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Shift work is associated with systemic chronic inflammation, impaired host and

tumor defense and dysregulated immune responses to harmless antigens such

as allergens or auto-antigens. Thus, shift workers are at higher risk to develop a

systemic autoimmune disease and circadian disruption with sleep impairment

seem to be the key underlying mechanisms. Presumably, disturbances of the

sleep-wake cycle also drive skin-specific autoimmune diseases, but

epidemiological and experimental evidence so far is scarce. This review

summarizes the effects of shift work, circadian misalignment, poor sleep, and

the effect of potential hormonal mediators such as stress mediators or

melatonin on skin barrier functions and on innate and adaptive skin

immunity. Human studies as well as animal models were considered. We will

also address advantages and potential pitfalls in animal models of shift work,

and possible confounders that could drive skin autoimmune diseases in shift

workers such as adverse lifestyle habits and psychosocial influences. Finally, we

will outline feasible countermeasures that may reduce the risk of systemic and

skin autoimmunity in shift workers, as well as treatment options and highlight

outstanding questions that should be addressed in future studies.
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Abbreviations: ANA, Antinuclear antibody; BMAL1, Brain and muscle ARNT-Like1; BP, Bullous
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cycles kaput; CRY, Cryptochrome; Dbp, D-site of albumin promoter binding protein; DLQI, Daily

quality of life index; DTH, Delayed type hypersensitivity; EBA, Epidermolysis bullosa acquisita; ELISA,

Enzyme-linked immunosorbent assay; h, hours; HPA-axis, Hypothalamus-pituitary-adrenal axis; IBD,

Inflammatory bowel disease; Ig, Immunoglobulin; IL, Interleukin; NFIL3, Nuclear factor interleukin 3

regulated protein; NK, Natural killer cell; PER, Period; PSQI, Pittsburgh sleep quality index; RA,

Rheumatoid arthritis; REM, Rapid eye movement; RORa, Retinoic acid-related orphan receptor-alpha;

SCI, Systemic chronic inflammation; SCN, Suprachiasmatic nuclei; SLE, Systemic lupus erythematosus;

SNS, Sympathetic nervous system; SpA, Spondyloarthritis; SSc, Systemic sclerosis; SWS, Slow wave sleep;

TNF, Tumor necrosis factor; TPA, 12-O-tetradecanoylphorbol-13-acetate; Tregs, Regulatory T cells.
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1 Introduction

Our 24/7 society leads to an increase in shift work with work

schedules that fall outside the standard work hours from 7 AM

to 6 PM. Shift work includes early morning, evening, or night

shifts, as well as fixed or rotating shifts. About 15-25% of the

world-wide population is working in shifts (1), in particular

health care workers. In this latter population epidemiological

studies provide alarming data on shift workers showing

increased rates of longstanding illnesses (2). In addition, the

Nurses’ Health Study demonstrated enhanced mortality due to

cardiovascular diseases or lung cancer (3). Shift workers are

forced to be active and to sleep at time periods that are out of

sync with their endogenous time-keeping system. This internal

clock, the circadian system, is comprised of clock genes in many,

if not all cells of the body. The molecular machinery of cellular

clocks involves -among others- the core clock genes Brain and

Muscle ARNT-Like1 (in humans BMAL1, in mice Bmal1) and

Circadian Locomotor Output Cycles Kaput (CLOCK, Clock),

which form dimers upon translation and initialize the

transcription of Period (PER, Per) genes. These form a dimer

with Cryptochrome (CRY, Cry) genes. This in turn inhibits the

transcription of BMAL1. Moreover, the BMAL1-CLOCK-dimer

is binding together with the dimer of NFIL3 and DBP to the E

box of REVERB/Reverb genes, initiating their transcription. In

turn, REVERB/Reverb genes inhibit the transcription of NFIL3/

Nfil3, forming another feedback-loop (4). With the interaction of

other genes and proteins, a network of interconnected loops is

formed, taking approximately 24 hours (h) to be executed. The

master clock in the hypothalamic suprachiasmatic nuclei (SCN)

is synchronized to external time cues like 24 h light-dark

changes, a process that is called entrainment (4). In turn, the

SCN entrain peripheral clocks by systemic signals such as core

body temperature, mediators of the stress systems (such as the

sympathetic nervous system (SNS) and the hypothalamus-

pituitary-adrenal (HPA)-axis, as well as melatonin, the pineal

hormone of darkness (5). The circadian system controls virtually

all body functions like sleep and wakefulness, behavioral changes

in physical activity and food intake, thermoregulation, cell

proliferation and metabolism, the cardiovascular, the endo-

crine, the digestive, the reproductive and the immune system

(6–16). Apart from light, several non-photic external time cues

have been described that were summarized in a review by

Mistlberger and Skene (17). Exemplarily, food is a non-photic

external time cue that can feedback to the SCN to further entrain

24 h rhythms

When shift workers experience a mismatch of their internal

clock with environmental cues and obligations this circadian

misalignment can result in circadian disruption of body

functions from the molecular to the behavioral level.

Potential outcomes are poor sleep, chronic stress (18), burn

out syndrome (19), social isolation (20) and adverse lifestyle

habits like physical inactivity (18), unhealthy diet (21, 22), or
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substance abuse (23). All these processes can trigger systemic

chronic inflammation (SCI) (24, 25) and a dysregulation of

innate and adaptive immune responses. That alone or in

combination may foster infectious, cardiovascular, metabolic

and cancer diseases in shift workers (22, 26, 27). In addition,

the STRESSJEM Study, which was conducted in France,

analyzed mortality and cause-specific mortality due to night

and shift work. Niedhammer et al. described a sex-specific

association between night and shift work and cerebrovascular

diseases, ischemic heart diseases, respiratory cancers and breast

cancer as causes of mortality (27). Thus, a life against the

internal clock can impair host defense against pathogens (28,

29) and tumors (30) and also seems to promote unwanted

immune responses to harmless antigens, like allergens (31) or

auto-antigens (32). While shift workers are at higher risk to

develop systemic autoimmune diseases as shown for

rheumatoid arthritis (RA) (33), data on associated skin

manifestations or skin-specific autoimmune diseases is only

limited. In the following, we will outline that shift work likely

impairs skin physiology and immunity and thus could promote

skin autoimmune diseases, a causality that, however, needs to

be experimentally clarified in future studies.

In detail, we will first describe 24 h in the life of a physician

during a night shift in a narrative in section 2 and outline (Table 1)

experimental approaches to delineate the effects of shift work on

the skin and the immune system in section 3. In section 4, we will

then summarize epidemiological and experimental evidence in

humans and animals indicating that shift work could promote

skin autoimmune diseases, before we give more detailed reports

on the cellular effects of shift work on skin physiology, skin innate

immunity and skin adaptive immunity in section 5. In section 6,

we will discuss candidate neuroendocrine mediators linking shift

work with skin autoimmune diseases and in section 7 we will

highlight potential countermeasures and therapeutic approaches

to prevent, ameliorate or treat skin autoimmune diseases in shift

workers. In the last part of our review, in section 8, we will

summarize the outlined findings and give an outlook

on outstanding questions that should be addressed in

future experiments
2 24 hours in the life of Dr. S.W.

In a narrative describing 24 h in the life of an intensive care

unit physician who we called Dr. S.W. on night shift, we would

like to outline shift work-induced changes in behavior,

neuroendocrine mediators, thermoregulation, skin physiology

and immune functions in comparison to regular 24 h rhythms.

We hypothesize that fine-tuned physiological rhythms in

neuroendocrine-immune interactions foster skin barrier

functions and that disturbances thereof could promote patho-

physiological processes of skin autoimmune diseases. We chose

a tabular form with 4 h intervals (Table 1) (34–55).
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3 Experimental approaches to
delineate the effects of shift work
on the skin and the immune system

In this chapter we aim to describe the different types of

studies in humans as well as in animals, which can be used to

assess the effects of shift work on the skin and the

immune system.
3.1 Epidemiological and in-laboratory
studies in humans

The circadian system controls skin physiology (56) as well as

leukocyte ontogeny, differentiation, traffic, and function and

thus various aspects of innate and adaptive immunity (57, 58).

Skin physiology in humans can be assessed in vivo non-

invasively by inspection, by photo documentation, by imaging

techniques like optical coherence tomography (59), as well as by

measurements of skin temperature, skin pH, skin conductance,

or transepidermal water loss (60). Skin physiology can also be

measured invasively by harvesting suction blister fluid, by skin
Frontiers in Immunology 03
biopsies, or by injecting substances that induce an observable

skin reaction.

Delayed type hypersensitivity (DTH) describes the cell

mediated allergic immune reaction to a certain substance. This

takes several days to develop as it involves antigen presenting

cells as well as T helper 1 cells (Th1) and T helper 17 (Th17)

cells. These recognize the antigen and release cytokines,

attracting cytotoxic T cells, which kill the target cells (61, 62).

A DTH-reaction also occurs in several autoimmune diseases

such as RA where collagen is attacked as well as thyroiditis with

the thyroglobulin antigen as a target (63, 64).

Immune parameters in humans are mainly assessed in blood

(e.g., numbers of certain leukocyte subsets, levels of cytokines) and

immune functions can be tested in vitro by using leukocyte cell

lines, ex vivo by culturing freshly sampled blood leukocytes or in

vivo by administering immunomodulatory substances and

measuring the emerging immune response (e.g., antibody

response to vaccination). The assessment of innate and adaptive

immunity of the skin requires the invasive methods described

above that allow the measurement of immune cells or mediators

in fluids or tissues (e.g., histology, immunohistochemistry,

immunofluorescence, fluorescent activated cell sorting, enzyme

linked immunosorbant assay (ELISA), Western blotting).
TABLE 1 24 hours in the life of Dr. S.W. on night shift.

1
PM

When Dr. S.W. went to bed after her second night shift it took a while until she fell asleep. Her thermoregulation is out of phase, and she consumed several
cups of coffee. Both aspects likely interfere with sleep initiation, maintenance and deep sleep (34). Normally, she would have lunch now, her stress systems
would be active, and the bright light of the midday sun would suppress her melatonin levels (35). In bed however, the light that breaks through the window
sealings and the noise from outside fragment and shallow her sleep.

5
PM

Dr. S.W. woke up but does not feel well rested or refreshed. Presumably, she lacked slow wave sleep (SWS), the deepest form of sleep that normally helps to
flush away metabolites from the brain parenchyma (36) and to clear sleep regulatory substances like adenosine, tumor necrosis factor (TNF) and interleukin-1
(IL-1) that induce fatigue and sleepiness (37). When she looks into the mirror, she notices that her skin is pale and that she has an unhealthy appearance.
These are findings that also emerge after experimental sleep deprivation (38). Sleep supports anti-oxidative and regenerative processes and a lack thereof
impairs skin integrity (39). Moreover, sleep loss is associated with systemic chronic inflammation (SCI) that is a likely mechanism of fatigue, sleepiness, bad
mood, cognitive impairments and other feelings and symptoms of sickness (40). It is getting dark already and Dr. S.W.’s breakfast consists of three cups of
coffee and, as she failed to buy groceries, a chocolate bar. She comforts herself that caffeine not only antagonizes the sleep-inducing substance adenosine (41)
but may also counteract SCI that evolved due to sleep loss (42). Maybe she should take some vitamin D as well to fight against the inflammatory processes
(43).

9
PM

Dr. S.W. heads to the clinic for her third night shift and takes the car instead of her bicycle. In the doctor’s room she switches on all the lights and drinks a
cup of coffee to become alert (34). Normally, her melatonin would rise, and her stress systems would calm down at this time of the day (35). These changes
would induce an increase in skin temperature, a decrease in core body temperature and in this way her body would get prepared for the sleep period (34, 44,
45).

1
AM

In the patient rooms and the ward corridor the light is dimmed, and the volume of the alarm sounds were turned down. The intensive care unit (ICU) staff
generally agrees that the patients should sleep at night to recover (46). On a regular wake-sleep cycle also Dr. S.W. would be in deep SWS now. Her immune
system would be boosted by increases in growth hormone, prolactin and aldosterone and very low cortisol and catecholamine levels (35, 47, 48). These
hormonal changes presumably also support anabolic processes like cell proliferation and cell growth, as well as anti-oxidative and regenerative processes (49,
50). However, Dr. S.W.’s hormone secretion is disturbed.

5
AM

Dr. S.W. is freezing. Normally, her core body temperature would be at minimum now and her internal clock would increase the propensity of rapid eye
movement (REM) sleep. Neurotransmitters of the sympathetic nervous system (SNS) such as the catecholamines epinephrine and norepinephrine now would
reach nadir levels (51). For the staff of the ICU this night, the opposite holds true. Dr. S.W. hears a red alarm. A patient has a cardiac arrest, and she starts
resuscitation. After stabilizing the patient, the ICU team sits together, they drink coffee and eat potato chips. They agree that night shifts favor unhealthy diets
(18, 52), substance abuse (23), social isolation (20) and TV time and that these adverse lifestyle habits may increase mortality (53).

9
AM

Dr. S.W.’s internal clock activated her stress systems, leading to reduced feelings of fatigue and sleepiness. She drives back home and reflects her life. She loves
being at the ICU. It is a meaningful work and there is no doubt about the necessity of 24/7 shifts in contrast, to e.g., night shifts in the supermarket. However,
increasing economic pressure in health care leads to displacements of routine procedures into the evening and night hours with adverse consequences for
health care workers, their performance and their stress levels and for patient outcomes (54, 55). When she gets out of the car, she wonders whether seeking a
specialization in dermatology or rheumatology would be a healthier career option.
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The circadian system is closely linked to sleep that itself has

manifold effects on skin health and skin ageing (65) and the

immune system (47). 24 h rhythms of human behavior including

sleep-wake behavior are monitored by questionnaires or

wearables like actigraphy watches (66, 67). The latter can also

track ambient light and temperature, heart rate, skin

temperature and skin conductance. The gold standard to

measure sleep with its different stages from light sleep

to deep sleep (slow wave sleep (SWS)) and rapid eye

movement (REM) sleep is polysomnography, encompassing

electroencephalography for brain activity, electrooculography

for eye movements and electromyography for muscle activity.

It can be recorded with ambulatory devices in the home setting

or in the sleep laboratory, where it can be combined with

videotaping, monitoring of core body temperature and

repeated blood sampling. The two-process model of sleep

regulation describes the control of the onset, duration and

quality of sleep, as well as increases in alertness and

performance during wakefulness. The homeostatic “process S”

involves sleep regulatory substances such as adenosine, tumor

necrosis factor (TNF) and interleukin (IL)-1. This is combined

with the circadian “process C”, which regulates wakefulness by

wake-promoting neurotransmitters such as catecholamines (68,

69). Interestingly, the likelihood to fall asleep is highest, when

temperature of the distal skin regions (e.g., fingers and toes) is

rising in the evening (44). Further, sleep can be deepened by

passive warming of the skin (70). Apart from the circadian

regulation of sleep by process C, sleep can feedback to the

circadian system and impact body rhythms on the level of the

SCN (71–73) and the periphery (74–78). Consequently, 24 h

rhythms in skin physiology or a given immune parameter, could

stem from the effects of the circadian system, from sleep, or both.

Moreover, experimental manipulation of the circadian system

likely changes sleep and vice versa, experimental manipulation of

sleep can impact 24 h rhythms of skin and immune parameters.

Along this line, it has been shown in cross-sectional and

longitudinal epidemiological studies that shift work induces both

circadian disruption and sleep disturbances (79, 80). About 20-

30% of shift workers even suffer from shift work disorder, a

primary circadian rhythm sleep disorder with debilitating sleep

disturbances and/or excessive sleepiness (81). Notably, also

other primary sleep disorders (e.g., obstructive sleep apnea)

and secondary sleep complaints due to comorbidities (e.g.,

depression) or medication (e.g., steroids) should be ruled out

when studying shift work-autoimmune relationships (82, 83).

To mimic shift work, circadian disruption can be induced in

healthy volunteers experimentally by changes of the light-dark

cycle, mistimed food intake, or mistimed sleep by delaying,

depriving or fragmenting sleep (84, 85). Comparable

experimental procedures in animals to directly manipulate the

circadian system or sleep on the cellular level will be summarized

in the next section.
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3.2 Animal models to study interactions
between the circadian system, sleep, and
the immune system

Most animal experiments in biomedical research are

performed in mice that are active at night and sleep during the

day (86). Wild mice are orientating on zeitgebers such as the

light/dark cycle, ambient temperature and seasonal dynamics

(87). During the day, the mice are asleep and when the sun is

downing and the temperature is lowering, this is the signal to get

awake and be active (Figure 1). These wild mice are exposed to a

completely different life and stressors (87) than their

counterparts in the laboratories. They have many more

options to explore, more space to run around and also larger

territories than in a standard cage. The social groups form

dynamically and are not gender specific (88). Wild mice are

rarely disturbed during the rest phase; however, they have to

cope with the stressors of predators, pathogens and limited

access to food (87, 89, 90). Unfortunately, these natural

conditions cannot be mimicked in the laboratory setting (91)

(Figure 2 and Box 1) (92–98).

Laboratory mice do not have to scare predatory animals, but

care takers and scientists are fulfilling this aspect sufficiently. It

was shown in several experimental studies that handling and

exchange or cleaning of cages is inducing stress in mice (92, 93),

especially when male care takers and scientists are involved (99)

(Figure 2 and Box 1). The laboratory mice cannot entirely follow

their circadian rhythm as most experimental interventions take

place during the work hours of the scientists and animal

caretakers, thus in the rest period of these animals during the

day. It therefore cannot be excluded that laboratory mice are

constantly sleep deprived and suffer somehow from “shift work

disorder”. Keeping a mouse below its thermoneutral zone of 30°

C ambient temperature may further activate the stress systems

and interfere with circadian regulation (100), sleep and

immunity (101). In most cases, studies in mice on the

circadian system or sleep address these issues. In their

experimental designs the light-dark cycle is changed on

purpose (i.e., the dark period for the animals is during the

daytime working hours of experimenters). Manipulations are in

this way mainly scheduled to the active period of the animal and

experimenters work in dim or red light that does not impact the

SCN. As shown in Figure 1, mice in nature are exposed to

circadian changes in ambient temperature, which are not present

in laboratories, also leading to differences in sleep and circadian

alignment (100, 102). However, the fact that warmer ambient

temperature, the availability of nesting material and group

housing support sleep in mice is taken into account in most

laboratories (45).

Shift work can be mimicked experimentally in mice by

changes in the light-dark schedule. As food intake is an

important external time cue, time restricted feeding can be
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seen as another method to mimic shift work, in particular, when

food is offered during the light phase, thus during the rest period

of mice (103, 104). In ad libitum feeding protocols, food intake is

often not controlled for, although it has a major impact on skin

clocks (105) and on immune outcomes in response to circadian

or sleep manipulations (106). Apart from changes in external

time cues to mimic shift work, in animals the circadian system

can be directly targeted by SCN lesions or genetic manipulations

of clock genes in the germline or on a cell-specific level (e.g.,

Clock knock-out in particular immune cells, or knock-downs by

adeno-associated viruses) (10, 107–110). Notably, these

interventions might also induce sleep changes that should be

controlled for (111). On the other hand, sleep can be

manipulated by various more or less stressful techniques of

sleep deprivation or fragmentation, or by optogenetics (112).

However, it should be kept in mind, that mice cannot follow a

constant routine to avoid confounding influences of physical

activity during induced wakefulness. Mice are still the most

common animal model although they are nocturnal animals

with a complementary sleep-wake rhythm compared to humans.

However, not all cellular or endocrine factors have

complementary rhythms. Melatonin for example has a similar

pattern in mice and humans, underlining its role as a dark-

signal, which is downstream activating different pathways.

Noteworthy, it is under debate for many mouse strains

whether they are able to synthesize melatonin (113, 114).
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Despite this, melatonin was shown to affect mice regarding

depressive-like and stress behavior and also circadian

alignment (115–117).

On the other hand, mice offer plenty of possibilities to study

sleep-wake behavior, e.g. by implanting electrodes or by

assessing circadian locomotor activity patterns with electronic

running wheels (even in group housed mice) (118). It is also

possible to implant radiotelemetry transmitters to constantly

measure the heart rate and blood pressure (119, 120) or using

photobeam, and electroencephalograms. Metabolic feeding

cages using indirect calorimetry are also a great option to

follow the circadian metabolic patterns of mice (121). Genetic

knock-outs, knock-downs and knock-ins make these animals a

valuable tool to examine the effect of specific genes. It should be

taken into account, however, that extended breeding, husbandry

and genetic manipulation of lab mice resulted in profound

changes in gene expression distancing them further from wild

animals (89).

The murine immune system is only partly comparable to

that of humans with various cellular and molecular differences

(122, 123). Neutrophils display about 10-25% of the cells in the

peripheral blood in mice whereas these are 50-70% in humans.

Lymphocytes are the most abundant cell type in peripheral

blood in mice with 75-90%, compared to only 30-50% in

humans (122). Mice are also commonly used to assess skin

biology. This is an interesting option to induce certain diseases
FIGURE 1

24 hours in the life of Ferry the forest mouse. In nature, mice follow their natural rhythm guided by abiotic zeitgebers such as light and
temperature. They sleep during the day, cuddling in their warm nest in the soil (1). When the sun is downing, they wake up and leave the nest
(2). The mice use the night and their highest alertness to seek for food and watch out for predators (3). A lot of running, climbing, and collecting
of food during the night (4), releases them happily tired into the day and their sleep (5).
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such as epidermolysis bullosa acquisita (EBA) (124–126), and

allows to take skin and organ biopsies in a degree that is not

possible to gain from human patients. Human and murine skin

are composed of the same layers. However, the thickness of

human skin is much higher and more adherent to underlying

tissues. Accordingly, mice have decreased barrier function and

enhanced percutaneous absorption, which should be considered

when using murine models for topic drug delivery. Moreover,

mice have fur and therefore more hair follicles, which leads to

differences in wound healing (127, 128). In contrast to humans,

mice also show a subcutaneous layer called panniculus carnosus,
Frontiers in Immunology 06
which is a muscle layer, enabling skin contraction. This is of

interest since large wounds require muscle contraction for

healing, whereas in humans wound healing is achieved by

formation of granulation tissue and reepithelization (129).

Even though rodents have the above-mentioned limitations,

they are nevertheless a valuable and hitherto irreplaceable tool

for studying effects of sleep and the circadian machinery on the

immune system. Murine studies allow to explore the relations

and connections between different organs and influences of the

lifestyle, which cannot be shown in other models. This is either

due to limitations in genetic manipulations in non-rodents or
FIGURE 2

24 hours in the life of Blacky the lab mouse. Mice are nocturnal animals, being active during the night, which is opposite to humans. This leads to
various interruptions of their rest period (1, 2), accompanied by stress and changes in behavior. Grooming and eating alleviates some stress caused by
sleep deprivation (3). The cage-environment is highly restricted in space, movement, and explorative options, resulting in coping behavior (4). Moreover,
mice might catch up some sleep that was missed in the rest period (5). More information can be found in the Box 1.
BOX 1 Blacky, the lab mouse (Figure 2).
Blacky, a C57BL/6 mouse, is living with his brothers in a ventilated cage with 501 cm2. Their home is comfortable with a fluffy nest. During the day, when the light is
turned on, all brothers want to sleep and cuddle in their nest to stay warm and get some rest (1). It is not as cozy as it sounds because there is constantly noise from
humans around them and the ambient temperature is below the brothers’ thermoneutral zone of 30°C. The temperature of 22°C is constant for 24 hours, which makes
it even more difficult to decide whether it is time to be awake or asleep, it is just always cold. From time to time, their entire home is picked up while they are asleep
and put somewhere else or the nest is exchanged for a new nest. Somedays even all brothers are woken up and placed in a new home (2). These days are truly horrible
and to compensate the stress, the brothers groom each other, even plucking off the whiskers or entire patches of fur. Some of the brothers also get hungry or feel the
urge to chew to get rid of the stress (3) (92, 93). So, a little meal in between is very common and especially Black-Jack, the biggest brother who leads the group, starts
accumulating excessive fat. When the light is turned off, the brothers’ activity period starts. It is getting quiet around them, they do not hear the humans anymore, just
other mice from other homes nearby. This is a good time to take a meal and luckily, they do not need to search long for their food, there is enough for everyone. Apart
from food, their cage is boring because there is nothing to explore and barely anything to play with or space to run around. This is why Blacky and his brothers groom
each other a lot (4) (94) causing small bold patches, sometimes even wounds and infections (95, 96). The grooming follows a strict hierarchy, and Black-Jack gives all
the calls. If another brother has a different opinion, Black-Jack is showing him who is the boss by biting him. These fights and dominance behaviors alter
neuroendocrine mediators such as corticosterone and tyrosine hydroxylase (97). After feeding, grooming and fighting, there is nothing much to do and since the
brothers were woken up several times during their rest period, this is a good time to sleep again (5) (98). Unfortunately, this sleep is never as good as when the lights
are on but who knows when to be active and when to sleep anyways?
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because the model is not a full organism such as cell- or organ-

cultures. Hopefully, future techniques are overcoming the need

for murine studies and thereby offer new models without the

above-mentioned drawbacks of mice. It is important to address

difficulties with certain models to be able to overcome these.

Nevertheless, there are various well-working mouse models,

which delivered valuable results. Just to mention two out of

many studies, we would like to outline the work of Toth et al.

who studied the effects of shift work in a lupus mouse model,

which resembled also typical human outcomes (130) as well as

the work of Sadeghi et al. who used an EBA mouse model with

an unbiased genetic approach to investigate inflammatory

processes and discovered the role of the clock gene retinoic

acid-related orphan receptor-alpha (Rora) in this disease (126).

Apart from invertebrates that cannot be used to assess skin

diseases, other animal models are fish to study melanoma (131,

132) or mammals such as pigs to study skin and circadian

regulation of the immune system (133, 134). However, porcine

models are difficult to establish as the animals need a lot of space

and require comparably long breeding spans, although some

genetical modifications such as CRISPR/Cas are already well-

established (135). Regarding non-human primates, pigs are

ethically more accepted for experimental purposes and show

higher numbers of offspring, allowing to gain sufficient animals

for statistical analysis of the experiments.
4 Epidemiological and experimental
evidence that shift work could
promote skin autoimmune diseases

This section outlines the connection between shift work and

skin autoimmune diseases. Firstly, described by shift works’

general effect on the immune system and then depicting more

detailed effects on certain skin autoimmune diseases.
4.1 Shift work induces systemic chronic
inflammation, immunodeficiency, and
dysregulation of adaptive immunity

Shift work drives SCI (25, 136, 137) that is associated with

endothelial dysfunction, atherosclerosis, cardiovascular diseases,

impaired glucose tolerance, metabolic syndrome, diabetes

mellitus, obesity, mood disorders and neurodegenerative

diseases (22, 24, 136, 138). Likewise, experimental circadian

disruption as well as sleep deprivation in humans and animal

models can induce an inflammatory response (40, 139, 140) and

dysfunctions of cardiovascular processes (75, 141, 142),

metabolism (143, 144), mood and cognition (145). Presumably,

SCI in the periphery and a parallel neuroinflammatory response

in the brain are the consequence of innate immune cells

responding to sterile immune stimuli (e.g., reactive oxygen
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species, metabolites, danger/damage associated molecular

patterns) (37, 146–148) and failures in counter-regulatory, anti-

inflammatory mechanisms that normally regulate and resolve

inflammation (e.g., IL-10, resolvins, M2 macrophages,

regulatory T cells (Tregs)) (47, 149–151). While the innate

immune system fights this unnecessary battle against sterile

stimuli, targeted and protective immune responses are

compromised. Thus, shift work or experimental circadian

disruption, as well as insufficient sleep are associated with

failures in innate and adaptive immunity against pathogens

(152) and tumors (153–156) and with reduced vaccination-

driven T cell and antibody responses (157–160), both in

humans and in mice. On the other hand, shift work seems to

boost unwanted adaptive immune responses to harmless antigens

such as allergens and auto-antigens. In detail, shift work, circadian

misalignment, clock gene polymorphisms or poor sleep are

associated with a higher risk to develop allergic or autoimmune

diseases (31, 161). The latter include (i) connective tissue diseases

such as systemic lupus erythematosus (SLE) (162), systemic

sclerosis (SSc) (161), and Sjögren’s syndrome (163, 164), (ii)

different forms of arthritis such as rheumatoid arthritis (RA)

(165), and spondyloarthritis (SpA) (161, 166) including psoriasis

arthritis (163), (iii) inflammatory bowel disease (IBD) (167–173),

(iv) autoimmune thyroiditis (32, 174–176), and (v) multiple

sclerosis (177). Undoubtedly, sleep is impaired in patients with

systemic autoimmune diseases (178). Moreover, they show

disturbances in 24 h rhythms of their stress systems (179, 180),

cardiovascular functions (181), and melatonin (182–185). These

changes may be the consequence rather than the cause of the

autoimmune disease, as disease symptoms such as pain, itch,

respiratory or gastrointestinal dysfunctions can heavily interfere

with a regular sleep-wake behavior (186). However, lupus-prone

mice show disturbed 24 h rhythms of corticosterone and

melatonin already in asymptomatic phases, thus before

manifestation of the disease (187). Moreover, experimental

circadian disruption and/or sleep deprivation in animal models

can promote autoimmune diseases like lupus (130, 188). It can

also worsen colonic inflammation in murine models of IBD (189)

or attenuate others such as experimental auto-immune

encephalomyelitis (190). Thus, autoimmune processes and

wake-sleep-disturbances most likely show bidirectional

relationships that could feed into a vicious circle.
4.2 Does shift work boost skin
manifestations of systemic autoimmune
diseases or skin-specific autoimmune
diseases?

4.2.1 Systemic autoimmune diseases and
thyroiditis

Many systemic autoimmune diseases affect the barrier organs,

thus the mucosa of the respiratory, gastrointestinal, or urogenital
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tract or the epidermis, dermis and subcutis of the skin (Table 2)

(191–260). Cutaneous manifestations are leading symptoms in

SSc (e.g., puffy fingers, skin fibrosis and calcinosis cutis), or

characteristic clinical presentations of SLE (e.g., malar ‘butterfly’

rash), of Sjögren’s syndrome [e.g., dry skin called xerosis cutis or

xeroderma (232, 233)], of RA [e.g., rheumatoid nodules (241)], of

SpA, celiac disease or IBD (e.g., pyoderma gangrenosum) (242,

252), or of thyroiditis [e.g., myxedema (259)]. Connective tissue

diseases, but also any other systemic autoimmune disease can lead

to secondary Raynaud’s phenomenon with an exaggerated cold-

induced vasoconstriction of arteriovenous anastomoses in distal

skin regions (e.g., fingers and toes). Currently, there is only limited

data on the impact of the sleep-wake cycle on cutaneous

symptoms of systemic autoimmune diseases or thyroiditis. The

circadian systemmay be involved in photosensitivity in SLE (218).

Moreover, poor sleep correlates with enhanced skin thickness in

SSc (225, 227) and with genital ulcers in the vasculitis Behçet’s

disease (235, 236, 261). However, although shift work has been

shown to impair skin health with respect to allergic and cancerous

conditions (262, 263), to our knowledge epidemiological or

experimental studies on skin manifestations of systemic

autoimmune diseases are currently lacking. Even for Raynaud’s

phenomenon that involves a pathophysiology closely linked to

circadian and sleep-dependent thermoregulation (which could be

easily monitored by wearables), we did not find a single study that

investigated this condition in shift workers.
4.2.2 Psoriasis
Likewise, studies on the association between shift work,

circadian disruption or poor sleep on skin-specific autoimmune

diseases are rare and mainly focus on psoriasis. Psoriasis typically

presents with cutaneous erythematosquamous plaques and

approximately 50% of patients develop typical nail changes.

Rarely, pustular changes occur, which can affect the palms and

soles, but also the entire body. One aspect of psoriasis research

that has recently been investigated is the time-of-day variability in

disease symptoms and severity with a peak of itch and psoriasis

flares in the evening and at night. However, the reasons for this

observation remain unclear (194). Related diseases such as SpA

show similar peaks of symptoms at night (249).

Early circadian research on psoriasis investigated time-of-

day-dependent changes in the epidermis. One study revealed no

diurnal differences in mitotic index (264), whereas another one

showed increased cell proliferation at 6 AM compared to healthy

controls (265). A further study investigating circadian cell

kinetics revealed a stable epidermal and dermal infiltrate cell

proliferation over the day both in uninvolved and involved

psoriatic skin, but with a circadian rhythm in epidermal DNA

synthesis (266). However, in 1985, a 24 h rhythm of neutrophil

migration in psoriatic skin with a peak at around 10 PM was

detected that could not be shown in the skin of healthy controls

(193). Further reports suggest a systemic circadian perturbation,
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with disruption of circadian rhythms of urinary and haema-

tological parameters (192), of blood pressure and heart rate (237,

267) and of plasma melatonin levels (202) in psoriasis (and

vasculitis) patients. In addition, lower urinary 24 h cortisol

levels, lower serum cortisol at 8 AM and 5 PM were found in

patients with psoriasis and IBD (251) compared to healthy

controls suggesting an altered function of the HPA-axis (268).

To unravel the link between the circadian clock and

psoriasis, a transcriptomic study showed a downregulation of

CRY1/2, REVERBA, CLOCK, BMAL1 and RORA/C in

keratinocytes from psoriatic lesions (269). A recent study

found changes in core clock genes and clock proteins in non-

lesional and lesional human skin samples in psoriasis (270). In a

mouse model, imiquimod-induced psoriasis-like dermatitis was

ameliorated in mice with a loss of function mutation in the Clock

gene compared to wild-type mice. Accordingly, in mice with a

loss of function mutation in the Per2 gene imiquimod-induced

psoriasis-like dermatitis was exaggerated because PER2 inhibits

CLOCK activity (271).

Based on the described investigations, few groups studied the

application of chronotherapy in psoriasis. Balneotherapy

(bathing therapy) has the highest efficiency when it is applied

in the morning (272). Topical corticosteroid application in the

evening has a higher efficiency than application in the morning

after two days of treatment. However, this difference evened out

after five treatment days (273). Discussed reasons for the higher

effectiveness are an improved corticosteroid absorption in the

evening due to a higher cutaneous perfusion and a higher skin

barrier permeability or a higher therapeutic potential due to a

rise in inflammation and cell proliferation in the skin during

evening hours (273, 274). Recently, chronotherapy of maxa-

calcitol, a vitamin D analogue, was investigated in a mouse

model of psoriasis in which the skin inflammation was induced

by topical 12-O-tetradecanoylphorbol-13-acetate (TPA). In the

skin of mice, expression of the nuclear vitamin D receptor

exhibits a distinct daily variation with a peak in the middle of

the active period. Accordingly, in TPA-mice application of

maxacalcitol during early to middle of the active period had

the highest therapeutic efficacy (275).

Various studies describe the occurrence of sleep disturbances

and fatigue in patients with SLE, Sjögren’s syndrome, vasculitis,

psoriasis, and psoriatic arthritis (197, 198, 219, 238, 276–279). In

both conditions, patients rate sleep disturbances as a factor

severely impairing quality of life (280–283). Sleep disturbances

in patients with psoriasis and psoriatic arthritis are caused not

only by disease manifestations such as nocturnal itching or pain

(20, 284), but also by gastroesophageal reflux disease, anxiety or

depression (285, 286). In addition, an association between

psoriasis and prevalence of sleep disorders, such as obstructive

sleep apnea or restless legs syndrome, has been described. Data

on the prevalence of sleep disorders in psoriasis and potential

effects of psoriasis treatment with biologics on sleep and sleep

disorders are presented in a recently published review (287).
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TABLE 2 Effects of shift work, circadian or sleep disturbances on autoimmune (skin) diseases.
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Until now, the effect of immunomodulatory and immuno-

suppressive therapeutics on sleep disturbances remains elusive

(288–290). In addition, studies investigating the relationship

between sleep quality and disease activity in psoriasis and

psoriatic arthritis give contradictory results (276, 291–298). So

far, studies on lifestyle interventions that affect sleep and

investigate respective effects on disease activity are lacking

(299). Impairment of sleep in patients with psoriasis, psoriatic

arthritis and axial SpA increases the risk for psychiatric diseases,

which themselves might impair sleep, resulting in a vicious circle

(300–302). Moreover, patients with psoriasis and sleep

disturbances have a higher risk of stroke and ischemic heart

disease compared to psoriatic patients without sleep

disturbances (303). Finally, jet-lag in patients with psoriasis

experiencing a flight crossing at least two time-zones increases

self-reported disease severity (304).

Circadian and diurnal variations as well as sleep dis-

turbances are well investigated in psoriasis and psoriatic

arthritis but only a single study investigated the influence of

shift work on the risk of psoriasis. Li and colleagues published a

study in 2013 showing that enhanced duration of rotating night

shift work increases the risk of psoriasis independently of

important behavioral risk factors for psoriasis, namely body

mass index and smoking (191). Moreover, night shift work is

associated with an increased risk of psoriasis comorbidities, e.g.

myocardial infarction (305).
4.2.3 Other skin-specific autoimmune diseases
Apart from psoriasis further skin-specific autoimmune

diseases are vitiligo, pemphigus, EBA, and bullous pemphigoid

(BP). Poor sleepers show a higher risk of vitiligo (306, 307).

There are also reports on sleep disturbances in patients with BP

(67) or vitiligo (207, 208). For EBA, the clock gene Rora was

found to be a genetic risk locus in the murine passive anti-

collagen type VII transfer model (126). The core-loop of the

circadian clock consists of Bmal1/Clock and Per/Cry. However,

more genes interact and form additional loops. The

transcription of this clock gene Rora is initiated by Bmal1/

Clock, which itself fosters the transcription of Bmal1 (308).

Sadeghi and colleagues found that a knockout of Rora in mice

diminished the skin lesions upon anti-COL7 challenge. They

could further show that even a Rora blockade was able to reduce

skin inflammation and blistering in this model (126). Patients

with BP (mostly elderly) are often also diagnosed with neuro-

psychiatric comorbidities years before skin manifestations of BP

appear (309). It turned out that anti-BP230 (one of the

autoantibodies emerging in BP), is an independent predictor

of neuro-psychiatric illnesses in BP patients (310). In addition to

the dermis, BP230 is also expressed in the central nervous system

and an immunologic cross-reaction of the autoantibodies

causing neuroinflammation might explain the BP-associated

neuropsychiatric disorders (311). Circadian disruption (e.g by
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aging or sleep disturbance) increases neuroinflammation in rats

(312, 313) and humans (24, 314) and might amplify

neuropsychiatric symptoms in BP patients. If this scenario is

translatable to shift work remains to be elucidated. Symptoms of

autoimmune skin diseases peak at night, as shown by actigraphy

also in BP patients (66, 67). This could further disrupt sleep and

circadian rhythms thus feeding into a vicious cycle.

Apart from autoimmune skin diseases, disturbances of the

wake-sleep cycle seem to promote also infectious skin diseases

such as bacterial invasions (315), allergic skin diseases such as

atopic dermatitis (316), contact hypersensitivity (317), or skin

cancers (318).

In general, skin diseases show distinct 24 h rhythms in

symptoms (163), with a nocturnal peak in pain, pruritus and

scratching that heavily interferes with sleep (195, 244, 319–321).

The dermatology life quality index (DLQI) questionnaire is not

considering sleep disturbances (322), whereas the bullous

pemphigoid disease area index (BPDAI) explicitly queries

sleep impairments to quantify the extend of pruritus (217,

323). These questionnaires are not standardized to span

different (autoimmune) skin diseases, which renders it difficult

to compare them with each other. The Pittsburg Sleep Quality

Index (PSQI) covers various aspects of sleep, its duration and

disruptions but does not include any aspects of autoimmunity

besides unspecified pain at night (324). Sleep disturbances due to

nocturnal symptoms should therefore more often be rated in

clinical scores of skin diseases or by objective assessments using,

e.g., wearables (66, 67).
5 Potential effects of shift work on
skin and immune cells

So far, we described the manifold influences of the circadian

system on sleep, behavior, thermoregulation, neuroendocrine

mediators, the immune system, skin manifestations of systemic

autoimmune diseases and skin-specific autoimmune diseases. In

the following, we will outline how the circadian system and the

sleep-wake cycle physiologically regulate skin and immune cells

and how disturbances of this regulation, e.g. due to shift work,

could drive the pathophysiology of these disorders.
5.1 Potential effects of shift work on
skin cells

It is hypothesized that the circadian system evolved to

protect proliferating cells from DNA damage due to UV light

(10, 325, 326). Such a rhythmic adaptation to light or to other

environmental stimuli like ambient temperature, moisture, or

pathogens conceivably is most relevant in the skin, the major

barrier between the outer and the inner world (Figure 3). Thus,
Frontiers in Immunology 12
multiple epidermal, dermal and hair follicle clocks tick in stem

cells, keratinocytes, fibroblasts, and melanocytes and jointly

seem to serve protection against environmental challenges

during the activity period (49, 109, 327–332). Notably, clock

genes also regulate cellular functions in human keratinocyte and

melanoma cell lines (327). The subcutis with its fat depots and its

dense sympathetic innervation and vascularization also seems to

have a circadian regulation that might serve in particular

metabolic and thermoregulatory functions (333). Presumably,

this skin clockwork maintains skin physiology and skin integrity

(39, 331). Thus, skin blood flow, temperature, pH,

transepidermal water loss, and sebum excretion show 24 h

rhythms in humans (334–336) and animals (337). The

circadian system also impacts wound healing in mice (338)

and hamsters (339). Experimental disruptions of this finetuned

rhythmic skin regulation by circadian misalignment or sleep

deprivation impairs skin integrity (65, 340), regeneration (341,

342), and wound healing (339, 343, 344), accelerates skin aging

(345), enhances the activity of skin proteases (196), and leads to

skin ulcers and hyperkeratosis (346). These outcomes prompt

symptoms such as itching and pain. Interestingly, the pheno-

menon that pruritus and scratching peak at night, is presumably

driven by the described rhythmic changes in skin barrier

functions and by enhanced nocturnal skin temperature (214).

Although pain perception shows conflicting results with respect

to circadian regulation in humans (347, 348), it clearly increases

upon circadian or sleep disturbances (349). Vice versa, as

outlined above itching and pain at night are likely

explanations of sleep disturbances in patients with skin

diseases (277, 319). Thus, circadian disruption, sleep loss,

enhanced scratching, and exaggerated pain perception likely

feed into a vicious circle that further fosters skin barrier

damage. Shift workers show disrupted rhythms in hair follicle

cells and interfollicular epidermal cells (341, 350) and changes in

pain perception (351). However, it is presently unknown,

whether shift workers suffer from impairments of skin

physiology or integrity. Itching leads to scratching, causing

wounds that need to heal. In mice, wounds occurring during

the rest phase healed less quickly than wounds that occurred

during the active phase. Responsible for this is the rhythmic

mobilization of fibroblasts by dynamic actin (338). Similarly, it

was found in mice that sleep fragmentation delays wound

healing (352). Likewise, difficulties in wound healing are

commonly observed in patients with autoimmune diseases and

sleep abnormalities (353).
5.2 Potential effects of shift work on
innate immune cells in the skin

The skin is populated by transient and resident innate immune

cells. Previous studies showed a sleep-wake cycle-dependent

hematopoietic release of granulocytes and monocytes and
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subsequent traffic of these cells to various tissues (110, 354–356).

Although rhythmic leukocyte homing to skin seems to be

neglectable in the steady state (355), indirect evidence indicates

that there is a circadian regulation of immune cell traffic to the skin

upon wounding and upon microbial or antigenic challenges (357–

362). Likewise, tissue-resident innate immune cells like dendritic

cells (363, 364), mast cells (317, 365, 366) or macrophages (367–

369) show circadian regulation that impacts cutaneous responses to

antigens and allergens, respectively. Several genes controlling

immune functions are rhythmically regulated in murine skin

(331) and the expression of cytokines (e.g. TNF) and chemokines

(e.g. IL-8 or C-X-C-motif ligand 1) in human skin are under clock

control as well (370). Overall, disturbances of these fine-tuned

rhythms in leukocyte traffic and function seem to result in

unchecked innate immunity. This is a mechanism that could also

contribute to systemic inflammatory responses with increases in

blood leukocytes, neutrophils, monocytes, and C-reactive protein in

shift workers (75, 136, 138, 371–376). Along this line, both

experimental circadian disruption and sleep deprivation enhance

the responsiveness of the innate immune system to inflammatory

stimuli and trigger inflammation (75, 106, 139, 354, 356). The

outlined interactions between the sleep-wake cycle and innate

immunity may be relevant for skin diseases, as sleep deprivation

induces systemic increases in pro-inflammatory cytokines also in a

mouse model of psoriasis (196), and as neutrophil traffic into the

skin of psoriatic patients shows rhythmic regulation (193). Apart

from granulocytes, monocytes, dendritic cells, and mast cells, also
Frontiers in Immunology 13
natural killer (NK) cells show 24 h rhythms of their numbers and

their activity in human blood (377–379) and rodent spleen (154,

380). Circadian and sleep manipulations alter these parameters

(154, 340, 377, 378, 380–382). Likewise, experimentally simulated

shift work in healthy individuals changed gene transcripts of NK

cell-mediated immune responses (77) and shift workers show

impaired NK cell-function (383, 384). Also, in patients with

systemic autoimmune diseases (385) or with vitiligo (204, 205),

altered rhythms of NK cell-activity in peripheral blood were

described. Time-of-day dependent changes in NK cell numbers

or functions in healthy or diseased skin, however, were not tested

so far.
5.3 Potential effects of shift work on
adaptive immune cells in the skin

T cells play key roles in a variety of autoimmune diseases (239,

240, 247, 250, 258, 260) and can enter and reside in the epidermis

and dermis. Their recirculation between blood, lymphoid

organs and other tissues is regulated by the circadian system

(190, 382, 386) and by sleep (387, 388). This is presumably

mediated by sleep-wake cycle dependent changes in T cell

selectins, integrins, and chemokine receptors, and in

corresponding ligands on endothelial cells and surrounding

tissues (190, 386, 389, 390). Moreover, T cell functions like

proliferation (151, 391), Th1-, Th2-, and Th17-differentiation or
FIGURE 3

Potential consequences of shift work. Circadian misalignment and/or sleep impairments as a result of shift work presumably lead to changes in
the skin barrier function. An intact barrier (left part) is able to block physical challenges as well as pathogens and prevents transepidermal water
loss, whereas a disturbed barrier (middle part) is not able to do so. Noxi and intruders then can reach the epidermis, induce damage and activate
immune cells and thus local inflammation can occur. A severely disturbed barrier (right part) shows breaches, through which bacteria, viruses
and fungi enter the skin and cause inflammation with the attraction of various innate and adaptive immune cells. Likely, consequences are
itching, scratching, and pain. Molecular clocks tick in skin cells, in innate and adaptive immune cells, as well as in endothelial cells and could be
entrained by light, temperature, and neuroendocrine mediators such as cortisol, catecholamines and melatonin. We hypothesize, that this
circadian system of the skin strengthens barrier functions during daytime and that shift work-induced changes favor the development of
autoreactive T cells and autoantibodies resulting in autoimmune diseases.
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cytokine production (392–398), and the activity of Tregs (151, 399,

400) are linked to the sleep-wake cycle. Rhythmic changes in T cell

traffic and functions seem to be regulated by T cell intrinsic clocks

such as REVERBA (398, 400, 401) and by effects of the SCN or sleep

on neuroendocrine mediators (see next section) (387, 390, 402). In

shift workers, increases in T cell numbers (384, 403) and

impairments in T cell proliferation (28) were reported.

Joint effects of the circadian system and sleep on T cell

immunity could also contribute to sleep-wake cycle dependent

changes in cutaneous T cell responses and disturbances thereof

in shift workers. Indeed, the T cell driven induction or recall of

cutaneous DTH reactions show rhythmic modulation in

humans (404, 405) and rats (406, 407). Primary DTH

responses were impaired in stroke patients showing sleep

rhythm disturbances (408) or in hamsters upon experimental

circadian disruption (363) or light at night (409). In contrast,

Clock mutant mice showed enhanced T cell driven contact

hypersensitivity to allergens upon challenge (317). Likewise,

constant light in mice enhanced allergic skin responses, while

the development of immune tolerance and subsequent Treg

infiltration in the challenged skin was impaired (410). Another

mouse experiment demonstrated reductions in skin allograft

rejection and in T cell infiltration of the graft by sleep

deprivation (411). Overall, the picture suggests, that dis-

turbances of the circadian system and/or sleep could impair

developing but exaggerate established T cell responses in the

skin. With respect to skin autoimmune diseases, one study

reported disrupted rhythms in blood CD4 T cell numbers in

patients with vitiligo (206). In mouse models of psoriasis, clock

gene mutations changed skin inflammation by modulating IL-23

receptor expression in gamma delta T cells and subsequent IL-17

and IL-22 production (271) and treatment with a REVERB

agonist suppressed IL-17 production in gamma-delta T cells

and improved dermatitis (199). In humans, clock genes might

likewise impact cutaneous T cell responses, although this was so

far only elaborated in the context of skin cancer (412).

Clocks also tick in B cells of mice (413) and humans. There

are 24 h rhythms in human B cell numbers in blood (414) and

murine B cell numbers in spleens and lymph nodes (415), and in

systemic levels of antibodies, so called immunoglobulins (Ig) of

the three subtypes IgG, IgA, and IgM (416–418). In line with

exaggerated allergic DTH responses that are driven by T cells,

Clockmutant mice also show enhanced IgE reactions to allergens

(317). There is evidence that day-night-shift rotations attenuate

the release of the anti-inflammatory cytokine IL-10 by B cells

(419). This lack of immunologic regulation could be deleterious

as the IL-10 releasing B cells of shift workers were unable to

inhibit the proliferation of T cells (419). It could also be shown

that CLOCK expression in peripheral B cells of shift workers was

higher, which leads to a reduced expression of transforming

growth factor beta (a cytokine mainly released by Tregs) (420).

Cry 1/2 deficient mice showed an autoimmune phenotype with

elevated levels of serum IgG, antinuclear antibodies (ANAs), and
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immune complexes, as Cry presumably regulates B cell

development and B cell receptor signaling (421). On the other

hand, the distribution of B cell subsets in spleen, lymph nodes

and peritoneal cavity in wild type and Bmal1 knockout mice did

not differ. The maturation of B cells was also not influenced by

the knockout of Bmal1. Moreover, there was minor circadian

regulation of Per2, which was detected by a reporter mouse

model. It seemed as if cell intrinsic circadian clocks did not affect

the B cells. They were probably gated by cell-extrinsic circadian

variations (422).

B cells generate long-lasting immunologic memory by

becoming (auto-)antibody-producing plasma cells and being able

to survive decades in niches in the bone marrow (423). Therefore,

plasma cells can be key in autoimmunity. In several cutaneous

autoimmune diseases, auto-antibodies are a common diagnostic

criterion and B cells are also one of themost often targeted cell types

in the treatment of autoimmune diseases (424). In accordance,

disease severity of pemphigus, BP, and SSc correlated with the

number of B cells infiltrating the skin (210, 212, 215, 216, 229, 425).

Auto-antibodies can be developed against all kinds of self-

molecules. For connective tissue diseases such as SLE and SSc, for

example, ANAs are formed against contents of the cell nucleus

(220). This content is presumably presented for extended time to

the immune system due to insufficient clearance after cell death

(426). Apoptosis is a natural process but can also be triggered byUV

light, explaining the photosensitivity in SLE (218).

Plasma cells cannot only develop in primary and secondary

lymphoid organs by the help of T cells but also in a T cell-

independent manner in the skin. This phenomenon was

observed in several autoimmune and inflammatory diseases

and the effect of local auto-antibody secretion is believed to

play a role in chronic inflammation (424). Unfortunately, the

influence of the circadian system or sleep on these skin-resident

B cells is currently unknown.
6 Candidate neuroendocrine
mediators linking shift work with
skin autoimmune diseases

This section concentrates on central and peripheral

hormonal agents that connect circadian, neuronal, and

immunologic mechanisms.

The exact contributions of the SCN (109) with their systemic

signals (e.g., stress mediators or core body temperature), of

external time cues that directly affect the skin (e.g., extraretinal

photoreception by keratinocytes, changes in ambient

temperature) (427, 428) or of sleep and associated changes in

behavior (e.g., darkness, supine position, reduced physical

activity, fasting) (333, 390) in the entrainment of skin clocks

and in the circadian regulation of the skin remain to be

elucidated (429) (Figure 4). Whatever the case, the stress
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systems and melatonin seem to be key, either as SCN outputs to

the periphery, as signals in cutaneous light perception or

thermoregulation or as mediators that change during sleep

(22). In humans, blood levels of stress mediators and

melatonin oscillate in anti-phase with peak levels during

daytime activity for stress mediators and nocturnal sleep for

melatonin, respectively (430, 431). These changes induce an

increase in skin temperature in the evening that in turn

essentially contributes to sleep onset (44). Sleep and its

associated behavioral changes further reduce nocturnal levels

of stress mediators and enhance nocturnal levels of melatonin.

The peripheral hormone of the HPA-axis is cortisol that

regulates human keratinocyte clock functions and suppresses

proliferation of these epidermal cells (49). The mediators of the

SNS are the catecholamines epinephrine and norepinephrine

that together with melatonin are key in thermo- and

vasoregulation. Thus, the supporting effects of melatonin

intake on sleep initiation is assumed to be mediated by

vasodilatatory effects of this hormone (432). Cortisol,

catecholamines, and melatonin also impact immune cell

clocks, traffic and functions in blood and various tissues (154,

381, 390), including the skin (363). They are not only released

systemically, but also produced locally in the epidermis and

dermis (433, 434). In mice and rats, the peripheral hormone of

the HPA-axis is corticosterone that likewise increases sharply at

the transition from the rest to the activity period (435, 436). For

blood and tissue levels of catecholamines in rodents, rhythms

and peak times were rather inconsistent (437–439). In contrast

to humans, mice show highest melatonin levels during their
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activity period, thus in phase with corticosterone (114). As

melatonin has many effects on skin physiology and immunity

(440), it therefore seems not very straightforward to study the

effects of the circadian system and sleep on skin immunity in

mice. A counter argument could be that many laboratory mouse

strains like C57BL/6 and Balb/C seem to be genetically incapable

to synthesize sufficient amounts of systemic melatonin (441) or

to express melatonin receptors. C57BL/6 mice assume to lack

both melatonin receptors, yet scientists bred a strain of

melatonin receptor (MT)1 and MT2 knockout mice and

backcrossed them into a melatonin proficient strain to study

the effects of each receptor separately (442). Recently, a

melatonin proficient C57BL/6 strain was also developed (443).

In sum, these different mouse strains could serve to study the

effects of melatonin administrations on skin immunity, but

experimental design needs to be chosen with caution.

Stress mediators and melatonin may play a role in SLE (221–

224), SSc (230, 231, 444), psoriasis (196, 200–202, 268, 445),

Sjögren’s syndrome (234), and vitiligo (203, 209). A failure in the

HPA-axis to control inflammation is discussed in autoimmune

diseases (180, 248) and glucocorticoids are widely used

therapeutically as immunosuppressants.

Vasodilatatory, anti-inflammatory, and melatonin-releasing

effects of catecholamines are mediated by beta-adrenoceptors

(389, 446). Beta-blockers therefore can have manifold unwanted

effects on the circadian system, sleep, and the immune system

and in this way may contribute to disease flares in psoriasis

(447). Also other hormones and mediators such as growth

hormone, prolactin, aldosterone, thyroid hormones, sex
FIGURE 4

Layers of systems in the human body that are affected by shift work. Circadian disruptions due to shift work can affect the suprachiasmatic
nuclei (SCN) and the major outputs of this master clock such as core body temperature and neuroendocrine mediators. These systemic
influences as well as direct effects of ambient temperature and light can affect the circadian system in the skin and the cellular clocks of skin
leukocytes of the innate (top) and adaptive (bottom) immune system.
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hormones, ghrelin, leptin, prostaglandins, serotonin, histamine,

adenosine, endorphins, aMSH, neuropeptides, and vitamin D

are regulated by the wake-sleep cycle (22, 35, 47, 226, 389, 390,

448), are involved in autoimmune diseases (180, 449), can

impact skin physiology, and immunity (205, 209, 450) and

may therefore be of relevance in the etiopathology of skin

autoimmune diseases in shift workers.

As itch and pain are key, interrelated symptoms in skin

autoimmune diseases, underlying mediators could be of

particular interest in studying effects of shift work on dermal

cells and leukocytes. Neuronal pathways of itch and pain involve

A- and C-fibers in the epidermis, which are activated by

histamine, neuropeptides, and cytokines, as well as forwarding

of the signals via the dorsal root ganglion to the brain. Beta-

endorphins are able to act as analgesics by binding to opiod

receptors, starting a cascade of interactions, which finally results

in the inhibition of pain signalling (451). Histamine is often

released at the site of inflammation in the skin (452) and plasma

levels of beta-endorphin are enhanced in children with atopic

dermatitis (453). In healthy humans, plasma levels of beta-

endorphins (but not of histamine (454)) show rhythmic

regulation being highest in the morning and reduced in the

night (455–457). Ligand binding to histamine receptors on

leukocytes likewise changes from night to day with complex

patterns in healthy and atopic individuals (458). Moreover, in

healthy individuals blood levels of cortisol and beta-endorphins

are coupled, meaning that cortisol follows beta-endorphin with a

lag-phase of ten minutes (459). Glucocorticoids are potent

antipruritic drugs, but are also known to inhibit pain pathways

(460). Therefore, not only low beta-endorphin levels but also low

cortisol levels could explain why symptoms of itch and pain are

most pronounced at night, as it was demonstrated for itch in

patients with psoriasis (211, 461).

The effect of sex hormones is expected to explain the sexual

dimorphism in autoimmune diseases that predominantly affect

women (462). The effect of estrogen on sleep and circadian

rhythms becomes also visible in women, when they reach the

menopause and suffer from sleep disorders due to a decline or

imbalance of this hormone (463).

Shift workers show enhanced average cortisol levels (25) and

disrupted melatonin rhythms (464). However, until yet there is

no data on catecholamines, histamines, endorphins, sex

hormones, or other neuroendocrine mediators in shift workers.
7 Countermeasures to avoid skin
immune dysregulation in shift work

Until now, this review focused on potential circadian drivers

of autoimmunity. However, there are also some factors that might

improve and stabilize the circadian system and thereby might be

able to alleviate symptoms and negative effects of shift work.
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Shift work is indispensable in healthcare, public protection

and transportation. Some industries use 24 h schedules due to

difficulties in stopping machines and production chains.

However, shift work may also serve to maximize profit. From

a health perspective, night shifts should only be demanded from

workers when absolutely required. To minimize health issues,

employers should use sophisticated shift work schedules (i)

favoring a forward rotating system instead of a backwards

rotating one, (ii) allowing rest periods of at least 11 h between

two shifts, days off after night shifts and free weekends, (iii)

avoiding early morning starts and long night-time working

hours, and (iv) limiting the number of (consecutive) evening

and night shifts (465, 466). Ideally, the chronotype of the

workers should be assessed (i.e., being a morning or evening

person) and whenever possible, this should be taken into

account when scheduling shifts (e.g., avoiding night shifts in

morning persons) (467). To facilitate alignment to night shifts

and re-alignment to the regular sleep-wake cycle, bright light can

help to suppress melatonin secretion and sleepiness during wake

periods, whereas melatonin supplementation, as well as a cool

and dark bedroom with a bedding that facilitates a suitable skin

temperature might help to catch up on sleep (465, 468, 469).

Melatonin acts as dark signal, which is only to some degree

able to facilitate sleep. Nevertheless, the idea of melatonin

supplementation is to re-gain the circadian rhythm if it was

disturbed. Even though the available data on this topic is limited,

there are some studies on melatonin supplementation

in shift workers and also as treatment for SLE. Nabatian-

Asl and colleagues were able to show that 10 mg/day

melatonin supplementation for 12 weeks is reducing serum

malondialdehyde, which is a marker for oxidative stress.

Oxidative stress levels are known to correlate with SLE-activity

(221). A recent systematic review by Carriedo-Diez and

colleagues investigated melatonin supplementation in shift

workers. The investigated studies used between 1 and 10 mg

melatonin and recognized improvements such as reduced day-

time sleepiness and increased total sleep period (470). However,

the studies varied in their design and group sizes and ages. More

future work will hopefully shed light on this topic, also

investigating other autoimmune diseases and effects as well as

side-effects of melatonin.

As food intake entrains rhythms, there are some

recommendations for meal timing and composition during

shifts (465, 471). Caffeine and physical activity promote

wakefulness and the latter seems to protect from shift work

disorder (34, 81). Pharmacological interventions in shift

workers with sleeping aids such as zopiclone or wake-

promoting substances such as modafinil did not lead to clear

improvement of sleep or alertness, respectively (472).

The psychosocial and socioeconomic situation of the

workers cannot be neglected. Apart from physical conse-

quences, shift workers may also suffer from emotional and

mental health issues. The socioeconomic status differs among
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shift workers and many report increased job stress (473) or

social isolation (20). As social stress and isolation were shown to

be associated with the conserved transcriptional response to

adversity as an indicator of SCI (474, 475), they may mediate or

influence the effects of shift work on skin autoimmune diseases.

Older age, female gender, being married, or having children is

increasing the risk of suffering from sleep related impairment in

response to shift work (81). Medical surveillance, in particular in

employees with these kind of risk factors, should also cover skin

health and care. Considering working time preferences and

giving employees shift schedules one month in advance can

help them to plan activities with family and friends and thus to

improve the work-life balance and social contacts (18, 465, 466).

Further countermeasures to avoid negative health outcomes in

shift workers are financial compensation, individual counselling,

health education (e.g. dietary habits, physical activity, avoidance

of substance abuse), and information about non-pharma-

cological interventions to reduce stress (e.g., mindfulness based

stress reduction) and to ease sleep (e.g. sleep hygiene, napping)

(466, 476).

In case that a systemic or skin-specific autoimmune disease

has already occurred, physicians might recommend to avoid

night shifts, as stress and stressful events could worsen

symptoms and cause further disease flares (213). If this is not

feasible, wise timing of topic and/or systemic drug treatments,

thus during work hours or before bedtime and not at standard

clock times might be advantageous (477).
8 Conclusions and future directions

Available evidence indicates that shift work by disrupting the

circadian system and sleep impairs skin physiology and immunity

and presumably contributes to skin autoimmune diseases.

Circadian and sleep aspects should be considered in basic

research on immunity in particular in experiments on nocturnal

animals. Moreover, other animal models such as pigs should be

considered in immunologic and chronobiologic studies.

The influences of shift work and disrupted circadian clocks

are manifold, ranging from fatigue and metabolic disturbances

over SCI to the development of autoimmune diseases. Innate

and adaptive immune cells (as well as all other cells) show

rhythmic regulation and may react adversely to different stimuli

such as pathogens, allergens or (auto-)antigens if the rhythm is

disrupted. The signaling of the SCN downwards to peripheral

organs and cells is mediated by hormones like melatonin and

cortisol. These hormones should be monitored in shift workers,

to delineate their role in the development of autoimmune

diseases. The skin as the largest human organ is in contact

with the outer world and therefore an important barrier, which
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seems to be weakened by circadian disruption, sleep loss, or shift

work. In our society, shift work is unavoidable, however, this

review offers several opportunities to improve the health of

shift workers.
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89. Guénet JL, Bonhomme F. Wild mice: an ever-increasing contribution to a
popular mammalian model. Trends Genet (2003) 19(1):24–31. doi: 10.1016/S0168-
9525(02)00007-0

90. Abolins SR, Pocock MJO, Hafalla JCR, Riley EM, Viney ME. Measures of
immune function of wild mice, mus musculus. Mol Ecology. (2011) 20(5):881–92.
doi: 10.1111/j.1365-294X.2010.04910.x

91. Abolins S, King EC, Lazarou L, Weldon L, Hughes L, Drescher P. The
comparative immunology of wild and laboratory mice, mus musculus domesticus.
Nat Commun (2017) 8(1):14811. doi: 10.1038/ncomms14811

92. Gray S, Hurst JL. The effects of cage cleaning on aggression within groups of
male laboratory mice. Anim Behaviour. (1995) 49(3):821–6. doi: 10.1016/0003-
3472(95)80213-4

93. Longordo F, Fan J, Steimer T, Kopp C, Lüthi A. Do mice habituate to “gentle
handling?” a comparison of resting behavior, corticosterone levels and synaptic
function in handled and undisturbed C57BL/6J mice. Sleep (2011) 34(5):679–81.
doi: 10.1093/sleep/34.5.679

94. Harri M, Lindblom J, Malinen H, Hyttinen M, Lapveteläinen T, Eskola S.
Effect of access to a running wheel on behavior of C57BL/6J mice. Lab Anim Sci
(1999) 49(4):401–5.

95. Smolinsky AN, Bergner CL, LaPorte JL, Kalueff AV. Analysis of grooming
behavior and its utility in studying animal stress, anxiety, and depression. In: Gould
TD, Herausgeber, editors. Mood and anxiety related phenotypes in mice:
Characterization using behavioral tests. Totowa, NJ: Humana Press (2009). p.
21–36. doi: 10.1007/978-1-60761-303-9_2

96. Foltz CJ, Ullman-Cullere M. Guidelines for assessing the health and
condition of mice. Lab Animal. (1999) 28(4):5.

97. Ely DL, Henry JP. Neuroendocrine response patterns in dominant and
subordinate mice. Horm Behav April (1978) 10(2):156–69. doi: 10.1016/0018-506X
(78)90005-3

98. Olini N, Rothfuchs I, Azzinnari D, Pryce CR, Kurth S, Huber R. Chronic
social stress leads to altered sleep homeostasis in mice. Behav Brain Res 1. Juni
(2017) 327:167–73.

99. Sorge RE, Martin LJ, Isbester KA, Sotocinal SG, Rosen S, Tuttle AH.
Olfactory exposure to males, including men, causes stress and related analgesia
in rodents. Nat Methods Juni (2014) 11(6):629–32. doi: 10.1038/nmeth.2935

100. van der Vinne V, Riede SJ, Gorter JA, Eijer WG, Sellix MT, Menaker M.
Cold and hunger induce diurnality in a nocturnal mammal. Proc Natl Acad Sci U S
A. 21. Oktober (2014) 111(42):15256–60. doi: 10.1073/pnas.1413135111
frontiersin.org

https://doi.org/10.1097/JOM.0000000000000088
https://doi.org/10.1371/journal.pone.0089650
https://doi.org/10.1038/40775
https://doi.org/10.1542/peds.2020-009936
https://doi.org/10.3390/ijms22116112
https://doi.org/10.3390/ijms22116112
https://doi.org/10.3109/07420529908998730
https://doi.org/10.1177/0748730415577723
https://doi.org/10.1111/ddg.14266
https://doi.org/10.7759/cureus.17665
https://doi.org/10.1002/jemt.1090
https://doi.org/10.1002/jemt.1090
https://doi.org/10.1681/ASN.2009070763
https://doi.org/10.1186/ar3867
https://doi.org/10.1136/bmj.1.5170.365
https://doi.org/10.1111/ced.12455
https://doi.org/10.1111/ced.13902
https://doi.org/10.1016/j.yfrne.2022.100978
https://doi.org/10.1093/brain/awm315
https://doi.org/10.1038/nn1122
https://doi.org/10.1177/0748730406294627
https://doi.org/10.1016/j.neuron.2017.01.014
https://doi.org/10.1073/pnas.1316335111
https://doi.org/10.1016/j.imlet.2014.11.014
https://doi.org/10.1093/sleep/zsx068
https://doi.org/10.1073/pnas.1720719115
https://doi.org/10.1073/pnas.1720719115
https://doi.org/10.1136/bmjopen-2014-007327
https://doi.org/10.1136/bmjopen-2020-038786
https://doi.org/10.1016/j.smrv.2018.03.005
https://doi.org/10.5664/jcsm.8036
https://doi.org/10.1177/0748730409343795
https://doi.org/10.1093/ajcn/nqab433
https://doi.org/10.1016/B978-0-12-802151-4.00007-4
https://www.sciencedirect.com/science/article/pii/B9780123694546500157
https://www.sciencedirect.com/science/article/pii/B9780123694546500157
https://doi.org/10.1038/s41396-021-00949-3
https://doi.org/10.1016/S0168-9525(02)00007-0
https://doi.org/10.1016/S0168-9525(02)00007-0
https://doi.org/10.1111/j.1365-294X.2010.04910.x
https://doi.org/10.1038/ncomms14811
https://doi.org/10.1016/0003-3472(95)80213-4
https://doi.org/10.1016/0003-3472(95)80213-4
https://doi.org/10.1093/sleep/34.5.679
https://doi.org/10.1007/978-1-60761-303-9_2
https://doi.org/10.1016/0018-506X(78)90005-3
https://doi.org/10.1016/0018-506X(78)90005-3
https://doi.org/10.1038/nmeth.2935
https://doi.org/10.1073/pnas.1413135111
https://doi.org/10.3389/fimmu.2022.1000951
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Stenger et al. 10.3389/fimmu.2022.1000951
101. Hylander BL, Gordon CJ, Repasky EA. Manipulation of ambient housing
temperature to study the impact of chronic stress on immunity and cancer in mice.
J Immunol 1. Februar (2019) 202(3):631–6. doi: 10.4049/jimmunol.1800621

102. Gaskill B, Rohr S, Pajor E, Lucas J, Garner J. Some like it hot: Mouse
temperature preferences in laboratory housing. Appl Anim Behav Sci - Appl Anim
Behav Sci (2009) 116:279–85. doi: 10.1016/j.applanim.2008.10.002

103. Hatori M, Panda S. Response of peripheral rhythms to the timing of food
intake. Methods Enzymol (2015) 552:145–61. doi: 10.1016/bs.mie.2014.10.027

104. Schroder EA, Delisle BP. Time restricted feeding to the light cycle
dissociates canonical circadian clocks and physiological rhythms in heart rate.
Front Pharmacol (2022) 13:910195. doi: 10.3389/fphar.2022.910195

105. Wang H, van Spyk E, Liu Q, Geyfman M, Salmans ML, Kumar V. Time-
restricted feeding shifts the skin circadian clock and alters UVB-induced DNA
damage. Cell Rep (2017) 20(5):1061–72. doi: 10.1016/j.celrep.2017.07.022

106. Guerrero-Vargas NN, Guzmán-Ruiz M, Fuentes R, Garcıá J, Salgado-
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278. Saçmacı H, Gürel G. Sleep disorders in patients with psoriasis: a cross-
sectional study using non-polysomnographical methods. Sleep Breath (2019) 23
(3):893–8.

279. Luca M, Musumeci ML, D’Agata E, Micali G. Depression and sleep quality
in psoriatic patients: impact of psoriasis severity. Int J Psychiatry Clin Pract (2020)
24(1):102–4. doi: 10.1080/13651501.2019.1659372

280. Nyunt WWT, LowWY, Ismail R, Sockalingam S, Min AKK. Determinants
of health-related quality of life in psoriasis patients in Malaysia. Asia Pac J Public
Health (2015) 27(2):NP662–673. doi: 10.1177/1010539513492561

281. Henry AL, Bundy C, Kyle SD, Griffiths CEM, Chisholm A. Understanding
the experience of sleep disturbance in psoriasis: a qualitative exploration using the
common-sense model of self-regulation. Br J Dermatol (2019) 180(6):1397–404.
doi: 10.1111/bjd.17685

282. Haugeberg G, Michelsen B, Kavanaugh A. Impact of skin, musculoskeletal
and psychosocial aspects on quality of life in psoriatic arthritis patients: A cross-
sectional study of outpatient clinic patients in the biologic treatment era. RMD
Open (2020) 6(1):e001223. doi: 10.1136/rmdopen-2020-001223

283. Ogdie A, Michaud K, Nowak M, Bruce R, Cantor S, Hintzen C. Patient’s
experience of psoriatic arthritis: a conceptual model based on qualitative
interviews. RMD Open (2020) 6(3):e001321.

284. Hawro T, Hawro M, Zalewska-Janowska A, Weller K, Metz M, Maurer M.
Pruritus and sleep disturbances in patients with psoriasis. Arch Dermatol Res März
(2020) 312(2):103–11. doi: 10.1007/s00403-019-01998-7

285. Palominos PE, Coates L, Kohem CL, Orbai AM, Smolen J, de Wit M.
Determinants of sleep impairment in psoriatic arthritis: An observational study
with 396 patients from 14 countries. Joint Bone Spine (2020) 87(5):449–54. doi:
10.1016/j.jbspin.2020.03.014

286. Sahin E, Hawro M, Weller K, Sabat R, Philipp S, Kokolakis G. Prevalence
and factors associated with sleep disturbance in adult patients with psoriasis. J Eur
Acad Dermatol Venereol (2022) 36(5):688–97. doi: 10.1111/jdv.17917

287. Halioua B, Chelli C, Misery L, Taieb J, Taieb C. Sleep disorders and
psoriasis: An update. Acta Derm Venereol (2022) 102:adv00699. doi: 10.2340/
actadv.v102.1991

288. Strober BE, Sobell JM, Duffin KC, Bao Y, Guérin A, Yang H. Sleep quality
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