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From bench to bedside:
Calprotectin (S100A8/S100A9)
as a biomarker in
rheumatoid arthritis

José Inciarte-Mundo1, Beatriz Frade-Sosa2

and Raimon Sanmartı́ 1,2*

1Biological aggression and Response Mechanisms, Inflammatory joint diseases (IJDs), Institut
d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clinic, University of Barcelona,
Barcelona, Spain, 2Rheumatology Department, Hospital Clinic, University of Barcelona, Barcelona,
Spain
S100A9/S100A8 (calprotectin), a member of the S100 protein family, has been

shown to play a pivotal role in innate immunity activation. Calprotectin plays a

critical role in the pathogenesis of rheumatoid arthritis (RA), as it triggers

chemotaxis, phagocyte migration and modulation of neutrophils and

macrophages. Higher calprotectin levels have been found in synovial fluid,

plasma, and serum from RA patients. Recent studies have demonstrated better

correlations between serum or plasma calprotectin and composite

inflammatory disease activity indexes than c-reactive protein (CRP) or the

erythrocyte sedimentation rate (ESR). Calprotectin serum levels decreased

after treatment, independently of the DMARD type or strategy. Calprotectin

has shown the strongest correlations with other sensitive techniques to detect

inflammation, such as ultrasound. Calprotectin independently predicts

radiographic progression. However, its value as a biomarker of treatment

response and flare after tapering is unclear. This update reviews the current

understanding of calprotectin in RA and discusses possible applications as a

biomarker in clinical practice.

KEYWORDS

calprotectin, rheumatoid arthritis, biomarker, acute phase reactants, CRP - C-
reactive protein
1 Introduction

Rheumatoid arthritis (RA) is a heterogeneous disease of unknown origin,

characterized by chronic polyarthritis that may lead to joint destruction, disability, and

increased mortality. Extraarticular manifestations are not uncommon. RA affects 0.5-1%

of the adult population, predominantly females. Genetic and environmental factors have

been implicated in the susceptibility to RA. Autoimmunity, with the presence of
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characteristic autoantibodies such as rheumatoid factor or

anticitrullinated peptide autoantibodies, are implicated in the

pathogenesis of RA, although recent data confirms the role of the

innate immune system in this disease (1).

The innate immune system plays a central role in initiating

local inflammation, contributing to the pathogenesis of RA by

promoting the production of inflammatory cytokines and

chemokines. Pattern recognition receptors (PRRs) are a family

of receptors of the innate immune system that bind to damage-

associated molecular pattern molecules (DAMP) (2). The most

important PRRs are Toll-like receptors (TLRs), which allow the

activation of monocytes, neutrophils, dendritic cells, natural

killer (NK) cells and B cells (3).

S100A9/S100A8 (calprotectin) a member of the S100 protein

family has been studied as an important proinflammatory factor

of innate immunity as an endogenous DAMP via TLR4

activation. Calprotectin plays a critical role in the development

of inflammation loops in RA as a trigger for chemotaxis,

phagocyte migration and modulation of various macrophage

functions (4–6).

This update reviews the current understanding of

calprotectin in RA and discusses possible applications as a

biomarker in clinical practice.
2 Calprotectin and the S100
protein family

The first members of the S100 protein family were purified

from bovine brain in the early 1980s. The protein complex was

denominated “S100” because of its 100% solubility in

ammonium sulphate solution (7). The S100 protein family is

specifically linked to innate immune functions by their

expression in cells of myeloid origin.

The S100 protein family is widely expressed, although they

are not ubiquitous, and several have highly restricted

distributions. The functions of these proteins vary widely

between individual members, functioning as both intracellular

and extracellular signaling molecules. S100 protein functions

include cytoskeletal function, homeostasis, tumor-suppression,

antimicrobial response, chemotactic activity, atherogenesis and

protection from oxidative cell damage in brain tissue. The main

tissue cell locations and functions are summarized in Table 1.

Among the S100 protein family, calprotectin (S100A8/

S100A9) is primarily expressed in innate immune cells,

particularly in neutrophils, monocytes, and macrophages,

which constitute approximately 40% of the cytosolic proteins

in these cells. However, under specific stimuli, calprotectin may

be expressed in other cell lines, such as osteoclasts and

keratinocytes (46–48). The gene encoding calprotectin

subunits is located in the gene cluster on human chromosome

1q12-1q21 (49, 50).
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Although calprotectin has been recognized for almost 40

years, it has only recently become of interest as a biomarker of

disease activity and damage in rheumatology and was previously

known as L1 protein (51), cystic fibrosis-associated antigen

(CFA) (52), calgranulins A and B (53), S-1OOa and b (54) or

myeloid related protein 8 and 14 (MRP 8/14) (48). Calprotectin

is a well-established biomarker in other medical areas, such as

calprotectin in faeces in inflammatory bowel disease (55–59).
2.1 Calprotectin molecular structure

Calprotectin is a calcium- and zinc-binding heterodimeric

molecule of 36.5 kDa, with two heavy and one light chain non-

covalently linked (51). It has two subunits, S100A8 and S100A9,

which are 8.3 kDa and 13.3 kDa, respectively (60). S100A8 is the

active subunit and S100A9 acts as the regulatory subunit,

preventing early degradation of S100A8 (61). The EF-hand is

composed of two a-helices flanking a central calcium-binding

loop, resulting in classical helix-loop-helix domains (62).

Calprotectin is mostly found in the form of heterodimers

(S100A9-S100A8) and tetramers (S100A9-S100A8)2 in a

calcium dependent-manner (63).

Two independent calprotectin activation pathways have been

proposed to explain calprotectin release to extracellular

compartments. The first, a canonical pathway, includes protein

kinase C, which is induced by different inflammatory stimuli (e.g.,

bacteria). The second, a non-classical secretion avoiding the

Golgi-associated pathway, requires the elevation of intracellular

calcium levels, induced by contact between phagocytes and pre-

activated endothelial cells by tumor necrosis factor (TNF),

resulting in active secretion of calprotectin by phagocytes (63).

Recently, a new activation mechanism has been proposed, namely

activation via chromatin in neutrophil extracellular traps (NETs)

(64). In addition, calprotectin may be secreted passively from

apoptotic cells (61).
2.2 Calprotectin functions

2.2.1 Intracellular functions
Calprotectin complexes are known to interact with

cytoskeletal components such as actin filaments, keratin,

vimentin, and microtubules in a calcium-dependent manner.

High calcium concentrations induce a rearrangement of

calprotectin into tetramers, allowing translocation to the cell

membrane and tubulin polymerization (61). This process is

regulated by the phosphorylation of the threonine at position

113 in S100A9 by p38 MAPK (Figure 1).

2.2.2 Extracellular functions
Extracellular calprotectin complexes interact with endothelial

cells by binding to heparan sulfate and, specifically, carboxylated
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glycans, and up-regulate integrin receptors on leukocytes, resulting

in the activation of endothelial cells. Activated endothelial cells

express a pro-inflammatory cytokine profile (e.g., IL-1, IL-8 MCP-

1), and thus calprotectin plays a central role in promoting the

adhesion of phagocytes to the vascular endothelium and thrombi

formation (65, 66). Calprotectin generates a positive feedback loop,
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increasing chemotaxis and the activation of PMN, which are the

main source of calprotectin: therefore, calprotectin has an

autocrine and paracrine function (67). Notably, calprotectin

interaction with non-activated endothelium inhibits its secretion,

meaning calprotectin is only released at sites of inflammation by

activated phagocytes (Figure 1).
TABLE 1 S100 protein family. Main tissue cell localization and function of S100 protein family.

S100
protein

Tissue and subcellular location Function

S100A1 It is expressed in skeletal muscle fibers, cardiomyocytes and some
neuronal populations (8)

Accelerates deterioration of cardiac performance and transition to heart failure (9)

S100A2 It is expressed in the lung, kidney, prostate, skin and salivary and
mammary glands (10)

Tumor-suppressing function (11)

S100A3 Highly expressed in hair root cells and some astrocytomas (12). Tumor-suppressing function and epithelial cell differentiation (11)

S100A4 It is overexpressed in breast cancer, gastric cancer and non-small
cell lung cancer (NSCLC) (13)

Apoptosis, cell motility, and tumorigenesis (14)

S100A5 It is upregulated in bladder cancers and recurrent grade I
meningiomas (15)

Not described

S100A6 It is overexpressed in lung, bile duct, and brain cancer, and non-
small cell lung adenocarcinoma (16–19)

Cell proliferation, cytoskeletal dynamics and tumorigenesis (20, 21)

S100A7 It is overexpressed in inflammatory skin diseases. lymphocytes,
monocytes and granulocytes (22)

Antimicrobial response, chemotactic activity, prevent generation of amyloidogenic
peptides in Alzheimer’s disease. psoriasis, and atopic dermatitis (23–25).

S100A8 It is found in macrophages, dendritic cells, microvascular
endothelial cells but not endothelial cells from larger vessels,
epithelial cells (e.g., keratinocytes) and fibroblasts (26)

Regulation of inflammation. Effect on leukocyte adhesion and neutrophil adhesion
(e.g., asthma) (5).

S100A9 It is found in myeloid cells: (macrophages and neutrophils) some
cancer cells (e.g., breast cancer, esophageal squamous cell
carcinoma) (27).

Leukocyte migration, adhesion and transmigration from blood vessels, thus it has anti-
inflammatory properties. In some cancer cells it promotes growth suppression (5).

S100A10 It is found in cell types throughout the body though it is located
predominantly in the lungs and kidneys (28).

It is involved in the trafficking of proteins to the plasma membrane (angiogenesis and
endothelial cell function) (28) and can be expressed on the cell surface as a receptor
with clinical implications in some malignancies (e.g., tumor migration, hemorrhagic
phenotype of promyelocytic leukemia) (29).

S100A11 It is induced/released by chondrocytes (30) Stimulates cell growth by enhancing the level of epidermal growth factor (EGF) family
proteins, promoting hypertrophic chondrocyte differentiation (31).

S100A12 It is constitutively expressed in neutrophils and inducible in
macrophages and smooth muscle cells. it is expressed in human
aortic aneurysms (32).

Expression in epithelial cells is associated with growth arrest. Potentiation of
atherogenesis (33).

S100A13 It is found in multiple cell types, including fibroblasts, osteoblasts
and melanoma cells (20)

It may play a pivotal role in angiogenesis (34).

S100A14 It can be found in an esophageal squamous cell carcinoma cells
(35).

It may function as a cancer suppressor, playing a dual role in tumor cells (enhancing
or decreasing tumor cell invasiveness) (36).

S100A15 It is expressed in keratinocytes in inflamed skin (37). Antimicrobial activity against E. coli (38).

S100A16 It is expressed in theca cells, urothelial cells, pancreatic endocrine
cells, prostatic glandular cells, squamous epithelial cells, basal
prostatic cells, and suprabasal keratinocytes. It is upregulated in
several tumors (39).

Recently, a role in insulin sensitivity regulation has been described (40).

S100B It is expressed in astrocytes, certain neuronal populations, Schwann
cells, melanocytes, chondrocytes, adipocytes, skeletal myofibers and
associated satellite cells, certain dendritic cell and lymphocyte
populations and other cell types (41).

It induces neurogenesis and reduces delayed neuronal injury and might contribute
significantly to neuroinflammation (42).

S100P It can be expressed in urothelial cells, pancreas,
syncytiotrophoblasts, gastric mucus-secreting cells (43)

It promotes transendothelial migration of tumor cells and, potentially, metastasis (44).

S100Z The highest levels were found in the spleen and leukocytes, and in
some tumor tissues (e.g., prostate) (45).

Tumor growth. Recently, it has been associated with pulmonary systemic sclerosis (45).
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Calprotectin exerts a strong antimicrobial action against a

variety of bacterial and fungal pathogens. Calprotectin recognizes

proteins related to bacteria, such as lipopolysaccharides (LPS), up-

regulating the production of pro-inflammatory profile cytokines,

such as TNF-a, IL-1b, and IL-12 locally (68, 69). It is recognized

as an endogenous DAMP and binds to the TLR4 receptor and

RAGE, amplifying the innate immune response and inducing

PMN recruitment to inflamed tissues (3). The antibacterial

activity of calprotectin results from the sequestering of

transition metals by chelation of nutrient Mn2+ and Zn2+ (70).

Engulfment of bacteria by macrophages leads to decreased Zn2+

uptake and increased Zn2+ efflux from the cytoplasm and the

efflux of Mn2+ and Fe2+ from the phagosome by NRAMP family

transporters (71). Chelation is mediated through two high-affinity

binding sites, both of which can bind Zn2+ with nanomolar

affinity, while only one binds Mn2+ with this affinity (71).

Calprotectin also activates the MyD88-dependent and TIR

domain-containing adaptor protein inducing IFNb (TRIF; also
Frontiers in Immunology 04
known as TICAM1)-dependent signaling pathways downstream

of TLR4, resulting in NF-kB-mediated and interferon regulatory

factor (IRF)-mediated gene transcription. EMMPRIN, a

transmembrane glycoprotein of the immunoglobulin

superfamily is also able to bind S100A9. However, its

biological function has not yet been described (72).
2.3 Calprotectin in health and disease

Studies have shown that calprotectin levels are minimal in

serum and stool samples from healthy population compared

with patients with inflammatory conditions (73–76). High

calprotectin serum levels were also observed in patients with

infectious disease and sepsis (77). Recently, the accuracy of

calprotectin as a biomarker of bacterial respiratory disease was

found to be even higher than procalcitonin (78).
FIGURE 1

Calprotectin Functions. Intracellular functions are shown in orange and extracellular functions in green. Calprotectin Intracellular functions
includes cytoskeleton cell migration and calcium homeostasis. Extracellular functions involve endothelial cells activation, promoting the
adhesion of phagocytes to the vascular endothelium and thrombi formation. Also increase chemotaxis and the activation of PMN. Finally,
calprotectin exerts a strong antimicrobial action against a variety of bacterial and fungal pathogens.
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Increased calprotectin expression has been found in patients

with rheumatic diseases (See Table 2). Higher calprotectin levels

have been found in plasma, serum and faecal samples from

patients with RA (100), spondyloarthropathies (SpA) (101),

inflammatory bowel disease (IBD) (102) and type 2 diabetes

(T2D) (103). In IBD, faecal calprotectin has been shown to be a

more sensitive indicator of inflammatory activity and is being

used for both the diagnosis and follow-up in routine clinical

practice (104). Calprotectin levels are not affected by age or

gender (105).

Recently, a new disorder, characterized by recurrent

infections, hepatosplenomegaly, anemia, cutaneous vasculitis,

and evidence of systemic inflammat ion has been

described. These patients have shown hyperzincemia with

hypercalprotectinaemia (106).
3 Calprotectin in
rheumatoid arthritis
There is abundant evidence that the innate immune system

is persistently activated in RA, as predominately macrophages

are found in rheumatoid synovium (107).

In RA, calprotectin induces nitric oxide synthase (iNOS) by

nuclear factor kB (NF-kB) activation (108). Calprotectin allows
Frontiers in Immunology 05
the phosphorylation of multiple protein kinase-mediated signal

transduction pathways, including c-Jun-N-amino-terminal

kinase (JNK), extracellular-regulated kinase 1/2 (ERK1/2), and

Janus kinase/signal transducers and activators of transcription

(JAK/STAT) (109). However, calprotectin activation converges

in multiple pathways whose activation enhances the production

of proinflammatory cytokines, namely tumor necrosis factor-a
(TNF-a), IL-6, IL-8, IL-12/23, and IL-18 (110), which are known
to be physiopathologically- and clinically-relevant in

RA (Figure 2).

Calprotectin expression is noted predominantly in the

macrophages of the synovial lining layer in tissues adjacent to

the cartilage-pannus junction (CPJ), suggesting altered

activation and differentiation of lining layer macrophages

at the CPJ, which is the site of maximum cartilage destruction

in RA (111). Calprotectin is synthesized in fibroblast-like

synoviocytes (FLSs), which are crucial players in the

pathogenesis of synovitis in RA. IL-22 enhanced FLS

proliferation and up-regulated MMP1 and S100A8/A9

production (112). Interestingly, when stimulated FLSs

were treated with a JAK 2 and JAK3 inhibitor, there was

a s ign ifican t dec rea se in IL-22- induced S100A8/

A9 production.

Calprotectin is released from activated leukocytes leading to

increased concentrations in RA plasma and serum (113, 114).

a study focused on determining the association of calprotectin
TABLE 2 Calprotectin in Rheumatic Diseases. This table summarizes the main findings of calprotectin levels and rheumatic diseases other than RA.

Disease Calprotectin source Main finding

Reactive arthritis Plasma and synovial fluid. • CLP correlated with CRP and disease activity (79).
• CLP was the first biomarker to return to baseline levels after disease improvement (79).

Ankylosing spondylitis Serum • CLP correlated with PGA, pain VAS, BASDAI, BASFI, and ASDAS (80, 81).
• CLP is an independent marker for radiographic progression (82).

Psoriatic arthritis Serum • CLP levels are significantly higher in active PsA patients than in healthy controls (83).
• Higher CLP levels were found in the polyarticular group than in patients with mono/
oligoarticular disease (84).
• CLP levels are sensitive to change, and its levels decrease after TNFi and IL17i treatment
(83).

Systemic juvenile idiopathic
arthritis

Serum • CLP levels are sensitive to change (85).
• CLP more accurately predicts disease relapse (86).

Adult onset Still disease Serum • CLP levels are significantly higher than RA, SLE patients or controls (87, 88).

Gout Serum, synovial biopsy and tophi • CLP levels were elevated in the synovium, tophi, and serum of patients with gout (89).
• CLP levels correlated with disease activity (89).

Systemic lupus
erythematosus

Urine • CLP levels in SLE-LN patients (90).
• CLP levels correlated with disease activity (91).

Primary Sjogren syndrome Serum, saliva and salivary gland biopsy. • Increased levels in pSS patients (92, 93).

Systemic sclerosis Serum, broncho-alveolar lavage fluid,
skin biopsy

• Increased levels in SSc patients (94, 95).
• Increased levels in diffuse cutaneous SSc patients (96).

Behcet’s disease Serum • CLP levels are significantly higher than healthy controls (97).
• CLP correlated with CRP and disease activity (97)

Idiopathic inflammatory
myopathies

Serum and muscle biopsy • Increased levels in IIM patients (98).
• CLP promotes myoblast activation (99).
CLP, calprotectin; PGA, patient global assessment; pain VAS, pain visual analogue scale; BASDAI, Bath AS disease activity index; BASFI, the Bath AS functional index; ASDAS, Ankylosing
Spondylitis Disease Activity Score; TNFi, TNFn inhibitors; IL17i; interleukin 17 inhibitor; SLE-LN, SLE-lupus nephritis.
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inEDTA-plasma or in serum with disease activity, found

stronger plasma associations with all measures of disease

activity (115). However, ELISA commercial kits are designed

to determine both, and most evidence available is drive by from

serum determinations.
3.1 Calprotectin as a biomarker of
rheumatoid arthritis

Higher calprotectin levels have been found in synovial fluid

(SF), plasma and serum from RA patients (113, 114). A recent

study demonstrated that the most enhanced proteins in RA SF

were the S100A8, S100A9 and S00A12 proteins, using proteomic

fingerprints of RA patients’ serum (116). A German study found

that calprotectin and other S100 proteins were the most up-

regulated proteins in SF in RA patients. Their expression

was about 10-fold higher than that observed in the SF of
Frontiers in Immunology 06
osteoarthritis patients (OA). Not only was calprotectin the best

RA biomarker identified in this study, but higher calprotectin

levels were found in the SF of RA compared with SpA patients:

therefore, calprotectin may differentiate RA from other

inflammatory arthritis (117).

Interestingly, calprotectin levels correlated with rheumatoid

factor. Furthermore, higher calprotectin plasma levels were

found in seropositive than in seronegative patients. The

correlation with ACPA titres remains unclear (118–126).

Calprotectin also significantly contributes to comorbid

conditions in RA patients, such as cardiovascular disease. High

calprotectin levels have been associated with precocious

atheroma formation and the accelerated development of

atherosclerosis (127).

In summary, serum calprotectin levels may provide

information on macrophage activation, supporting their

potential role as a biomarker of disease activity, radiographic

progression and therapeutic response.
FIGURE 2

Calprotectin activation in Rheumatoid Arthritis. Calprotectin activates nuclear factor kB (NF-kB), and protein kinase-mediated signal
transduction pathways, including c-Jun-N-amino-terminal kinase (JNK), extracellular-regulated kinase 1/2 (ERK1/2), and Janus kinase/signal
transducers and activators of transcription (JAK/STAT) upregulating proinflammatory cytokines production.
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3.2 Calprotectin as a marker of
disease activity

In RA, changes in the amount of synovial sublining

macrophages correlate with disease activity (128): these

macrophages are the major source of calprotectin, and thus

their levels may provide reliable information on their activation

74). Recent studies have demonstrated better correlations

between calprotectin and DAS28, swollen joint count (SJC),

CDAI, SDAI and physical global VAS than C-reactive protein

(CRP) or the erythrocyte sedimentation rate (ESR) (121–123,

129). This was especially pronounced in patients receiving IL-6

inhibitors, with a pronounced decrease in CRP serum levels

independently of disease activity (129). These correlations were

independent of the disease stage. Studies in both recent-onset

patients (105, 130) and those with established disease (123) have

demonstrated a significant correlation between calprotectin and

SJC, DAS28, SDAI and CDAI (73, 75, 76, 131, 132). In a recent

metanalysis of 16 studies, the relationship between calprotectin

and disease activity was confirmed (74).

In clinical remission, CRP and ESR may be normal, although

there may be residual inflammatory activity, especially in

patients receiving biological therapy. Calprotectin levels, but

not CRP or ESR levels, were significantly lower in patients

with no swollen joints than in those with ≥ 1 swollen joint,

supporting the hypothesis that calprotectin levels reflect local

ongoing inflammation rather than a systemic inflammatory

response (118, 120, 126). Studies by our research group have

demonstrated that calprotectin more accurately stratifies disease

activity in RA patients in remission or low disease activity

receiving TNF inhibitors (133) or the biologic agent,

tocilizumab (129). This effect might lead overestimates of the

response rate when disease activity indices including ESR or

CRP are used (134). In these patients, calprotectin, but not CRP

or ESR, can distinguish between patients without swelling from

those with ≥1 swollen joint. Calprotectin serum levels, but not

CRP, are independent of trough serum tocilizumab levels (129).

Recently, these results have been replicated in an independent

large cohort (135).

RA patients with normal CRP pose a therapeutic challenge

in daily clinical practice. Therefore, calprotectin may have a

potential role in assessing disease activity in patients with

remission or low disease activity, identifying patients with

subclinical synovitis more accurately.

3.2.1 Calprotectin serum levels are sensitive
to change

Calprotectin serum levels decreased after treatment,

independently of the DMARD type or strategy (105). A

significant reduction in serum calprotectin levels was observed

after three months of csDMARD treatment (105, 123, 136). The

same occurs during biological therapy. Infliximab significantly
Frontiers in Immunology 07
decreases serum calprotectin levels in RA patients, as confirmed

by immunohistochemical staining for S100A8 on serial

synovium sections, which showed a progressive decrease in the

number of infiltrating S100 A9-positive macrophages. Similar

results were observed in RA patients receiving adalimumab and

etanercept (105, 137–139).

3.2.2 Calprotectin and ultrasound synovitis
Musculoskeletal ultrasound (US) is a non-invasive

diagnostic technique widely used in rheumatology to assess

joint inflammation with greater sensitivity (140). A pilot study

explored the associations between calprotectin and

comprehensive US examination in 20 RA patients starting

treatment with adalimumab and found a significant

association with B-mode and the power Doppler score, and

there was a correlation between calprotectin and the number of

swollen joints (141) and the results were recently replicated (132,

142). In a one-year prospective cohort study of patients with

established RA patients, calprotectin showed the overall

strongest correlations with US scores and SJC, even after

adjustment for several variables (143). We found that RA and

PsA patients in remission or low disease activity with a US power

Doppler signal had significantly-higher calprotectin levels than

those without, and calprotectin correlated better with US power

Doppler, synovial hypertrophy and US global scores than ESR or

CRP (144). Taken together, serum calprotectin and power

Doppler are both identifying local active synovitis in patients

with inflammatory arthritis, even those with low levels of

disease activity.

3.2.3 Calprotectin and
radiographic progression.

Murine arthritis models have shown that overexpression of

IL-17 and TNFa strongly enhanced up-regulation of

calprotectin, resulting in bone erosion. In contrast, calprotectin

deficiency in mice protected against the IL-17/TNFa effect in

cartilage (145).

In RA, calprotectin antigens were located in the synovial

cartilage, suggesting a pivotal role in cartilage destruction and

subchondral bone erosions, a typical hallmark in active RA

patients (111). In this regard, a study of 145 RA patients

showed that baseline calprotectin levels were independently

associated with the van der Heijde modified Sharp score (SvH)

and the Rheumatoid Arthritis Articular Damage Score (RAAD

score), even when adjusted for CRP, ESR, rheumatoid factor,

DAS28, sex and age (123). The prospective follow up of this

cohort found that calprotectin was an independent predictor of

radiographic joint damage after 10 years. Patients with normal

baseline calprotectin levels had less joint damage; again,

calprotectin was independently associated with progression in

the SvH and RAAD scores (125). Similarly, a longitudinal study

with a median of 8-years of follow-up, demonstrated that
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calprotectin predicts erosive disease and joint space narrowing

(73). An exploratory analysis has correlated calprotectin

significantly with joint bone marrow edema on MRI in RA

patients in clinical remission (146). Recently, the same results

have been replicated in a large early-RA cohort from the ARTIC

trial, where high levels of calprotectin were associated with

radiographic progression in multivariate models (130).
3.3 Calprotectin and treatment response

Prediction of the individual response to treatment has

become a major clinical challenge in RA. Recent studies and

post-hoc clinical trials have provided evidence of calprotectin’s

accuracy in predicting the response to csDMARD and

bDMARD therapy in RA. In patients receiving csDMARDs,

the results are unclear, and decreases in serum calprotectin

levels, rather than CRP, were associated with improvements in

the SJC over time (105). Patients who achieved remission had a

significant reduction in serum calprotectin levels. Likewise, a

study shown that baseline serum calprotectin levels decreased

rapidly in responders after csDMARD treatment but remained

stable in non-responders (122). In early RA, a post-hoc analysis

of the prospective ESPOIR cohort found that calprotectin was

not an independent predictive factor of the response to MTX.

Although the study excluded a large proportion of cohort

participants, its results suggested a potential interest in

calprotectin as a part of a multivariable score for personalized

medicine in these patients (147). Similar results have been seen

in RA patients receiving biological therapy: a prospective cohort

study evaluated 170 RA patients receiving biological therapy

(adalimumab, infliximab, and rituximab). Calprotectin levels

were measured at 0, 4 and 16 weeks after biologic drug

initiation. As previously described, responders had higher

baseline calprotectin levels than non-responders. Higher

baseline calprotectin levels increased the odds of being

classified as a responder by up to 55-fold, and levels decreased

after treatment. In contrast, non-responders had stable

calprotectin levels during the study (148). The authors

developed a treatment algorithm based on a prediction score

using calprotectin and concluded that it may have potential in

personalized treatment in RA (149).

Calprotectin levels at baseline were associated with biological

treatment survival (150). A prospective cohort study did not find

that baseline calprotectin levels were predictive of the response

after 6 months of treatment, although a significant decrease in

serum levels was observed in responders (122). A recent study

demonstrated a significant decrease in calprotectin in the first

month of biological therapy, which was predictive of the EULAR

response at 3,6 and 12 months (143).

A recent systematic review summarized the results from 17

studies including 1065 patients and found that calprotectin levels

decreased after treatment, although there was a wide range of
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levels and marked interstudy and intrastudy variability. Baseline

calprotectin levels were a significant and independent predictor

of erosive progression and therapeutic responses, particularly in

patients receiving biological treatment (151).

Taken together, this data supports the idea that calprotectin

could potentially help to monitor disease activity and predict the

response to bDMARDs in RA, although there is no data available

on patients receiving DMARDs. Randomized trials are needed to

define the role of calprotectin as a predictor of treatment

response, but there is a potential role for calprotectin in the

follow-up of RA patients.
3.4 Calprotectin and disease relapse

A clinically relevant unmet need is stratification of the risk of

relapse in RA patients in remission or low disease activity. Data

demonstrate that calprotectin levels are increased during relapse

(152). A prospective one-year follow up cohort study found that

calprotectin levels strongly and independently predicted disease

relapse in RA with low levels of disease activity during TNFi

treatment. In contrast, a prospective cohort study analyzing the

role of calprotectin in predicting flares in RA with low disease

activity by DAS28 (DAS28<3.2) found that only HAQ-DI

remained a significant independent predictor of flares in the

multivariate analyses. At the time of the flare, DAS28 and its

components significantly correlated with calprotectin, but the

correlation was low, suggesting a non-inflammatory component

in most events (153).

Another situation is the risk of flare in RA patients before

tsDMARD tapering. The capacity of calprotectin in predicting

flares in patients undergoing tapering of biologics has been

assessed. Calprotectin levels were determined in serum

samples from participants in two prospective studies (DRESS

and BIO-TOP). Although calprotectin has some predictive value

for the clinical response after starting anti-TNF treatment, it has

no added value for other clinical factors (154). In contrast,

analyses from two tapering studies (IMPROVED study and

the RETRO study) showed that calprotectin levels in remission

on DMARDs are higher in patients who will flare upon DMARD

tapering/cessation (155).

The definitive role of calprotectin as a predictor of disease

relapse remains unclear, as there are no specific randomized

clinical trials to assess its potential use.
3.5 Calprotectin inhibition as therapeutic
approach in RA

Based on the fundamental role of calprotectin in the

modulation of acute and chronic inflammation, its inhibition

could be a novel target in the treatment of RA. An experimental

study investigated the effects of calprotectin inhibition in RA
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using neutralizing monoclonal antibodies in a mouse collagen-

induced arthritis (CIA) model, Murine S100A9 monoclonal

antibody and anti-TNFa treatment were compared. Mice

treated with anti-S100A9 showed markedly decreased arthritis

severity scores compared to the isotype control group. Overall,

anti-S100A9 treatment led to an approximately 50% reduction

in disease activity, and preserved bone/collagen integrity. No

significant differences in disease activity were observed between

anti-S100A9 and anti-TNFa-treated animals, suggesting

calprotectin might be a novel therapeutic target in RA (156, 157).
4 Discussion and conclusions

There is still an unmet need for robust biomarkers to

objectively monitor inflammatory activity and response to

therapy in RA and other immune mediated diseases. Based on

the pivotal role of calprotectin in the pathophysiology of acute

and chronic inflammation, calprotectin blood levels could be a

potential biomarker of disease activity in inflammatory arthritis.

In RA, there is growing evidence to support the idea that

calprotectin more accurately stratifies disease activity than

CRP and ESR. Furthermore, recent data has shown that

calprotectin serum levels are a potential tool for monitoring

disease activity and the therapeutic response in patients

receiving biological therapy. However, larger studies and assay

standardization are needed in RA patients to ascertain the role of

serum calprotectin as a useful biomarker for monitoring disease

activity or response to therapy in clinical practice, as occurs with

fecal calprotectin in inflammatory bowel disease. Future

applications may include potential therapeutic targets,

prediction of the response to treatment, or dose-titration of

biologics in a personalized medicine approach.

In conclusion, calprotectin plays a pivotal role in innate

immune system activation, increasing chemotaxis and the

activation of PMN, promoting the production of inflammatory

cytokines and chemokines, and contributing to RA

pathogenesis. There is growing evidence to support its higher

accuracy in stratifying disease activity than CRP and ESR.

Calprotectin has shown the strongest correlations with other
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sensitive techniques to detect inflammation, such as ultrasound.

However, its value as biomarker of treatment response and flare

after tapering still need larger, standardized studies.
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