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hydroxy-4-quinolone (PQS)
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Richard O. Williams1 and Trevor W. Stone 1*

1The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and
Musculo-skeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom, 2Internal
Medicine, Ashtead Hospital, Ashtead, United Kingdom
Many invasive micro-organisms produce ‘quorum sensor’ molecules which

regulate colony expansion and may modulate host immune responses. We

have examined the ability of Pseudomonas Quorum Sensor (PQS) to influence

cytokine expression under conditions of inflammatory stress. The administration

of PQS in vivo tomicewith collagen-induced arthritis (CIA) increased the severity

of disease. Blood and inflamed paws from treated mice had fewer regulatory T

cells (Tregs) but normal numbers of Th17 cells. However, PQS (1mM) treatment of

antigen-stimulated lymph node cells from collagen-immunised mice in vitro

inhibited the differentiation of CD4+IFNg+ cells, with less effect on CD4+IL-17+

cells and no change in CD4+FoxP3+Tregs. PQS also inhibited T cell activation by

anti-CD3/anti-CD28 antibodies. PQS reduced murine macrophage polarisation

and inhibited expression of IL1B and IL6 genes in murine macrophages and

human THP-1 cells. In human monocyte-derived macrophages, IDO1 gene,

protein and enzyme activity were all inhibited by exposure to PQS. TNF gene

expression was inhibited in THP-1 cells but not murine macrophages, while LPS-

induced TNF protein release was increased by high PQS concentrations. PQS is

known to have iron scavenging activity and its suppression of cytokine release

was abrogated by iron supplementation. Unexpectedly, PQS decreased the

expression of indoleamine-2, 3-dioxygenase genes (IDO1 and IDO2), IDO1

protein expression and enzyme activity in mouse and human macrophages.

This is consistent with evidence that IDO1 inhibition or deletion exacerbates

arthritis, while kynurenine reduces its severity. It is suggested that the inhibition of

IDO1 and cytokine expressionmay contribute to the quorum sensor and invasive

actions of PQS.

KEYWORDS

arthritis (including rheumatoid arthritis), PQS signaling, Indoleamine 2 3-dioxygenase
(IDO), kynurenine (KYN), tolerance, regulatory T (Treg) cells, Th17 cells and Treg cells,
quorum sensing (QS)
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Introduction

Many pathogenic bacteria and other invasive micro-organisms

can produce an immunosuppressive local environment in the host

which would permit or encourage their own survival and

development. In many cases this is achieved by a system of

quorum sensing (QS) by which the invading microbes secrete

signalling molecules to modulate colony size and density (1–7).

When the invading colony size is small, the ambient concentrations

of QS Signalling Molecules (QSSMs) are maintained at low levels to

restrict proliferation, growth and migration, minimising any

activation of the host immune system. As colony density rises to

a critical threshold (the ‘quorum’) which should be sufficient to

overcome host defences, the relationship between QSSM

concentration and receptor activity reverses to yield a positive

feedback system in which the QSSMs promote proliferation and

increased migration. The QSSMs also regulate the generation of

virulence factors which are injurious to host tissues and which

facilitate microbial invasion and dissipation (8–11). Virulence

factors include a wide range of molecules which can include

proteases (12–14) some of which may contribute to the induction

of host immune tolerance by the induction of indoleamine-2,3-

dioxygenase-1 (IDO1) (14). This is accompanied by synchronised

mitosis and expression of genes involved in self-protection, such as

adhesion molecules CD11b (15), and a more aggressive inhibition

of host immune defences. Together, the suppression of host

immunity, promotion of pathogen survival, and the generation of

bacterial biofilms within tissues and on foreign surfaces (e.g.

catheters), produce conditions which are extremely stable and

lead to bacterial pockets which are highly resistant to antibiotic

treatments and with local QSSM concentrations of over 100 mM
(16, 17). It is therefore essential to appreciate the sites and

mechanisms of action of QSSMs in the invading bacterial and

host tissues in the development of novel therapies.

The current investigation centres on the QS system of 2-

alkyl-4-quinolones (2A4Q) represented by 2-heptyl-3-hydroxy-

4-quinolone, more commonly referred to as the Pseudomonas

Quorum Sensor (PQS) (or Pseudomonas Quinolone System)

from its original identification in the major human pathogenic

commensal P. aeruginosa although it is also expressed by many

other bacteria (1). It has been reported that PQS exhibits anti-

inflammatory activity by suppressing cytokine generation and

inhibiting the activation of NFkB (18, 19) while the promotion

of IFN-g related genes inhibits PQS activity and enhances host

resistance (20–22). The switch to high pathogenicity and the

generation of virulence factors can also induce host immune

mechanisms to attack damaged host cells – in effect triggering

autoimmunity by a positive feedback of increased bacterial

growth and a re-focussing of host immunity on self (2, 23, 24).

The situation has been compared with the state of sepsis, in

which QSSMs may be involved (25). The present study was

designed to assess whether PQS would affect cytokine expression

under conditions of inflammatory challenge as seen in models of
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arthritis and colitis. In addition, an in vitro analysis compared

changes in T cell populations and cytokine generation in cells

taken from normal control animals and those with arthritis to

determine the balance of pro-inflammatory and anti-

inflammatory activity. This includes the ratio of Th17 cells to

regulatory T cells (Tregs) which is now regarded as pivotal in

many autoimmune conditions and cancers (26) and an

examination of the tolerogenic enzyme IDO1 (27).
Materials and methods

Ethical statement

Human apheresis cones were obtained with informed consent

from the National Health Service Blood Service (REC: 11/H0711/7).

All procedures were approved by the Animal Welfare Ethical

Review Board and were undertaken in accordance with personal

and project licences issued by the UK Home Office under the UK

Animals (Scientific Procedures) Act, 1986.
Collagen-induced arthritis (CIA)

Details of the model have been published previously (28).

Briefly, male DBA/1 mice were immunised subcutaneously with

200 mg of bovine type II collagen emulsified in Complete

Freund’s Adjuvant (CFA) (BD Biosciences) at the base of the

tail and on the flank. After immunization, the mice were

monitored daily for symptoms of arthritis. Once an animal

showed signs of arthritis, it was randomly assigned to a

treatment or control group and monitored daily. Animals

received PQS (10 mg/kg per day, i. p.) or vehicle and were

treated until day 10. The development of arthritic symptoms and

their severity was scored by an experienced, blinded investigator

as follows: 0 = normal, 1 = slight swelling and/or erythema, 2 =

pronounced swelling, and 3 = ankylosis. All four limbs were

scored, giving a maximum possible score of 12 per animal. On

day 10 the animals were euthanised and the paws, inguinal

lymph nodes, spleen and blood were collected and single-cell

suspensions were obtained and analysed by flow cytometry.
Antigen-induced arthritis (AIA)

Male and female C57BL/6 mice, 8-12 weeks of age, were

immunised subcutaneously with 100 mg of methylated bovine

serum albumin (mBSA) emulsified with an equal volume of

CFA. On day 21, 100 mg of mBSA was administered by intra-

articular injection into the right knee joint while the left knee

joint received PBS, as a control. Changes in knee swelling were

determined by comparing to measurements made prior to the

intra-articular injection. Mice were treated with PQS (10mg/kg)
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or vehicle during either the post-immunisation, pre-intra-

articular injection period or after the intra-articular injection

period. After 7 days the animals were euthanised, inguinal

lymph nodes and knee joints were collected and single-cell

suspensions were obtained and analysed by flow cytometry.
Weight-bearing

Knee joint nociception was evaluated using a dynamic

weight bearing apparatus (Bioseb, France) as previously

described (29). For testing, the mouse was placed in the device

and allowed to move freely for a period of 4 minutes. Integrated

analysis of video and pressure sensors by the software

determined the weight distribution of each of the four paws.
Dextran Sulphate-induced colitis
(DSS colitis)

Dextran sodium sulphate (DSS; MP Biomedicals, Cat No

160110 (MW: 36,000-50,000) was administered in the drinking

water (3%) for 5 days (30). Body weight and appearance were

monitored daily and PQS was administered intraperitoneally

daily. Mice were subsequently euthanized 7 d after the start of

DSS administration or within 24 h if they exhibited a weight loss

of more than 15% of their initial body weight. On removing the

colon, its length was measured and a portion of distal colon and

caecum were fixed in neutral buffered 10% formalin (CellPath,

ref BAF-6000-08A) followed by paraffin embedding. The fixed

tissue was stained with eosin and haematoxylin. Images were

produced from at least five sections per organ using an

Axioscan-Z1 platform (Zeiss) with Zen-2.3 software and using

an Olympus BX51 microscope. Slides were scored blindly using

3 sections per sample as described previously (31).
Mouse T cell preparation

Single cell suspensions were prepared from the lymph node

and spleen of C57BL/6 mice and CD4+ T cells were isolated

using the CD4+ T Cell Isolation Kit (130-104-454, Miltenyi

Biotec). Cells were cultured in RPMI medium supplemented

with 10% FBS, 50 mM 2-mercaptoethanol and 10,000 U/ml

penicillin/streptomycin. Cells were activated with plate-bound

anti-mouse CD3 (5 mg/ml; clone 145-2C11), and soluble anti-

mouse CD28 (2 mg/ml; clone 37.51, eBioscience) in RPMI for

four days in the following differentiation media:-

(a) for Th1 - 10 ng/ml IL-12 (200–12), 10 ng/ml IL-2, 5 µg/

ml anti-IL-4 (504122, BioLegend);

(b) for Th17 - 50 ng/ml IL-6 (216–16), 10 ng/ml IL-1b (211-

11B), 10 ng/ml IL-23 (200–23), 5 ng/ml TGF-b (100–21), 5 µg/

ml anti-IL-4, 5 µg/ml anti-IFN-g (505834, BioLegend);
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(c) for Tregs - 10 ng/mL IL-2 (200-02, PeproTech) and 10

ng/mL TGF-bDMSO or the indicated concentration of PQS was

added from day 1 of stimulation and cell populations were

analysed by FACS after 4 days
Murine bone marrow-derived
macrophages (BMDMs)

Bone marrow cells were harvested from the femurs of mice.

To derive naïve (M0) macrophages, bone marrow cells were

cultured in complete RPMI 1640 with 50 ng/ml M-CSF (315-02,

PeproTech) for 7 days, of which 5 ml were replenished by new

complete RPMI 1640 with 50 ng/ml M-CSF at day 3. For M1 and

M2 differentation, M0 cells were then treated with LPS (L2880,

Sigma-Aldrich) and/or IFNg (315-05, PeproTech) for M1 and

IL-4 (214-04, PeproTech) and/or IL-10 (210-10, PeproTech) for

M2. To investigate the effect of PQS on the differentiation of M1

and M2, PQS (0.05 to 20 mM) was co-treated with the cytokines

known to promote M1 and M2 differentiation. After overnight

culture, cells were lysed for gene expression by qPCR.
Human monocyte-derived macrophages

Human apheresis cones were obtained with informed consent

from the National Health Service Blood Service (REC: 11/H0711/7).

Peripheral Blood Mononuclear Cells (PBMCs) were isolated as

previously described (32) using density separation (Lympholyte®,

Cedarlane). Monocytes were isolated by positive immunomagnetic

selection (Miltenyi) according to the manufacturer’s instructions

(33). Monocytes (106 per mL) were cultured in 10 cm dishes for up

to 7 days in complete RPMI (10% FBS, 1% penicillin/streptomycin)

supplemented with 50 ng/mL of human M-CSF (300-25,

PeproTech) to generate monocyte derived macrophages (MDMs).
THP-1-derived macrophages

The THP-1 cell line is a commonly used surrogate for

macrophage studies, being derived from human leukaemia

cells (34, 35). THP-1-derived M0, M1 and M2 macrophages

were differentiated and treated with PQS by the same protocols

as mentioned above in the section of murine bone marrow-

derived macrophages
Human Th17 differentiation

Naïve T cells were isolated from human PBMCs by magnetic

activated cell sorting using the Naïve human CD4+ T cells Isolation

Kit II, (Miltenyi, 130-094-131). In vitro stimulation was performed

with plate-bound anti-CD3 antibody at 0.5 mg/ml (317315) (clone
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1001956
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ogbechi et al. 10.3389/fimmu.2022.1001956
OKT3; BioLegend, LEAF grade) and 2 mg/ml anti-CD28 antibody

(302923) (clone CD28.2; BioLegend, LEAF grade) in 200 ml RPMI

at 2x105 cells per well. Recombinant cytokines (PeproTech) were

added at the following concentrations: IL-6 (200–06), 50 ng/ml; IL-

1b (200–01) and IL-23 (200–23), 10 ng/ml and TGF-b (200–21)1

ng/ml, and neutralizing antibodies against IFN-g (502404) and IL-4
(500707) were used at 2 mg/ml (BioLegend, LEAF grade). Cells were

split 1 in 4 on day 3 and 200 ml of fresh complete RPMI containing

cytokines and antibodies were added to the wells. This

replenishment was repeated on day six. On day 7 cells were

stimulated for 5 h with 500 ng/ml PMA (Sigma-Aldrich) and 1

mg/ml ionomycin (Sigma-Aldrich) in the presence of Brefeldin A

(Sigma-Aldrich). Cells were stained with an antibody against CD4

(45-0049-42, eBioscience) as well as a Fixable Viability Dye

(BioLegend) then fixed and permeabilized using the FoxP3

Staining Buffer Set (eBioscience). IL-17 staining was performed

using a specific antibody (512334, BioLegend). Data were acquired

on a FACSCanto II (Becton Dickinson) with DIVA software, and

analysis of the data was performed using FlowJo.
Flow cytometric analysis

For analysis of extracellular markers, cells were stained with

Zombie Fixable Viability dye (77184, BioLegend) and unlabelled anti-

CD16/32 (101320, BioLegend) to block nonspecific staining in FACS

buffer containing PBSwith 0.1% BSA and 2mMEDTA for 15min in

the dark at 4°C. Cells were washed and labelled with fluorochrome

conjugated antibodies against cell surface markers in FACS buffer for

30 min in the dark at 4°C. Cells were washed twice and incubated in

fixation solution (BD) for 15 min at room temperature. Cells were

washed and re-suspended in PBS prior to acquisition.

For intracellular proteins, cells were stained as above then

fixed and permeabilised using the FoxP3/transcription factor

staining buffer set (00-5523-00, eBioscience) according to the

instructions provided. Cells were then washed and stained for

intracellular markers in permeabilisation buffer for 45 min in the

dark at 4°C. Prior to acquisition, cells were washed twice with

permeabilisation buffer and resuspended in PBS. To detect T cell

cytokines, cells were stimulated with 20ng/mL phorbol 12-

myristate 13-acetate (P8139, Sigma), 0.4 mM ionomycin

(407950, Sigma), and 1.25 mg/ml brefeldin A (0215902705, MP

Biomedicals) for 4 hours prior to staining.

Cells were stained with the following antibodies: anti-human

CD4 (45-0049-42, eBioscience), anti-human IL-17A (512334,

BioLegend), anti- mouse CD4 (12-0041-82, eBioscience), anti-

mouse CD25 (102035, BioLegend), anti-Foxp3 (25-5773-82,

eBioscience), anti-IFN-g (48-7311-82, eBioscience), anti-IL-17A

(506928, BioLegend), anti-T-bet (45-5825-82, eBioscience), CD69

(164202, BioLegend), ICOS (Inducible Co-Stimulator, 107705 or

107711, BioLegend), anti PD-1 (Programmed Death-1, CD279;

135218, BioLegend), anti-MHCII (107636, BioLegend), anti-F4/80

(EMR1; 123120, BioLegend), anti-CD38 (102730, BioLegend), anti-
Frontiers in Immunology 04
CD206 (141727, BioLegend). Samples were acquired on a Canto II

or LSR II or LSR-Fortessa (BD) and analysed using FlowJo Software.
Quantification of cytokines

Enzyme-linked immunosorbent assays (ELISAs) were

performed on the clarified supernatants using kits from

Invitrogen (TNF-a- 88-7324 and IFN-g- 88-8314-88)

according to the manufacturer’s instructions. The plates were

read using a SPECTROstar Nano microplate reader (BMG

LABTECH) at a wavelength of 450 nm. Cytokine secretion by

colon organ cultures was measured using the Meso Scale

Discovery (MSD) platform according to the manufacturer’s

ins t ruct ions . A 3-(4 , 5-d imethy l th iazo l -2-y l ) -2 ,5-

diphenyltetrazolium bromide (MTT) assay (Sigma) was

performed on cells after the collection of medium necessary

for analysis to determine cell viability; after incubation with the

reagent (3 h) cells were solubilized with 10% w/v SDS overnight

at 37degC then analysed on a plate reader; absorbance was

measured at 570 nm, with measurement at 690 nm used for

background absorbance.
Determination of kynurenine
concentration

Cell culture medium was centrifuged to pellet debris and the

clarified supernatant was mixed in a 2:1 ratio with trichloroacetic

acid and mixed. The sample was then centrifuged at 500 g for

20min to pellet precipitated proteins. The supernatant was mixed in

a 1:1 ratio with Ehrlich’s reagent [20 mg P-dimethylbenzaldehyde/

mL acetic acid]. The absorbance was read at 496 nm and compared

to a standard of kynurenine concentrations.
qPCR

RNA extraction was completed according to manufacturer’s

instructions (RNeasy Mini Kit,Qiagen). A total of 500 ng of RNA

was reverse transcribed to cDNA according to the manufacturer’s

instructions (High Capacity cDNA Reverse Transcription Kit,

Applied Biosystems) and diluted to 120 µL. Expression of target

genes was determined using TaqMan gene expression assays

(ThermoFischer Scientific) in duplicate using 2.4 mL of cDNA.

Gene expression was calculated relative to the housekeeper gene

(HPRT1) using the ddCT approximation method.
Reagents

2-Heptyl-3-hydroxy-4(1H)-quinolone (PQS, 94398, Sigma),

Ferrous Sulphate Heptahydrate (F8263, Sigma), g-Aminobutyric
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acid (GABA, A2129, Sigma), 4-Hydroxy-2,5-dimethyl-3(2H)-

furanone (W317403, Sigma).
Statistics

Comparisons of two datasets were made by unpaired two-

tailed t tests with P<0.05 defined as significant using Prism 7 or

Instat software (Graphpad). Comparisons of multiple datasets

were made by one-way ANOVA followed by the Bonferroni ad

hoc multiple comparison test for selected datasets. A P value

<0.05 was considered statistically significant.
Results

PQS differentially affects in vivo models
of inflammation

As quorum sensing molecules may interact with multiple

physiological processes, including the immune response, we

tested PQS in three different models of inflammatory disease –

CIA, AIA and DSS-induced colitis.

CIA is regarded as the most appropriate model of human

rheumatoid arthritis (RA), as it requires cell-mediated and

humoral immunity to reproduce the features of human RA.

These include joint inflammation and auto-antibodies, and in

suitably susceptible mice does not require any external trigger

beyond immunisation (36).

AIA has a significant involvement of adaptive immunity due

to injection of the sensitizing antigen (mBSA) directly into the

knee joint after immunisation (37). The acute DSS model is a

chemically-initiated, partly neutrophil-driven, inflammatory

model that reproduces many aspects of human ulcerative

colitis, including damage to the gut epithelium and infiltration

by neutrophils and monocytes; this in turn causes diarrhoea and

weight loss until cessation of DSS administration, whereupon

the disease usually resolves (38). These models involve

overlapping but distinct immune processes from which we

sought to deconvolute the potential effects of PQS.
PQS exacerbates symptoms of CIA

In view of the reports that PQS can modify the production or

action of inflammatory mediators, we have examined its effects

in the mouse CIA model. PQS could be administered to mice at

10 mg/kg with no change in animal behaviour or locomotion,

food intake, body weight or social interactions compared to

control mice treated with vehicle alone. This dose was therefore

administered to a group of control mice and a group immunised

with collagen type II in CFA (28, 39). Following collagen

administration the animals were monitored daily for clinical
Frontiers in Immunology 05
signs of paw swelling (see Methods) and altered gait indicative of

arthritis and its associated discomfort. PQS was administered

daily from the time of onset of clinical symptoms.

PQS treatment produced an increase in the clinical severity

of the induced arthritis, with the severity rising steadily from the

first dose of PQS and becoming statistically significant from the

fifth day (Figure 1A). Symptom intensity was maintained until

the experiment was terminated on day 10 after symptom onset.

There was an accompanying trend of reduction in the mean

plasma levels of IgG1 and IgG2a, suggesting a possible

generalised suppression of immune system function

(Figure 1B) but this trend did not reach statistical significance

and, importantly, there was no change in the IgG2a:IgG1 ratio.

At termination of these experiments, the arthritic paws and

corresponding controls were removed for analysis, along with

blood, lymph nodes, and spleen for flow cytometric analysis of T

cell populations (Figure 1C). The number of Th17 cells in these

tissues was quantified as a fraction of the total number of CD4+

cells observed, with no differences seen between the number of

Th17 cells in vehicle and PQS treated mice. In contrast there

were very significant reductions in the proportion of CD4+ cells

expressing FoxP3+ (Treg cells) in the paws and blood. The

spleen and lymph nodes exhibited strong trends towards

PQS inhibition.
AIA is not affected by PQS

AIA generates arthritic symptoms triggered by a specific

extraneous antigen (mBSA) administered locally into the test

limb after prior immunisation, rather than directly inducing an

autoimmune response to a joint-derived antigen (collagen) as in

the CIA model. PQS showed a tendency to reduce symptoms in

the AIA model when administered from the time of

immunisation until intra-articular injection (Figure 1D), but

tended to increase symptoms when administered only after

intra-articular administration of mBSA (Figure 1E) although

neither trend was statistically significant. The lack of effect was

supported by the absence of any change in weight-bearing

(Figure 1F) or the histological severity of arthritis (Figure 1G).

In this model, no significant changes were observed in the

numbers of Th1, Th17, Treg cells or IL-17+ CD8+ cells in the

lymph nodes (Figure 1H). Similarly, there were no differences in

the proportions of Th1, Th17 or Treg cell numbers in the lymph

nodes or symptomatic knee joints (Figure 1I).
PQS does not influence the Dextran-
induced model of Ulcerative Colitis

PQS was administered to mice in the DSS model of colitis.

There were no significant changes in the total body weight

(Figure 1J) or weight of the spleen or colon as a fraction of
frontiersin.org
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FIGURE 1

The effect of PQS differs between in vivo models of disease. PQS modulation of disease activity in CIA (A–C), AIA (D–I) and DSS (J–N). (A):
Clinical severity from the onset of paw swelling (day 1) to the termination of the experiment (day 10); (B) Anti-collagen humoral responses for
IgG1 and IgG2a antibodies and their ratio IgG2a:IgG1; titres were measured by a dilution assay and the results expressed as EC50; *p<0.05,
**p<0.01, ***p<0.001 (n = 8 vehicle, n = 5 PQS); (C) Analysis of Th17+ or CD4+FoxP3+ Treg cells in affected paws (PAW), lymph nodes (LN)
spleens (SPL) and blood (BLD); **P<0.01 (vehicle n = 8; PQS n = 5); (D) score (change in knee width) after immunisation and (E) after intra-
articular injection; n = 5; (F) Weight-bearing and (G) histological scores of joint damage in AIA mice; (H) Th1, Th17 or Treg cells in the inguinal
lymph nodes of vehicle or PQS-treated animals; n = 6; (I) CD4+ Th1, Th17 and FoxP3+ T cells in the arthritic knee or lymph nodes of mice with
AIA; n = 6; (J) Dextran sulphate induced changes in body weight, n = 6; (K) Ratio of the weights of spleen or colon with total body weight; n =
6; (L) Log cytokine production by ex vivo colon cultures for TNF, IFN-g, IL-1b, IL-6, CXCL1 and IL-12 (n = 6); (M) Overall histological assessment
of the distal (DIST) and proximal (PROX) colon; (N) Analysis of infiltrating monocytes (MON) or granulocytes (PMN), and the hyperplasia (HYP) or
injury (INJ) of intestinal epithelial cells (n = 6).
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body weight (Figure 1K). When cultured for 48 h, colon

specimens released cytokines into the medium, with a clear,

consistent trend for PQS to reduce the levels of TNF, IFN-g, IL-
1b, IL-6, CXCL1 (KC/GRO) and IL-6 (Figure 1L), although none
reached statistical significance.

Similarly, analysis of the histological data revealed no

differences between the overall histological scores for the distal

colon or proximal colon (Figure 1M) or the individual

comparisons of different leucocyte populations classified as

mononuclear infiltrate, polymorphonuclear infiltrate, epithelial

hyperplasia or epithelial injury cell counts (Figure 1N).
PQS alters the leucocyte balance and
cytokine production

In the light of these results we hypothesized that the

exacerbation of CIA caused by PQS might be due to interference

with the pro-resolving effects of IFN-g. Using CIA ex vivo

antibodies, the inclusion of PQS resulted in a substantial

reduction of live, IFN-g+ cells (Figure 2A), whereas the average

proportion of IL17+ cells generated was lower but not significantly

reduced at 4 mM PQS (Figure 2B) and the proportion of Treg cells

was unaffected (Figure 2C). These changes suggest an increased

sensitivity of Th1 cells to PQS compared to other T cell subsets, with

lower sensitivity of Th17 and no change on Treg cells. The high

potency of PQS activity on Th1 cells was confirmed by a direct

assessment of IFN-g release by anti-CD3 stimulation (5 mg/mL)

(Figure 2D) where PQS was active at 1 and 4 mM. In comparison,

induced release of TNF from the same cells was only partially

inhibited, but not significantly even at 4 µM PQS (Figure 2E).
PQS alters the generation and activity of
leucocyte populations

Using T cells from naïve mice stimulated by anti-CD3/anti-

CD28 for 48 h, PQS at 4 mM reduced the activation of T cells as

indicated by a significantly reduced expression of CD69

(Figure 2F) and Programmed Death-1 (PD1) (Figure 2G).

Inducible T cell Co-Stimulator (ICOS) (Figure 2H), CD25

(Figure 2I) and CD98 (Figure 2J) expression were unaffected,

but CD44 was increased (Figure 2K). PQS at 4 mM almost

eliminated the induced secretion of IFN-g (Figure 2L) whereas it
had less effect on IL-17A (Figure 2M) associated with a reduced

overall T cell proliferation observed by FACS analysis (Figure 2N).
PQS alters the balance of T cell
differentiation

Mouse CD4+ cells were differentiated to IFN-g+ (Th1), IL-

17+ (Th17) or FoxP3+ (Treg) cell phenotypes (Figure 3A) and
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stimulated using anti-CD3/CD28 for 4 days in the absence or

presence of PQS. The production of Th1 (IFN-g+) cells was not
significantly affected by 1 mM PQS but was fully inhibited at 4

mM (Figure 3B). In contrast the generation of Th17 cells was

significantly reduced by 1 mMPQS and fully suppressed by 4 mM
PQS (Figure 3C), while the generation of FoxP3+ Treg cells was

reduced only ~50% by 4 mM (Figure 3D).

To compare these murine results with human cells, Th17

cells were isolated from human blood. The fraction of these cells

present was reduced very significantly after incubation with PQS

at 0.5 or 5 mM (Figure 3E). These human samples were also used

to compare PQS as a representative of the 2A4Q quorum sensor

family, and an acyl-homoserine lactone. It was noted that in

contrast to the effect of PQS, 3-oxo-dodecanoyl-homoserine

lactone (3OC12- HSL) had no significant effect on the

proportion of IL17+ cells obtained, indicating a major

difference in activity (Figure 3E).
PQS inhibits macrophage activity and
polarization

Since low concentrations PQS have been reported not to

affect TNF release in human cells (40) we examined this

possibility in a population of human monocyte-derived

macrophages. Here, PQS (up to 10 mM) did not affect TNF

release induced by LPS (Figure 4A) but at 100 mM, there was an

increase in TNF release accompanied by an apparent loss of

viability in the MTT assay (Figure 4B). This might indicate a

general toxicity of PQS at this concentration which could result

in the passive efflux of cell contents, including TNF.

Mouse macrophages were induced to differentiate to M1 or

M2 phenotypes in the presence of LPS and IFN-g, or a mixture of

IL-4 and IL-10, respectively. FACS analysis of the effects of PQS

(0.05, 1 or 20 µM) (Figures 4C-F) showed reduced expression of

MHC-II (C), the monocyte-derived macrophage (MDM)

marker F4/80 (D) (41), the M1 marker CD38 (E) (42) and the

M2 marker CD206 (F) (43), indicating inhibition of monocyte

differentiation. The original FACS display and an enhanced

analysis are shown in Suppl. Figure 1.
PQS reduces the expression of
inflammatory mediator genes

In murine polarised macrophages, PQS inhibited

expression of the genes Il1b (Figure 5A) and Il6 (Figure 5B),

although there was a non-significant tendency to increased

expression of TNF at higher concentrations of PQS

(Figure 5C), as observed above in human cells (Figure 4A).

There was also a differential effect on the major IDO genes,

with Ido1 expression being depressed (Figure 5D), but with no

change of Ido2 (Figure 5E).
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Using human THP-1-derived macrophages, PQS again

suppressed expression of IL1B (Figure 5F) and IL6 (Figure 5G)

genes. In cells exposed to M2 phenotypic differentiating

conditions there was also an inhibition of IL-10 expression

(Figure 5H). In M1 polarized cells PQS inhibited TNF gene

expression (Figure 5I), an effect not seen in primary murine

macrophages. A further distinction between cells from the two

species was noted with IDO genes, as PQS inhibited expression

of both the IDO1 (Figure 5J) and IDO2 (Figure 5K) genes in the

human cells.

To examine its effects on the full range of IDO1 gene,

protein and enzyme activity we stimulated human MDMs with

LPS in the presence of PQS. PQS reduced the expression of IL-1b
and IDO1 genes (Figure 6A), with a strong, but not quite
Frontiers in Immunology 08
significant, effect on IDO2. There was also a significant

reduction of IDO1 protein (Figures 6B, C-left). As seen in

Figure 6C-right, PQS abolished the enzyme activity of IDO1,

quantified as the lower kynurenine generation.
Mechanism of action: PQS interacts with
iron but not T2 taste receptors

Many bacteria chelate iron as a method of limiting the

growth and proliferation of competing micro-organisms and

PQS enhances cellular responses to iron depletion in some

bacteria (44) and in immune system cells of hosts (45, 46).

When murine Th1 or Th17 cells were stimulated respectively,
A B
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FIGURE 2

PQS reduces IFN-g and IL-17 production. T cells isolated from the spleens of mice with CIA, stimulated with anti-CD3 (5 mg/mL) in the absence
or presence of PQS for 48 h. Percentage of CD4+ cells expressing (A) IFN-g, IL-17+ and (C) FoxP3+ Treg; n = 5. (D) IFN-g and (E) TNF secretion
from CD4+ splenocytes from CIA mice cultured ex vivo with anti-CD3 in the presence of PQS; n = 4. (F–K) Cell surface marker expression on
naïve murine T cells stimulated (anti-CD3) in the presence of PQS (n = 4). Secretion of (L) IFN-g and (M) IL-17A from cells differentiated to Th1
or Th17, respectively, was inhibited by PQS at 4 mM (n = 3). *p<0.05, **p<0.01, relative to DMSO. (N) Representative histogram of CFSE-labelled
CD4+ cell proliferation indicating inhibition by PQS at 1 and 4 mM. * p<0.05, ** p<0.01, n = 3. (A-F: unpaired t test; G, H: One way ANOVA and
Bonferroni multiple comparison test).
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the release of cell-specific cytokines was inhibited by PQS at

4mM (Figures 7A, B) as noted earlier. The inhibition was fully

prevented by including ferrous sulphate in the incubation

medium, with complete inhibition of the effects of PQS using
Frontiers in Immunology 09
5 mM FeSO4 (Figures 7A, B). The generation of FoxP3+CD4+

Treg cells was significantly reduced (Figure 7C, as in Figure 3D

above), with almost complete inhibition of Th1 cells (Figure 7D)

and Th17 cells (Figure 7E), quantified as a fraction of the total
A

B D

E

C

FIGURE 3

PQS inhibits mouse T cell differentiation. (A) Representative FACS plots of mouse leucocytes differentiated to T helper cells in the presence of
up to 4 mM PQS. Top, middle and lower rows are Th1, Th17 and Treg-differentiation cultures, respectively. Quantification of (B) Th1, (C) Th17
and (D) Treg cells; *p<0.05, ***p<0.001 (n = 6), (E) PQS at 0.5 or 5 mM reduced the generation of IL-17+ T cells in contrast the homoserine
lactone 3-OC12-HSL. ***P<0.001 (PQS n=3; 3-OC12-HSL n = 4) (One way ANOVA; Bonferroni post hoc test).
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1001956
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ogbechi et al. 10.3389/fimmu.2022.1001956
CD4+ population. In all cases the inhibitory effects were reversed

by the inclusion of iron as ferrous sulphate (Figures 7A–E).

Comparable results were obtained using iron dextran (data

not shown).

An alternative site of action of some QSSMs is the T2 (‘bitter

taste’) receptor T2R, which is activated by PQS (47, 48) and

blocked by 4-amino-butyric acid (GABA) or 4-Hydroxy-2,5-

dimethyl-3(2H)-furanone (2,5-DMF). However, the inhibition

of IL-17A production by PQS was not prevented by either of

these T2R blockers even at a concentration of 100

mM (Figure 7F).

In view of the reversal of PQS activity by iron, the possibility

was considered that PQS might interfere with other biological

systems relevant to immune function and which employ iron as

a critical component. IDO1 is of special interest as it contains an

iron-dependent haem moiety and its metabolic oxidation

products of tryptophan yields compounds with immune

regulatory properties. The enzyme could therefore be a target

of PQS during microbial infections. IDO1 enzyme activity was

assessed in HEK-293 cells in which the IDO1 gene had been

expressed by transfection. Untransfected HEK-293 cells
Frontiers in Immunology 10
produced no kynurenine, confirming the absence of

endogenous IDO, but HEK293-IDO+ transfected cells

generated kynurenine, indicating successful expression of the

enzyme (Figure 7G). The presence of PQS up to 10 mM
produced a statistically significant reduction of kynurenine

production consistent with inhibition of IDO1, but without

affecting cell viability in the MTT assay (Figure 7H).
Discussion

QSSMs are produced by most prokaryotes and some simple

eukaryotes. PQS and related compounds were first described in

Ps. aeruginosa, a major cause of opportunistic infections with

high rates of morbidity and mortality in humans. Although

receiving less study, the quinolone derivative PQS is more potent

than most homoserine lactone QSSMs (3, 4, 11, 40, 45, 49–57).

This high potency may make PQS more relevant in the earliest

stages of infectionwhen total bacterial numbers are small. Most

of the present experiments used less than 5 mM PQS, while

human saliva and blood have levels between 2 mM (49) and
A B

D
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C

FIGURE 4

PQS modulates human macrophage polarisation. (A) LPS-induced TNF from human monocyte-derived macrophages, in the presence of PQS (0-100
µM); ****P<0.001 relative to LPS plus DMSO (n = 3). (B) Cell viability from (A) measured by the MTT assay; *P<0.05 relative to DMSO. (C-F) M-CSF-
differentiated macrophages (M0) were stimulated by M1 (LPS and IFN-g) or M2 (IL-4 and IL-10) polarizing conditions. The expressions of (C) MHC-II,
(D) F4/80, (E) CD38 (M1) and (F) CD206 (M2), assessed using FACS, were modulated by PQS (20 mM) (n = 3). For clarity, the FACS results are shown
separately for each PQS concentration. The original display and bar chart analysis are illustrated in Supplementary Figure 1. *P < 0.05, **P<0.01 relative
to DMSO.
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around 9 mM during infection (58, 59). The inhibition of

cytokine production at low micromolar concentrations and the

reduced generation of pro-inflammatory Th1 and Th17 cells

seen here may therefore contribute to the infection and invasion

of human hosts by bacterial PQS. Higher levels of around 30 mM
Frontiers in Immunology 11
PQS are produced in culture supernatants of Ps. aeruginosa (60,

61) and concentrations achieved by bacterial swarming or

biofilms may be over 100 µM in vivo (16, 17). This would be

relevant to the increased production of TNF seen here at 20 mM
PQS and clearly significant at 100 mM. These levels of PQS or
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FIGURE 5

PQS reduces inflammation-associated gene expression in polarized macrophages. In murine bone marrow-derived macrophages the
expressions of (A) IL-1b, (B) IL-6, (C) TNF, (D) IDO1 and (E) IDO2 were measured after polarisation to M0, M1 and M2 macrophages in the
presence of PQS (0.5-20 mM). In human THP-1-derived M0, M1 and M2 macrophages cultured in the presence of PQS, the expressions of (F) IL-
1b, (G) IL-6, (H) IL-10, (I) TNF, (J) IDO1 and (K) IDO2 were measured; n = 3, *p<0.05, **p<0.01, ***p<0.001.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1001956
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ogbechi et al. 10.3389/fimmu.2022.1001956
other QSSMs may contribute to the development of sepsis (25)

and should be recognised as target for anti-bacterial therapeutic

strategies in this condition.
Cytokine production

The production of IFN-g by Th1 cells is completely

suppressed by PQS at a concentration as low as 1 mM. In

contrast, low concentrations of PQS failed to alter the

secretion of TNF by human macrophages as observed

previously (40), but with confirmation of the reported increase

in TNF release at higher concentrations of 25 mM or more.

Compared with the inhibition of Th17 and Treg cell

differentiation, this demonstrates the selectivity of PQS for

certain cell populations and cytokine production, supported by

our data on human T cells activated by TCR and co-stimulatory

anti-CD28. Cytokine selectivity has been reported on other cell

types such as bone marrow-derived dendritic cells where, at low

concentrations, PQS inhibited LPS-evoked IL-12 production

with no change in IL-10 production (11, 40, 49). The

inhibitory effects of PQS on cell production of IL-2, IL-6 and
Frontiers in Immunology 12
IL-12 also depend on the cell type and the nature of any

activating stimulus (62). The release of TNF was said to be

inhibited (in LPS-activated macrophages) (18, 19, 63, 64),

unaffected (in human monocytes) (40), or enhanced at PQS

concentrations of 25 mM or above (40). Using similar human

primary monocyte-derived macrophages, our results are in

agreement with the latter studies, but there may be differences

in the behaviour of mouse cells and cultured lines, showing no

suppression of TNF release at low PQS concentrations, but

increases at 100 mM.

The main populations of T lymphocytes studied here, Th1,

Th17 and Treg cells, are critical components of host immune

systems against invading micro-organisms and endogenous

tumour cells. PQS has differential effects on sub-populations of

mouse and human leucocytes, including the suppression of IL-

17 expression. The production of several cytokines and

metalloproteinases is regulated in part by IL-17, so that

sources producing it have become a focus of attention in

several inflammatory disorders. Indeed we and others have

shown that IL-17, generated primarily from Th17 effector cells,

plays a significant role in inflammatory disorders (65, 66). IL-17

is also a potent chemoattractant for monocytes and neutrophils,
A

B C

FIGURE 6

PQS inhibits IDO1 expression in human M1 macrophages. Monocyte-derived macrophages were polarised to an M1 phenotype overnight in the
presence or absence of PQS (10µM) to measure gene expression, IDO1 protein expression and IDO1 activity. (A) Gene expression of IL1b, IL6,
TNF, IDO1 and IDO2; n=3 donors, *p<0.05. (B) Western blots of IDO1 and b-actin for 3 independent donors A, B and C. (C) (left) -quantification
of (B); n=3 donors, *p<0.05; (right) - measurement of kynurenine in the culture medium (ND, not detected); n=3 donors.
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contributing to their rapid accumulation at sites of infection or

tissue damage and probably responsible for some of the pro-

inflammatory activity of neutrophils (67, 68). Although less

potent, PQS also depressed Treg differentiation, but it is now

recognised that immune status is often dependent on the relative

amounts of these two populations, and overall pro-inflammatory

polarization is assessed using the Th17/Treg ratio (26, 69).
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An unexpected outcome of the study was the marked

difference between the changes in T cell numbers observed in

vitro using cells removed from CIA mice and exposed to PQS,

and cells isolated from blood, spleen, lymph nodes and inflamed

paws of CIA mice treated with PQS. While the balance between

Treg and Th17 cell numbers is a key factor in several

autoimmune disorders (70, 71), their interdependent
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FIGURE 7

Effects of iron on PQS activity. Inhibition of the release of IFN-g (A) and IL-17A (B) in murine T cells by PQS was prevented by FeSO4, which
alone did not affect cytokine release. Iron reversed the inhibition by PQS of the in vitro differentiation of (C) CD4+FoxP3+ Tregs, (D) CD4+IFN-
g+ Th1 cells, and (E) CD4+IL-17+ Th17 cells; *P<0.05, **P<0.01, ****P<0.001 relative to DMSO; +P<0.05, ++P<0.1 for PQS and iron relative to
PQS alone (n = 3). (F) GABA and 2,5-dimethyl-furanone had no effect on IL-17A production, and did not prevent the effect of PQS. (G) In
HEK293 cells over-expressing IDO1, PQS reduced kynurenine in the culture medium with no loss of viability using the MTT assay (H).
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differentiation is complex and presents difficulties of

interpretation. IL-6 is among the main factors converting

FoxP3+ Treg cells to the Th17 phenotype and is often found

in high concentration in the synovium of patients with arthritis.

In addition, a range of materials can influence the Th17/Treg cell

balance including small nucleic acid fragments such as miR-448

(72) and miR-302 (73), bile acids (74), hydroxychloroquine (75),

chemokine receptor CCR7 (76) and activation of TLRs,

particularly TLR4 (77). In addition, a major force driving the

Treg/Th17 balance is IDO activity (78, 79) which is determined

partly by activated AHRs (80, 81) and can be modulated by

STAT3 (82) and Hypoxia Inducible Factor-1a and ATP levels

(83). The latter is consistent with the promotion of Treg

differentiation by hypoxia which is often a feature of inflamed

tissues in vivo (84) and may be involved in the increased Th17/

Treg ratio induced by tissue injury (85). The complication

introduced by ‘reverse signalling’ by IDO1 may also be a

factor influencing T cell balance (86).

Since these and many other intracellular or endocrinological

factors may be operative in vivo but not in vitro, the changes in T

cell populations observed in the two environments and

experimental conditions, are likely to differ. Each in vivo

model is likely to induce a different immunological signature,

of which the Th17/Treg balance is only one and that will be

influenced by a range of factors including those noted above. We

suggest that the present results reinforce this view: data obtained

in vitromay not accurately reflect changes occurring in vivo, and

experimental data should only be used for comparative purposes

if they are from the same set of in vitro paradigms, or from the

same in vivo model.
PQS exacerbation of inflammation

From the present study it is clear that PQS reduces the

production of Th1, interferon-g producing cells and Th17 cells

in vitro but, paradoxically, it exacerbates the symptoms of CIA.

The most likely resolution of this may lie in the absence of a

significant change in the numbers of those pro-inflammatory

cells in vivo, together with reduced numbers of Treg cells in the

blood and inflamed paws of CIA mice, yielding a net pro-

inflammatory balance of cell populations. PQS produced by

infecting micro-organisms might therefore contribute to

periodic exacerbations (‘flares’) of autoimmune disease

symptoms in human patients. If that is so, an antagonist of

PQS or an inhibitor of its synthesis would be of significant

clinical value.

Despite the ability of PQS to exacerbate the symptoms of

CIA, it had no comparable effect in AIA or DSS-colitis. This

suggests that the effects of PQS are seen primarily in disorders

with an autoimmune component, such as CIA, rather than in

conditions triggered by local, directly acting inflammatory

stimuli. This, in turn, would be consistent with the view that
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the CIA model is a more clinically relevant model for

understanding autoimmune disorders and, in particular, for

the development of novel therapies.
Mechanism of action: PQS activity
depends on iron but not T2 receptors

Iron balance plays a major role in microbial cell

proliferation, invasiveness and biofilm formation to protect

against host attack (62, 87–96). Iron is also needed for

virulence factor production by bacteria (91, 97–100). These

roles for iron extend to the host immune system, with the

maintenance and regulation of CD4+ T cell populations (101),

especially since iron chelation is likely to inhibit host leucocyte

proliferation (45, 46, 102–105). PQS can exacerbate the effects of

iron depletion on competing bacteria (44). In addition, PQS

promotes the production of the iron complexing siderophores

pyocyanin and pyoverdin (62, 106–109) which enhance the

removal of free iron. Thus, removing the available sources of

iron is a potential approach to antimicrobial therapy (95, 110),

but would encourage the cytokine inhibitory effects of PQS. The

high potency of iron in reversing PQS effects indicates that this is

a significant factor in QS function and further emphasises that

there must be a fine balance in iron regulation. Hence a complex

network of compounds and pathways exists to maintain levels of

iron which not only allow normal metabolic activities of the

producing cells, but which can be varied as part of the microbial

QS strategy to control cell proliferation and immune

competence (46, 102) and the activity of the host innate

immune system to control an infection.

These considerations are likely to be clinically relevant.

Patients suffering from transition metal deficiency are more

susceptible to infection (111–113) but since one of the early

responses of the innate immune system to infection is to

sequester iron into complexes with transferrin or ferritin (114,

115), a positive feedback may be established which would

exacerbate the effects of PQS and related virulence factors. As

noted earlier, this situation could lead to, or contribute to, the

development of sepsis (25) with the additional concern that

prolonged inflammation is a driver of carcinogenesis. High dose

antibiotics for the control of sepsis might be usefully

complemented by inhibitors of PQS synthesis or promoters of

its catabolism.
PQS acts partly by interfering with IDO
and the kynurenine pathway

The kynurenine pathway of tryptophan oxidative catabolism

in mammals is the pathway responsible for metabolising 95% of

non-protein tryptophan (116–120). Tryptophan depletion by IDO

activity, together with its generation of kynurenine and
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metabolites, exert a variety of actions on the immune system (27,

120–127). A possible relationship between PQS and the

kynurenine pathway is especially relevant in view of the effect of

PQS on the CIA model of arthritis described here. This model has

become established as the preferred system for researching the

mechanisms of human RA. Induction of the kynurenine pathway,

or the administration of kynurenine itself, reduces the symptoms

of CIA, whereas the deletion or pharmacological inhibition of

IDO1 exacerbates the disorder (65), suggesting a possible

aetiological and therapeutic relevance of the pathway. Similarly,

expanding the numbers of Tregs, as would result from kynurenine

inducing FoxP3 expression, ameliorates the symptoms (128).

To our knowledge, this is the first report of PQS effects on

IDO expression. Even at the low, biologically relevant

concentrations employed here PQS reduced the expression of

IDO1 in primary monocyte-derived macrophages. This would

reduce the tolerogenic activity of those antigen presenting cells,

facilitating microbial invasion while inhibiting tumorigenesis.

Unusually, PQS also inhibited IDO2 expression. This enzyme

has a more limited tissue distribution than the ubiquitous IDO1,

but has overlapping tolerogenic activity (129). In addition, it has

recently been found to exhibit non-enzymic actions which at

present are not fully understood but which are likely to impact

on immune cell function (130).

IDO-1 is a heme-containing protein which, accordingly,

requires the presence of iron (131–134). As a result, compounds

which chelate iron can be efficient inhibitors of IDO1 activity

(135–140) and IDO1 inhibitors have been developed for their

iron complexation properties (136–138, 141–148) and their

resulting anti-cancer activity (126, 149). The inhibitory effect

of nitric oxide on IDO activity may also involve complex

formation with the haem iron of IDO1 (141).

The exacerbation of CIA by PQS may therefore have been at

least partly attributable to iron chelation and a resulting reduction

of IDO1 activity. This explanation was strongly supported by the

statistically significant reduction of kynurenine generation by PQS

with an approximately 25% inhibition by PQS at 10 mM. It will be

interesting to probe this result in greater detail, since it may have

been limited by several complicating factors. The cells used here

were the human cell line HEK-293 which do not express IDO1

constitutively but into which IDO1 had been transfected. This

may mean that essential co-factors required for naturally

expressed IDO1 were missing or present in inadequate

concentrations. It is also possible, for example, that the enzyme

is not expressed with the tertiary structure or spatial orientation

which allows PQS to access the iron atom optimally compared to

cells in situ. Finally, the inhibitory effect of PQS might be much

larger in cells activated by compounds which normally induce and

activate IDO1 such as interferon-g or IL-1b.
It should be emphasised that there are alternative factors which

may be relevant to the exacerbation of inflammation. For example,

the production of IL-10 by macrophages polarised to the M2
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phenotype was substantially inhibited by PQS. Since IL-10 has a

range of anti-inflammatory actions, including the suppression of

inflammatory cytokine expression (150–152), its loss may contribute

to the exacerbation of arthritic symptoms independently of - or

possibly synergistically with - a suppression of IDO. However, the

inhibition of Th1 cells by PQS may make this possibility less likely.
Wider implications for inter-kingdom
communication

PQS is synthesised from anthranilic acid in the bacterial

shikimate pathway for tryptophan synthesis (153). Since

anthranilate is also a component of the kynurenine pathway it

may be a key compound in the communication between bacteria

and mammalian hosts, a phenomenon known as ‘inter-kingdom

communication’ (154). Modifying tryptophan metabolism is

known to affect the production of PQS and related QSSMs (155).

In the presence of inflammation, levels of anthranilate are

increased in some disorders, while 3HAA levels are reduced,

normalising with treatment (100, 156, 157). Since 3HAA is an

effective inhibitor of pro-inflammatory Th1 cells (158, 159)

changes in the anthranilate/3HAA ratio resulting from

bacterial anthranilate synthesis and catabolism may impact on

key elements of host immune function. The small RNAs, PrrF1

and PrrF2, involved in iron regulation and virulence factor

production (160), also influence anthranilate degradation

(161). Overall, the combined impact of bacteria on

anthranilate or 3HAA on PQS production could exert a

significant influence on host immunity.
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