analysis (PLS-

DA)), and univariate analysis (fold-change, FC and Student’s t

test) were combined to screen for differential metabolites

between groups. Differential metabolite screening conditions:

1) variable projected importance (VIP) ≥ 1, 2) fold-change ≥ 1.2

or ≤ 0.83, 3) p-value <0.05. Metabolic pathway enrichment

analysis of differential metabolites was performed based on the

KEGG database.
Urine DNA extraction and 16S
sequencing

Microbial genomic DNA extraction was performed as

described previously (43). Urine microbial DNA was extracted

using a Qiagen Mini Kit (Qiagen, Hilden, Germany) following

the manufacturer’s instructions. Primers targeting the

hypervariable V3+V4 region of the 16S gene were used to

amplify the extracted DNA samples (the forward primer was

5ʹ- ACTCCTACGGGAGGCAGCA -3ʹ, and the reverse primer

was 5ʹ- GGACTACHVGGGTWTCTAAT -3ʹ). All samples were

sequenced via Illumina HiSeq 2500.
Sequencing data analysis

Cutadapt v2.6 software was used to process the raw data to

obtain fragments of the target region. FLASH (Fast Length

Adjustment of Short reads, v1.2.11) was used for sequence

splicing, and UCHIME (v4.2.40) software was used to remove

chimeras. Sequences were clustered with a 97% similarity level

by using USEARCH (v7.0.1090_i86linux32) to cluster the

spliced tags into OTUs. The OTU representative sequences

were aligned with the database for species annotation by RDP

classifier (1.9.1) software, and the confidence threshold was set

to 0.6. The VennDiagram package of R (v3.1.1) software was

used to display the number of common and unique OTUs for

each group. Principal coordinate analysis was performed using

QIIME (v1.80) software to present similarities or differences in

data. Line Discriminant Analysis (LDA) Effect Size (LEFSE) was

used to calculate the differences in species abundance between

the two groups and then to research the biomarkers related to

ATB-DILI.
Statistical analysis

Differences between two groups were compared by using

Student’s t test for normal continuous variables and c2-test for
categorical variables. Differences with a p value <0.05 (two-
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sided) were considered statistically significant. Statistical

analyses were performed using SPSS V.21.0 for Windows

(SPSS, Chicago, Illinois, USA). Moreover, correlations between

the microbiota and metabolites and between the metabolites and

clinical parameters were analyzed. Integrating electronic medical

records, metabolomic and microbiome data, and machine

learning methods was used to establish a clinical prediction

model of ATLI. We used four machine learning algorithms:

random forest, artificial neural network, support vector machine

(SVM) with the linear kernel (SVM-linear), and SVMwith radial

basis function kernel (SVM-rbf) (44). The stratified sampling

method was used to divide the training set (80%) and the

validation set (20%), and the R4.1.2 software (R Foundation

for Statistical Computing, Vienna, Austria) was used for data

screening and model building. The importance of each feature in

the occurrence of ATB-DILI was scored, and area under receiver

operating characteristic (ROC) curves were employed to assess

the accuracy of the models.
Frontiers in Immunology 05
Results

Baseline characteristics

A total of 74 patients diagnosed with TB were recruited for

this study from March 2021 to December 2021 at West China

Hospital of Sichuan University (Sichuan Province, China).

Finally, 5 patients were lost to follow-up. Of the remaining 69

patients, 16 (23.19%) developed ATB-DILI after antituberculosis

treatment (Supplementary Figure 1). The general clinical

characteristics of the two groups and the results of liver

function tests when DILI occurred are shown in Table 1.

Compared with the non-ATB-DILI group, the levels of

albumin (43.2(40.1-44.4)g/L vs. 44.9(42.2-46.8)g/L, P: 0.033)

and hemoglobin (125.5(118.5-135.8)g/L vs. 137.0(128.5-145.5)

g/L, P: 0.019) were significantly lower in the ATB-DILI group.

No significant differences were observed in other baseline

characteristics between the two groups of patients (P>0.05).
TABLE 1 Clinical characteristics of 69 tuberculosis patients.

Characteristic ATB-DILI (n=16) Non-ATB-DILI (n=53) P

Age, years, median(IQR) 39.0(24.0-53.8) 33.0(27.0-52.0) 0.717

Females, n(%) 11(68.75) 30(56.60) 0.386

Weight, kg, median(IQR) 51.0(50.0-55.0) 55.0(49.0-60.0) 0.289

BMI, kg/m2, median(IQR) 19.9(18.9-20.9) 20.0(18.6-21.9) 0.771

Smoking, n(%) 1(6.25) 7(13.21) 0.527

Drinking, n(%) 0(0.00) 7(13.21) 0.210

Extrapulmonary tuberculosis, n(%) 5(31.25) 14(26.42) 0.704

Baseline laboratory examination, median(IQR)

TBil umol/L 8.1(6.6-12.5) 9.2(7.0-12.1) 0.495

ALT IU/L 14.5(12.3-16.8) 14.0(10.0-20.5) 0.499

AST IU/L 21.5(15.3-26.0) 19.0(16.0-23.0) 0.339

Alkaline phosphatase, IU/L 74.5(57.8-89.0) 75.0(66.5-107.0) 0.518

Glutamyltranspeptidase, IU/L 18.0(11.8-34.3) 19.5(11.3-32.3) 0.750

Albumin, g/L 43.2(40.1-44.4) 44.9(42.2-46.8) 0.033

Creatinine, mmol/L 66.5(59.0-78.3) 67.0(58.5-76.0) 0.915

Uric acid, mmol/L 265.5(227.8-373.0) 314.0(265.5-370.0) 0.191

Hemoglobin, g/L 125.5(118.5-135.8) 137.0(128.5-145.5) 0.019

White blood cell ×10^12/L 6.8(5.4-8.5) 6.0(4.9-7.5) 0.060

Platelet×10^9/ 242.5(182.0-417.3) 249.5(202.0-282.5) 0.937

ESR mm/h 20.0(10.8-83.3) 14.0(9.3-29.3) 0.098

C-reactive protein, mg/L 3.8(2.8-27.1) 3.4(2.1-8.6) 0.359

Triglyceride, mmol/L 1.1(0.7-1.5) 1.1(0.8-1.5) 0.889

Circumstances of DILI, median (IQR)

Onset time, days 29.0(14.0-44.3)

ALT, IU/L 168.0(129.0-331.0)

AST, IU/L 155.0(122.0-362.0)

TBil, umol/L 14.1(9.5-17.9)

Alkaline phosphatase, IU/L 90.0(74.0-122.0)
frontiersi
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The median time to DILI occurred on day 29 after taking anti-

TB drugs (Table 1).

After excluding patients with urinary system diseases, 14

ATB-DILI patients and 30 age- and sex- matched non-ATB-

DILI patients were included for urinary metabolomics and

microbiome analysis (Supplementary Figure 1). It is important

to note that of these 14 patients, 8 met the definition of liver

adaptation (45). The other 6 patients with ALT≥5 times the

upper limit of normal were stopped using antituberculosis drugs

according to Chinese guidelines, so it was hard to distinguish

which were liver adaptation (36).

As shown in Table 2, there were no significant differences in

sex, age, body weight, BMI, body mass index (BMI), smoking,

drinking or tuberculosis site between the two groups of patients

who underwent urine nontargeted metabolome and microbiome

analysis (P>0.05). All participants had normal liver function

before anti-tuberculosis drug ingestion. It was suggested that the

general conditions of the two groups were consistent

and comparable.
Metabonomic analysis of urine

PCA and OPLS-DA were performed for both positive ion

mode (ESI+) and negative ion mode (ESI−). As shown in the

figure (Figures 1A, B), the QC samples (blue circles) were

significantly aggregated, indicating that the instrument was

stable and that the reproducibility of the acquired data was

good. The ATB-DILI (n=14, red circles) and tolerance groups

(n=30, green circles) were not well separated in PCA. As shown

(Figures 1C, D), the PLS-DA model clearly separated the ATB-

DILI and non-ATB-DILI groups in both ionization modes.

Differential metabolites between the two groups were screened

according to multivariate and univariate statistical significance

criteria (VIP≥1, FC≥1.2 or ≤ 0.83, and P<0.05). In general, there

were 1256 urine differential metabolites screened in the positive

ion mode and 334 in the negative ion mode (Figure 2). Finally,

28 differential metabolites with secondary classification names

and reliable identification results (Level 1-3) were selected

(Table 3), including choline, cherry base, N-acetyl,
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pseudohadine, N8-acetyl spermamine, glycolic acid, etc. As

shown in Table 4, a total of 7 significant enrichment pathways

for differential metabolites were found in both positive and

negative ion modes. The differential metabolites were mainly

involved in the metabolism of bile secretion, nicotinate and

nicotinamide metabolism, tryptophan metabolism, ABC

transporters, neuroactive ligand‒receptor interaction, arginine

and proline metabolism, and porphyrin and chlorophyll

metabolism (P<0.05, Count≥2) (Table 4).
Correlation analysis of metabolic and
clinical data

Correlation analysis was conducted between urine

differential metabolites and clinical data, including

baseline ALT, AST, TBIL, Alkaline phosphatase, hemoglobin,

uric acid and albumin. We found that many different

metabolites were significantly correlated with clinical data

(Supplementary Table 1). The urine differential metabolite 11

dehydrothromboxane B2 was positively correlated with the

baseline total bilirubin concentration, while the urine

differential metabolite N8-acetylspermidine was negatively

correlated with the hemoglobin content, and uric acid was also

negatively correlated with the baseline serum uric acid level

(Supplementary Table 2).
Microbiome analysis of urine

As shown in the Figure (Figure 3A), 1079 OTUs were shared

between the ATB-DILI group and the non-ATB-DILI group,

607 OTUs were unique to the non-ATB-DILI group, and the

other 189 OTUs were unique to the ATB-DILI group. The

Shannon curve (Figure 3B) shows that the amount of

sequencing data in this study was large enough to reflect the

vast majority of microbial information in the sample. The top 10

key species between the two groups are shown in Figure 3C.

Weighted UniFrac principal coordinate analysis (PCoA) was

applied to detect the changes in microbial community structures
TABLE 2 Clinical characteristics of the two groups of matched patients.

Characteristic Non-ATB-DILI group (n＝30) ATB-DILI group (n＝14) P

Age, years, median(IQR) 33.0 (27.0-52.0) 43.5 (22.8-55.5) 0.772

Females, n(%) 16(53.3) 9(64.3) 0.495

Weight, kg, median(IQR) 52.8(48.0-58.8) 50.0(49.9-55.0) 0.495

BMI, kg/m2, median(IQR)) 19.9(18.6-22.0) 19.5(18.7-20.1) 0.473

Smoking, n(%) 2(6.7) 1(7.1) 0.976

Drinking, n(%) 2(6.7) 0(0.0) 0.314

Extrapulmonary tuberculosis, n(%) 23(76.7) 11(78.6) 0.888
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(Supplementary Figure 3). The results indicate that the ATB-

DILI group and the control group were significantly separated

along the PC2 axis, which explained 19.79% of the total

variation. LEFSE analysis was used to determine the key

attribute differences between the two groups. The differential

microbiota (LDA score>2) screened between the two groups

were Negativicoccus and Actinotignum, which were all

upregulated in the ATB-DILI group (Figure 3D).
Correlation of the urine microbiota
and metabolism

We further investigated the correlation of urinary differential

metabolites with altered urinary microbiota. Significant

correlations were found between some differential metabolites

and microbial groups by calculating rank correlation coefficients

(Figure 4 and Supplementary Table 2). Carbendazim was

positively correlated with synergistia but negatively correlated

with mollicutes (p<0.05) (Supplementary Table 2). D-(-)-lyxose
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was positively correlated with four microbial groups, including

synergistia, ktedonobacteria, fibrobacteria and fusobacteriia

(p<0.05) (Supplementary Table 2). Altogether, these results

showed that distinctive metabolites were closely related to

urinary microbiome variation, and distinctive metabolites and

microbiomes were closely related to the occurrence of ATB-DILI.
Subgroup analysis

According to RUCAM criteria, metabolome and

microbiome analysis were performed between the ALT≥5

ULN group and normal patients. Significant metabolic

differences were observed between the two groups, there were

1122 different metabolites were screened in positive ion mode

and 386 in negative ion mode (Supplementary Figure 3). Finally,

26 different metabolites were selected, including choline, 11-

dehydrothromboxane b2, and N8-acetylspermidine.

(Supplementary Table 3). Consistent with our results in

Section 3.2, 8 common different metabolites were found in the
A B

DC

FIGURE 1

Multivariate statistical analysis. (A, B) principal component analysis scores scatter plots of the two groups. (C, D) partial least squares-
discriminant analysis score scatter plots of the two groups. QC (blue circles), control group (n = 30, green circles), ATB-DILI group (n =14, red
circles).
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subgroup analysis to be related to liver injury after medication,

especially when ALT>5ULN occurred (Table 3 and

Supplementary Table 3). The eight differential metabolites

were choline, N8-acetylspermidine, carbendazim, N-

ace ty lput resc ine , 1-methy ln ico t inamide , c rea t ine ,

porphobil inogen, and nonanoic acid (Table 3 and

Supplementary Table 3). And these different metabolites had

the same label direction in the two groups of patients with liver

injury (Table 3 and Supplementary Table 3).

There were 795 OTUs shared between the DILI patients with

ALT ≥ 5 ULN and normal patients, 68 OTUs were unique to the

DILI group, and the other 891 OTUs were unique to the control

group (Supplementary Figure 4-A). The top 10 key species between

the two groups are shown in Supplementary Figure 4-B. Finally, 3

differential microbiotas (LDA score>2) were found between the two

groups (Supplementary Figure 4-B). The Actinotignum was down

regulated in DILI group, while the Bradyrhizobiaceae, and

Bradyrhizobium were upregulated in the non-DILI group

(Supplementary Figures 4-C). Combined with the results in

Section 3.4, we have sufficient evidence to show that

Actinotignum was closely related to the occurrence of liver injury

after medication, regardless of the DILI standards.
Comparison of the models for the
prediction of ATB-DILI

Random forest analysis was performed on the screened

differential metabolites (Table 3), differential microbiota (Figure 2),
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and relevant clinical data of 44 patients. For clinical characteristics,

we included albumin and hemoglobin, which were significantly

different between the two groups, as well as other factors that may be

associated with the occurrence of ATB-DILI (including age, sex,

BMI, baseline ALT, AST, and TBil). A total of 38 variables are

included. When ntree=500 and mtry=6, the model reaches the

optimum. The score of the 38 variables was shown in Figure 5A. The

larger the absolute value is, the greater the importance of the

indicator. After sorting the variables from high to low according

to the absolute value, the cross-validation curve was obtained by

performing tenfold cross-validation repeated 5 times

(Supplementary Figure 5). The top 10 variables were selected for

model building with the lowest error (Supplementary Figure 5). The

area under the ROC curve of the fourmodels were shown in Table 5.

At training set, the random forest model performed significantly

better than the remaining three models (area under the curve 0.98

vs. 0.87 (ANN), 0.89 (SVM-linear) and 0.89 (SVM-rbf) (Table 5).

Overall, random forest model, artificial neural network model and

two support vector machine models (both SVM-linear and SVM-

rbf) all have excellent prediction value for the validation set

(Figure 5B and Table 5). The consistent results between the

training set and the validation set indicate that those models have

high accuracy for predicting the occurrence of ATB-DILI.
Discussion

Evidence that the human urine microbiome and

metabolome contribute to the development of ATB-DILI is
A B

FIGURE 2

Volcano map of differential metabolites. Green is the down-regulated differential metabolite (labeled green), red is the up-regulated differential
metabolite (labeled red), and metabolites without difference are labeled purple-gray. (A) positive ion mode, (B) negative ion mode.
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accumulating. Thus, characterization of the urinary microbiota

and metabolites in ATB-DILI is highly warranted, especially

before medication. Herein, we first reported the characterization

of urine metabolomics and the microbiome in patients with

ATB-DILI before medication and identified key metabolites and

bacteria that may be involved in the development of ATB-DILI.

Meanwhile, we first proposed and successfully built four ATB-
Frontiers in Immunology 09
DILI clinical prediction models using our metabolomics,

microbiome and clinical data.

In this study, the levels of ALT, AST, TBil or ALP were

within the normal range in all enrolled patients before ingestion

of anti-tuberculosis drugs. Approximately 23.2% of the patients

had markedly elevated ALT and AST after ingesting anti-

tuberculosis drugs. According to China’s 2019 guidelines for
TABLE 3 Identified differential metabolites between two groups.

Name MW RT VIP FC P Label

Choline 103.1 0.7 3.3 1.79 0.003 Up

Trigonelline 137.0 0.7 2.1 3.19 0.016 up

N-acetylputrescine 130.1 0.7 1.8 1.23 0.009 up

Pseudoephedrine 165.1 3.3 2.5 0.01 0.009 down

N8-acetylspermidine 187.2 0.7 2.4 1.43 0.004 up

Glycocholate 465.3 8.0 2.2 4.06 0.013 up

Uric acid 168.0 1.0 1.9 1.66 0.021 up

Ecgonine 185.1 4.9 1.8 1.96 0.028 up

1-methylnicotinamide 136.1 0.8 1.8 2.09 0.012 up

6-methylquinoline 143.1 3.5 1.6 0.63 0.035 down

Sebacic acid 202.1 6.4 1.6 1.97 0.049 up

Picolinic acid 123.0 3.5 1.5 0.64 0.012 down

3-hydroxyanthranilic acid 153.0 2.8 1.1 1.26 0.049 up

Mannitol 182.1 0.7 1.9 1.57 0.022 up

Carbendazim 191.1 0.7 1.6 0.15 0.023 down

Lipoamide 205.1 4.0 1.4 1.78 0.033 up

Ophthalmic acid 289.1 2.4 1.4 0.47 0.041 down

Valerophenone 162.1 5.5 1.2 0.71 0.030 down

D-(-)-lyxose 150.1 0.7 1.0 0.77 0.030 down

Creatine 131.1 0.7 1.6 0.32 0.030 down

L-glutamic acid 147.1 0.7 1.1 0.71 0.029 down

Methylmalonic acid 118.0 0.7 1.9 0.46 0.014 down

Porphobilinogen 226.1 0.7 1.5 0.49 0.001 down

Epinephrine 183.1 3.9 2.2 2.44 0.008 up

Heptanoic acid 130.1 5.4 1.4 0.50 0.047 down

11-dehydrothromboxane b2 368.2 6.8 1.1 1.40 0.040 up

Nonanoic acid 158.1 6.9 1.5 0.51 0.004 down

Taurolithocholic acid 3-sulfate 563.3 7.8 2.2 1.53 0.017 up
frontier
VIP, variable important for the projection; FC, fold-change; MW, molecular weight; RT, retention time.
TABLE 4 Differential metabolite pathway analysis.

Pathway Ion modes Count Count All P

Bile secretion positive 4 97 <0.001

Nicotinate and nicotinamide metabolism positive 2 55 0.001

Tryptophan metabolism positive 2 81 0.002

ABC transporters positive 2 124 0.005

Neuroactive ligand-receptor interaction negative 2 52 <0.001

Arginine and proline metabolism negative 2 78 <0.001

Porphyrin and chlorophyll metabolism negative 2 142 0.003
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the diagnosis and treatment of ATB-DILI (36), for DILI caused

by anti-tuberculosis drugs, when ALT≥3ULN or TBil≥2ULN,

the relevant anti-tuberculosis drugs need to be discontinued, and

when ALT≥5ULN or TBil≥3ULN, it is necessary to stop all anti-

tuberculosis drugs. Indicates that DILI needs to be taken

seriously in TB patients. Therefore, we first analyzed the

characteristics of the metabolomics and microbiome of DILI

patients with ALT≥3 ULN. As a large number of domestic and

foreign studies both recommend the use of RUCAM to assess

DIL (46–48), we did a subgroup analysis for those DILI was

defined as serum ALT level ≥5ULN. What was exciting was that

no matter which DILI standard, we have found the same

differential metabolites and microorganisms.

Metabolomics and the microbiome were used to analyze the

urine of the ATB-DILI susceptible group and normal liver

function control group, and the two groups could be

distinguished significantly on the PLS-DA scatter plot.

Consistent with those of a previous study (23, 24, 26), our

results also indicated that ATB-DILI susceptible individuals may

have specific metabolomic and microbiological patterns. We

identified 28 major differential metabolites between the two

groups in urine, including choline, trigonelline, N-

acetylputrescine, uric acid, etc. The biological properties of

each metabolite were searched from the human metabolome

database (https://hmdb.ca/), and summarized in Supplementary
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Table 4. The differential metabolites selected in this study were

consistent with the biospecimen locations in the database. This

process involves bile secretion, nicotinate and nicotinamide

metabolism, tryptophan, ABC transporters, neuroactive ligand-

receptor interaction, arginine and proline metabolism,

porphyrin and chlorophyll metabolism. Two major differential

microbial, Negativicoccus and Actinotignum, were identified

between the two groups.

As an essential nutrient, choline in the urine of patients with

overactive bladder was 34.8% lower in urine metabolomic

analysis than patients without overactive bladder (P = 0.014)

(49). The urinary excretion of choline metabolites in term

breast-fed infants was significantly higher than that in term

formula-fed infants (P < 0.05) (50). This study found that

urinary choline levels may be a noninvasive biomarker for

predicting ATB-DILI. For the first time, upregulated

trigonelline in urine before medication was found to be

associated with ATB-DILI in TB patients. This may be related

to the possible inhibition of key enzymes in lipid metabolism

and absorption by trigonelline (51). Previous studies have found

that glycocholic acid levels were significantly increased in DILI

(52, 53), and the increased levels were positively correlated with

the severity of DILI (52). Combined with the results of this

study, glycocholic acid may have a role as a biomarker for DILI.

As a proinflammatory and proapoptotic molecule, uric acid
A

B

D

C

FIGURE 3

Comparison between 16S sequencing data of urine samples from non-ATB-DILI patients (n = 30) and ATB-DILI patients (n = 14). (A) Venn
diagram. The left is the ATB-DILI group, the right is the control group. (B) a-diversity (Shannon curve). (C) Difference comparison of key species.
(D) LEfSe analysis. Species with LDA greater than the set value of 2 are presented. The length of the bar indicates the magnitude of LDA
influence.
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plays an intermediary role in the process of liver and kidney

injury (54, 55), and animal experiments have shown that the

elevation of uric acid may lead to alcohol-induced steatosis,

endoplasmic reticulum stress, and cell apoptosis. death and liver

damage (56). Cao et al. found that uric acid levels in urine can be

used to differentiate ATB-DILI from non-ATB-DILI patients

(24). In this study, we found that uric acid in urine generation

before medication could be used as a biomarker to predict the

occurrence of ATB-DILI after medication, indicating that uric

acid in urine metabolism may have great potential in predicting

and identifying ATLI.

Additionally, differential metabolite enrichment analysis

showed that metabolic pathways, including bile secretion,

niacin and nicotinamide metabolism, ABC transporters, and

etc., were involved in the occurrence of ATB-DILI after

medication. Impaired bile secretion has been observed in

mouse models of liver injury (57), which leads to intrahepatic

bile accumulation (58). Studies have found that the bile secretion

pathway is involved in psoralen (59) and liver injury induced by

baklavaine (60). Our study found that abnormalities in the bile

secretion pathway existed before liver injury occurred and before

drug administration. It has also been shown that liver damage

can be alleviated by improving bile secretion (61). Therefore, this
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pathway may provide a new target for the prevention and

treatment of ATB-DILI. Consistent with our earlier study,

niacin and nicotinamide metabolism were involved in the

occurrence of ATB-DILI in this study (26). The difference is

that a previous study found that the niacin and nicotinamide

metabolism pathways were significantly altered when liver injury

occurred, and this study found that this pathway abnormality

existed long before liver injury occurred. Herein, the niacin and

nicotinamide metabolic pathways play an important role in the

development and progression of ATLI. The specific mechanism

needs further study.

Each disease has its own unique microbial alterations (29,

62). Microorganisms in the gut originate from the digestive

system, while urine microorganisms reflect the entire body

including the intestinal tract, oral system, respiratory system,

etc (63). Studies have shown that the urinary microbiota is

associated with diseases outside the urinary system (64, 65).

Previous studies have indicated that microbiota alterations are

associated with drug-induced liver injury (26, 32, 33). Our

previous study found that six microbiota including

o_Bacteroidales, f_Prevotellaceae, etc., were associated with

ATB-DILI (26). Compared with control group, this

prospective study found that the Negativicoccus and
FIGURE 4

Correlation analysis of differential metabolites and microbiota.
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Actinotignum were upregulated in the ATB-DILI group before

medication. Negativicoccus was found to be significantly

increased in the oral cavity of hamsters using smokeless

tobacco products (66). Among patients with nonmuscle-

invasive bladder cancer, BCG-vaccinated patients had

significantly more negativicoccus in their urine than

nonvaccinated BCG patients (67). Negativicoccus was also

found to be one of the core flora in all ground glass nodules

and normal tissue samples (68). However, studies have proven

that Negativicoccus and Actinotignum are associated with

ATB-DILI.

Furthermore, our results also suggested that there may be

specific metabolomic and microbiological patterns in individuals
A

B

FIGURE 5

Machine learning models. (A) Score the importance of variables. The larger the value, the more important the variable is. (B) Receiver operating
characteristic curve for the models developed with the top 10 important variables as inputs. ALT, alanine aminotransferase; AST, aspartate
aminotransferase; TBIL, total bilirubin; ALB, albumin; BMI, body mass index; HB, hemoglobin.
TABLE 5 The area under the curve of machine learning models.

Model AUC

Training set Test set

RF 0.98 1

ANN 0.87 1

SVM_linear 0.89 1

SVM_rbf 0.89 1
AUC, area under the curve; RF, random forest; ANN, artificial neural network; SVM,
support vector machine; SVM_rbf, support vector machine with radial basis function
kernel.
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susceptible to severe ATB-DILI when compared with the mild

ATB-DILI group. The discovery of these biomarkers may help

with the early identification of TB patients at risk of developing

severe DILI, thus providing new ideas for the individualized

treatment of TB. However, due to the limited sample size, the

results of this study cannot be directly generalized to

other populations.

This study is the first to establish the early prediction models

of ATB-DILI by combining clinical data and metabolomics and

microbiology data using a machine learning method. The

random forest algorithm was used to analyze multiple

variables, the importance of each variable was scored, and the

optimal variable (top 10) combination was obtained by adjusting

the parameters to form the ATB-DILI prediction models. The

results of the training set and the validation set were consistent

(all ROC ≥ 0.85) (Table 5). Based on clinical and genomic data,

researchers from Taipei Medical University compared the

accuracy of multiple machine learning methods in predicting

ATB-DILI, among which the artificial neural network showed

the best prediction performance (69). In their study, the area

under the ROC curve of the training set in the random forest

algorithm was 0.724 and 0.718 for the validation set (69).

Combined with our study, machine learning techniques show

great potential in predicting ATB-DILI and may provide new

opportunities for the diagnosis and treatment of ATB-DILI.

This study has some limitations. First, the number of

participants was limited. However, this was a prospective

study, which enhanced reliability of the results. Further

validation in more centers with more patients needs to be

verified in the future. Second, even though this study adds to

the understanding of metabolome and microbiological patterns

on the progress of ATD-DILI, this study only analyzed predose

characteristics and lacked data at multiple time points after drug

use. There is much work yet to be performed to understand these

changes entirely. Finally, the current study obtained good

predictive value in both the training set and the validation set,

but limited by the limited sample size and geographical

limitations, further verification is required in studies with

more regions and larger samples in the future.
Conclusion

In conclusion, our findings extend our knowledge of the

relationship between urinary metabolites and microbiota and

host ATB-DILI susceptibility, indicating that certain

metabolomic and microbiome changes from the host can be

used to identify and predict an individual’s susceptibility to

ATB-DILI. In the future, prospective cohorts with a larger

number of subjects are needed to investigate the potential

clinical utility of metabolic markers in the identification of

susceptible individuals. Prospective cohorts with more subjects
Frontiers in Immunology 13
and more time points are needed to investigate the potential

clinical utility of metabolic markers and key microbiota in

identifying susceptible individuals.
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SUPPLEMENTARY FIGURE 1

Flow chart.

SUPPLEMENTARY FIGURE 2

Volcano map of differential metabolites in subgroup analysis.
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SUPPLEMENTARY FIGURE 3

Principal co-ordinates analysis.

SUPPLEMENTARY FIGURE 4

Subgroup analysis of 16S sequencing data of urine samples. (A) Venn

diagram. The left is the severe DILI group, the right is the non-DILI group.
(B) Difference comparison of the top 10 key species. (C) LEfSe analysis.

Species with LDA greater than the set value of 2 are presented. The length
of the bar indicates the magnitude of LDA influence.

SUPPLEMENTARY FIGURE 5

Cross validation curve. The abscissa is the number of variables, and the

ordinate is the cross-validation error rate.
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