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Background: While immune checkpoint inhibitors (ICIs) are a beacon of hope for non-
small cell lung cancer (NSCLC) patients, they can also cause adverse events, including
checkpoint inhibitor pneumonitis (CIP). Research shows that the inflammatory immune
microenvironment plays a vital role in the development of CIP. However, the role of the
immune microenvironment (IME) in CIP is still unclear.

Methods: We collected a cohort of NSCLC patients treated with ICIs that included eight
individuals with CIP (CIP group) and 29 individuals without CIP (Control group).
CIBERSORT and the xCell algorithm were used to evaluate the proportion of immune
cells. Gene set enrichment analysis (GSEA) and single-sample GSEA (ssGSEA) were used to
evaluate pathway activity. The ridge regression algorithmwas used to analyze drug sensitivity.

Results: CIBERSORT showed significantly upregulated memory B cells, CD8+ T cells,
and M1 Macrophages in the CIP group. The number of memory resting CD4+ T cells and
resting NK cells in the CIP group was also significantly lower than in the Control group. The
XCell analysis showed a higher proportion of Class-switched memory B-cells and M1
Macrophages in the CIP group. Pathway analysis showed that the CIP group had high
activity in their immune and inflammatory response pathways and low activity in their
immune exhaustion related pathway.

Conclusions: In this study, we researched CIP patients who after ICIs treatment
developed an inflammatory IME, which is characterized by significantly increased
activated immune cells and expression of inflammatory molecules, as well as
downregulated immunosuppressive lymphocytes and signaling pathways. The goal was
to develop theoretical guidance for clinical guidelines for the treatment of CIP in the future.

Keywords: checkpoint inhibitor pneumonitis, immune infiltration, immune microenvironment, aberrant pathway
activation, immune check inhibitor (ICI)
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INTRODUCTION

Immune checkpoint inhibitors (ICIs) are a beacon of hope for
non-small cell lung cancer (NSCLC) patients (1–3). However, the
immune system may be activated by ICIs, specifically T-cell
immunity, causing it to attack normal tissues and organs. This
can result in immunotoxic reactions and ICIs-related adverse
events (IRAs), checkpoint inhibitor pneumonitis (CIP) is one of
the more common IRAs (4). The incidence of CIP reported in
clinical trials is roughly 3% to 5% (5–9). Meta-analysis shows that
the total incidence of CIP and severe CIP in lung cancer patients is
higher than that of other cancer patients (9, 10). Studies have
shown that the total incidence of CIP is approximately 3.1% to
4.1%, while the incidence of severe CIP is 1.4% (9, 10).

At present, the mechanisms underlying CIP are not fully
understood, but based on current research, the following are
considered viable possibilities: (1) the imbalance of the activity
and proportion of T cells caused by an increased number of
activated T cells and a decreased number of regulatory T cells
(Tregs); (2) the activation of preexisting autoantibodies;
(3) increased levels of inflammatory cytokines; and 4) a
cytotoxic reaction caused by ectopic expression of CTLA-4.
It should be noted that CTLA-4 inhibitor and CTLA-4, which
can be expressed by normal pituitary cells, can enhance the
inflammatory responset (11).

It is believed that the inflammatory state of the lung and the
microenvironment of tumor inflammation that are caused by
NSCLCmay also be related to the development of CIP (11). After
treatment with atezolizumab, the levels of c-reactive protein and
IL-6 in NSCLC patients with CIP were reported to have
increased in comparison to their baseline levels (12). Various
baseline and functional abnormalities of lymphoid and myeloid
alveolar cell types in patients with CIP were present as well,
which is an abnormality that involves the upregulation of pro-
inflammatory molecules and the downregulation of the anti-
inflammatory process in T cells and bone marrow cells (4).
Despite these statistics, we did not perform any systematic
analysis of the immune microenvironment in the CIP group or
Control group after ICIs treatment. Instead, we hoped to explore
and analyze the characteristics of the IME in CIP patients
comprehensively by means of bioinformatics. After fully
understanding the manifestation of IME in CIP patients, we
hope to provide theoretical guidance for the prevention and
treatment of CIP in clinics.
METHODS

Immunotherapy Cohort Collection
The NSCLC patients treated with ICIs, which we referred to as
ICI-NSCLC patients in this study, came from The First Affiliated
Hospital, Guangzhou Medical University, Guangzhou,
Guangdong, China. This cohort included 8 patients (CIP
group) who developed CIP after ICIs treatment and 29
patients who did not developed CIP (Control group)
(Supplementary Table 1). Surgical biopsies were obtained
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from these NSCLC patients who received ICIs and were
clinically diagnosed by computed tomography (CT) as CIP and
non-CIP patients. These samples were finally confirmed as CIP
and non-CIP by pathology. Finally, the above samples were made
into formalin fixation and paraffin embedding (FFPE) sections.
See the “Supplementary Methods” section for details on the
RNA-seq results of the ICI-NSCLC samples.

Immune Infiltration Analysis
We used CIBERSORT and xCell analysis to evaluate the immune
cell content of ICI-NSCLC patients derived from their RNA-seq
data (13, 14). We also collected immune genes to further evaluate
the difference in immune gene expression (15, 16) between the
CIP and Control group, which we further verified using
immunohistochemistry (IHC), as well as with flow cytometry.
See the “Supplementary Methods” section for more details on
IHC and flow cytometry analysis methods.

Enrichment Analysis
In addition to testing immune cells, we used GSEA to evaluate the
expression data of the NSCLC patients (17). From here, we
obtained the enrichment scores and p-values of the pathways in
each group using the gene ontology biological process (GO-BP),
gene ontology cellular component (GO-CC), gene ontology
molecular function (GO-MF), the Kyoto Encyclopedia of Genes
and Genomes (KEGG), and Reactome pathway analysis (18).
Enrichment analysis, or more specifically the enrichGO function
in the ClusterProfiler R package, was used to evaluate the fold
enrichment score and p-value of differential genes in the GP-BP,
GO-CC, GO-MF and KEGG pathways. In addition, the ssGSEA
algorithm (19) was used to evaluate the performance of each
patient based on their GO-BP, GO-CC, GO-MF, KEGG, and
REACTOME pathway data. The gene set of the ssGSEA
enrichment analysis was derived from hallmark gene sets, curved
gene sets (C2), and ontology gene sets (C5) in the molecular
signatures database (MsigDB) (20). Finally, we used the
calculate_sig_score function in the IOBR R package to calculate
the score of each patient in each immune-related pathway.

Drug Sensitivity Analysis
Based on the expression data of the NSCLC patients, we used the
ridge regression algorithm in the R package pRRophetic (21)
function to predict the sensitivity of the NSCLC patients to drugs
in the Genomics of Drug Sensitivity in Cancer (GDSC) database
(22). Through this analysis, we determined the IC50 value that
indicates each patient’s drug sensitivity.

Statistical Analysis
A Mann-Whitney U test was used to compare the expression of
immune related genes, immune scores, and immune cell ratios
between the CIP group and the Control group. The edge R
package was then used to analyze the differences of expression
data between the CIP and Control groups (23). In this differential
analysis, P<0.05, |Log2 Fold Change (FC)|>1 was taken as the
cut-off of the differential gene. Volcano maps and box diagrams
were drawn by the ggplot2 R package, while a heat map was
drawn using the Complexheatmap R package (24). The p-value
January 2022 | Volume 12 | Article 818492
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was bilateral and less than 0.05. All the analyses were completed
using the R software Version. 3.6.1.
RESULTS

Differences in Expression Profiles
Between the CIP and Control Group
To explore the IME of NSCLC patients who developed CIP with
ICI-treatment, we collected 8 NSCLC patients who developed CIP
after receiving the ICI-treatment and 29 NSCLC patients who were
still normal after receiving the same treatment. These two groups of
patients were named the CIP group and the Control group. The
process of this study is shown in detail in Figure 1. First, we
analyzed the difference in the expression profiles of the CIP group
and the Control group. We selected |log2FC|=1 and p-value = 0.05
as the cut-off for screening the differential genes. We used a volcano
map as seen in Figure 2A in order to visualize these significantly
upregulated or downregulated genes, of which there were 10. In
order to further compare the expression differences between the
differential genes between the CIP and the Control group, we used
a heatmap to display the top 100 genes that showed the most
significant difference between the two groups (Figure 2B). We also
Frontiers in Immunology | www.frontiersin.org 3
wanted to understand the differences between the pathway
activities represented by the differential genes. Figure 2C shows
the significantly different pathways enriched by the differential
genes in both groups as revealed through enrichment analysis.
Examples of this include B cell activation, cytokine secretion,
immunoglobulin production, chemokine production, lymphocyte
mediated immunity, lymphocyte migration, regulation of B cell
activation, B cell receptor signaling pathway enrichment, positive
regulation of cytokine biosynthetic process, cytokine receptor
binding, B cell-mediated immunity, immunoglobulin-mediated
immune response, TNF signaling pathway enrichment, and
cellular response to chemokine. The activation scores of
leucocyte chemotaxis and CXCR chemokine receptor binding
were significantly higher in the CIP group than in the Control
group (Figure 2C). The pathway network diagrams in
Figures 2D–G show that immune-related pathways and
inflammatory-related pathways both play a mediating role
between other major pathways (Figures 2D–G).

Differences in Immune Pathway Activity
Between the CIP and Control Groups
In order to explore the difference between the immune pathway
activity of the CIP and Control group, we used the GSEA and
FIGURE 1 | Study design for this research. **P < 0.01.
January 2022 | Volume 12 | Article 818492
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ssGSEA algorithm to evaluate the proportion of immune cells in
each NSCLC patient. The results of GSEA showed that the
enrichment degree of immune-related or inflammatory
pathway in the CIP group was significantly higher than of that
Frontiers in Immunology | www.frontiersin.org 4
of the Control group (Figure 3A). This high enrichment degree
manifested in significant upregulation of the interleukin-6-
mediated signaling pathway, B cell-mediated immunity, and
immune response mediated by circulating immunoglobulin
A B

C

D

E F G

FIGURE 2 | The differences between the CIP and Control group in the expression of NSCLC. (A) A volcano plot graph depicting the differences in the expression of
NSCLC in each group. The red points represent the significantly upregulated genes. The blue points represent the significantly downregulated genes. The cut-offs we
set for p-value and |log2FC| for the differential expression genes were 0.05 and 1, respectively. (B) The heatmap depicting the CIP and Control group’s top 100
DEGs in the manifestation of NSCLC. (C) The dotplot representing the enrichment pathways in CIP. The emapplot graph representing the relationship between the
signaling pathways of GO-BP (D), GO-CC (E), GO-MF (F), and KEGG (G).
January 2022 | Volume 12 | Article 818492
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complex. The negative regulation of chemotaxis and lymphocyte
migration was significantly decreased in the CIP group in
comparison to the Control group. We used the ssGSEA
algorithm to calculate the pathway score of each NSCLC
patient and the Bayesian Limma test to analyze the difference
in pathway activity between the CIP group and the Control
group (Figure 3B). The results showed that the ssGSEA score of
GO_PROTEIN_C_LINKED_GLYCOSYLATION in the CIP
group was significantly higher than that of the Control group.
Conversely, the ssGSEA scores of GO_NEGATIVE_REGULA
TION_OF_INTERLEUKIN_1_MEDIATED_SIGNAL
ING_PATHWAY,REACTOME_FREE_FATTY_ACIDS_R
EGULATE_INSULIN_SECRETION,GO_FATTY_AC
ID_DERIVATIVE_BINDING,GO_NEGATIVE_REGULATIO
N_OF_B_CELL_DIFFERENTIATION, and GO_NEGATIV
E_REGULATION_OF_LEUKOCYTE_MIGRATION in the
CIP group were significantly lower than those of the Control
group. After calculating the immune-related pathways of the
NSCLC patients using the IOBR R package, we found the IFNG
signature defined by Ayers et al. using principal component
analysis (PCA). By basing our application of the PCA on Li
et al.’s previous study as seen in Figure 3C, we found that the
level of TNF receptors in the CIP group was significantly higher
than in the Control group (P < 0.05). However, after using Treg
Rooney et al.’s application of PCA as seen in Figure 3D, we
found that the Treg activity of the CIP group was significantly
lower than that of the Control group (P < 0.05). Still, in some
immune depletion pathways, such as the ssGSEA score of Treg
Rooney et al. PCA, the transforming growth factor (TGF-b)
family member receptor analysis using the Li et al. PCA, the T
cell exhaustion analysis using the Peng et al. PCA, the alpha
linoleic acid metabolism PCA, and the cholesterol Biosynthesis
in the CIP group showed significantly lower scores than in the
Control group (P < 0.05; Figure 3D). The activity of glycogenesis
PCA and glycogenesis degradation PCA in the CIP group was
significantly higher than in the Control group (P <
0.05; Figure 3D).

Differences Between the Immune Cells
and Inflammatory Molecules in the CIP
and Control Group
In order to explore the differences in the immune cell ratio of
each group of NSCLC patients, we used CIBERSORT and the
xCell algorithm. Figure 4A shows that memory B cells, CD8+ T
cells, and M1 macrophages were significantly upregulated in the
CIP group. On the contrary, the quantity of memory resting
CD4+ T cells and resting NK cells in the CIP group was
significantly lower than in the Control group (all P < 0.05).
The XCell algorithm analysis results showed that there was a
higher proportion of class-switched memory B cells and M1
macrophages in the CIP group (Figure 4B). We also utilized
flow cytometry analysis (Figure 4C and Supplementary
Table 2), which revealed that CIP patients had fewer memory
CD4+T cells than Control group patients with proportions of
50.38% to 70.22%, respectively. However, it should also be noted
that the CIP patients had more activated effector CD4+T cells
Frontiers in Immunology | www.frontiersin.org 5
than the Control group patients with proportions of 41.86% to
3.46%, respectively.

In order to further explore the differences in the gene
expression of immune-related functions between the CIP and
Control groups, we obtained a list of immune-related genes from
a recently published study. We found that in the CIP group, there
was a significant increase in the expression level of CD79B and
RALGPS2 (P < 0.05; Figure 5A), while the expression of marker-
IL32 in CIP CD4+Tregs was lower than that in the Control group
(P < 0.05; Figure 5A). The expression of some immune depletion
molecules, such as TGFB1 and vascular endothelial growth factor
(VEGFA), in the CIP group were significantly lower than that in
the Control group (P < 0.05; Figure 5A), while the CIP group
showed lower expression of TNFSF4, TLR4, CD27, TNFRSF14,
ICOSLG, CXCL10, TNFSF15, TNFRSF18, and HMGB1. The
expression of genes represented by inflammatory molecules such
as TNFRSF25 and AHR was significantly higher in in the CIP
group (Figure 5A). The immunohistochemical results showed
that the CIP group had lower VEGFA expression with a ratio of
80% to 40%, higher TNFRSF14 expression with a ratio of 60% to
10%, and higher TNFSF15 expression with a ratio of 30% to 10%
(Figures 5B–D).

Differences in the Drug Sensitivity of CIP
and Control Group Patients
We calculated the sensitivity of each patient to 138 drugs in the
GDSC database by using the expression data on NSCLC and the
ridge regression algorithm, then compared the IC50 value of the
CIP group and Control group using the Mann-Whitney U test. We
found that the IC50 value of inhibitors in the PI3K/MTOR
signaling pathway, AZD6482, and PF-4708671 in the CIP group
was significantly lower than in the Control group, as seen in
Figure 6A (all P < 0.05). This indicates that these two drugs may
be used in combination for CIP treatment. We also used ssGSEA to
further explore the activity of PI3K-AKT signaling and found that
the activity of the PI3K-AKT pathway in the CIP group was
significantly higher than that in the Control group (Figure 6B).
In addition, we found that IC50 values of inhibitors of the ERK/
MAPK signaling pathway, AZ628, AZD6244, and PD0325901,
were significantly higher in the CIP group than in the Control
group, as seen in Figure 6C (all P < 0.05). Finally, we used GSEA to
further explore the activity of ERK/MAPK signaling and found that
the activity of the ERK/MAPK signaling pathway in the CIP group
was significantly lower than that in the Control group (Figure 6D).
DISCUSSION

In this study, we found that significant differences were present
in the IME of each subject group after receiving immune
checkpoint treatment for NSCLC. The reaction of the immune
microenvironment in the CIP group was characterized by
inflammatory IME, which included significantly upregulated
activated lymphocytes, as well as highly enriched inflammatory
and immune response-related pathways. At the same IME, in the
IME of the CIP group individuals, the proportion of some
January 2022 | Volume 12 | Article 818492
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immunosuppressive cells, as well as the activities of some
immunosuppressive pathways, showed a significant downward
trend (Figure 7).

Based on these findings, the inflammatory immune
microenvironment may play a vital role in the occurrence and
development of CIP by stimulating the significant upregulation
Frontiers in Immunology | www.frontiersin.org 6
of activated lymphocytes and the expression of inflammatory
molecules, as well as significant activation of immune signaling
and inflammatory-related pathways. In a recent study, Suresh
et al. (4) found that bronchoalveolar lavage (BAL) samples from
CIP patients displayed lymphocyte proliferation and were
predominantly composed of CD4+T cells. They also observed
A

D

B

C

FIGURE 3 | A comparison between the activity of the signaling pathways in NSCLC of the CIP and Control group. (A) The significantly upregulated activation due to
immune signaling in the CIP group shown in comparison to the Control group based on the GSEA results. (B) A comparison of the ssGSEA scores of the CIP and
Control groups’ NSCLC manifestations. (C) A comparison of activation due to immune signaling in both groups as estimated by the ssGSEA results. (D) A comparison
of the immune-exhaustion signaling in both groups as estimated by the ssGSEA results. *P < 0.05; ****P < 0.0001.
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Lin et al. Immune Microenvironment in CIP
that the number of central memory T cells (Tcm) increased while
the expression of CTLA-4 and PD-1 decreased. Studies have
shown that PD-1+ and CTLA-4+Tregs have negative regulatory
effects on the pro-inflammatory response of CD8+T cells, Tcms,
and macrophages (25, 26). In addition, a subset of CD4+ T cells
in CIP tends to have high rates of IFN-g and TNF-a production
(4). This high expression of inflammatory molecules and
immune cells plays an important role in the development of
CIP. It is widely known that the transient expression of IL-1b can
induce lung inflammation, increase TNF-a, and contribute to
progressive tissue fibrosis (27). The CXCR3/CXCL9-11 axis plays
a key role in promoting the entrance of Th1 cells, CD8+T cells,
Frontiers in Immunology | www.frontiersin.org 7
and NK cells into the IME, thus producing a T cell inflammatory
IME which has a strong anti-tumor effect (28). IFN-g activates
antigen-presenting cells (APC), such as macrophages and DC,
after which APC secretes a large amount of CXCL9. This in turn
causes the transfer of a large amount of CXCR3+CD8+T and
CXCR3+CD4+T cells into the tumors, which take part in anti-
tumor activities (29). In this study, the CIP group displayed
significantly increased levels of activated memory CD4+T cells,
B cells, CD4+TCM, M1 macrophages, and class-switched
memory B cells, while it also displayed significantly decreased
levels of M2 macrophages and other static immune cells. In
addition, in the TNF family molecules, the expression of
A

B

C

FIGURE 4 | A comparison of immune cells and inflammatory genes in the CIP and Control groups’ manifestations of NSCLC. (A) A comparison of the proportion of
the immune cells found in each group’s NSCLC based on the CIBERSORT results. (B) A comparison of the scores of the immune cells of each group’s NSCLC
based on the xCell algorithm results. (C) After utilizing flow cytometry analysis, we found low infiltration of the resting effector memory CD4+ T cells in the CIP group,
and high infiltration of activated effector CD4+ T cells in the CIP group. *P < 0.05; **P < 0.01.
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CXCL10 in the CIP group was significantly higher than in the
Control group. These results suggest that significantly enriched
activated lymphocytes and significantly upregulated
inflammatory molecules may be one of the mechanisms of CIP
manifestation and development.

Exhaustion or significant downregulation of immunosuppressive
pathway activity may also be involved in the occurrence and
development of CIP. As important pathways in the IME,
mitochondrial reactive oxygen species (ROS), glycolysis, and
lipid metabolism play a key role in immunosuppression and
immune depletion. High ROS content in the IME can inhibit
the activation and proliferation of T cells and other anti-tumor
functions, as the activation of T cells is necessary in order to
stimulate T-cell receptors (TCRs) by inducing signal transduction
pathways and transcription factors. When Ca2+ flows into
CD4+T cells through TCR-dependent activities, it results in the
Frontiers in Immunology | www.frontiersin.org 8
production of mitochondrial ROS and inhibits the activation of
CD4+T cells (30, 31). In another study, Kunisada et al. (32) used
metformin, a specific mitochondrial antioxidant, to maintain Treg
in a high glycolytic state and reduce the level of mitochondrial
ROS. The immunosuppressive activity of Treg was decreased
while the immune function of T cells was enhanced. Brown
et al. (33) showed that increasing the production of ROS can
lead to apoptosis of CD4+T cells and promote the formation of
hepatocellular carcinoma. In addition, glycolysis and lipid
metabolism also play an important role in the activation and
depletion of T cells. The activated neutrophils and M1
macrophages also rely mainly on glycolytic pathway for energy
supply. Treg cells and M2 macrophages mainly rely on oxidative
phosphorylation of fatty acid b to provide energy (34–36). Zhang
et al. (37) used cell experiments to show that the lipid metabolism
pattern of M2 macrophages changed when activated by tumor
A

B

C

D

FIGURE 5 | (A) A comparison of the expression of the immune-related genes in the CIP and Control groups’ NSCLC. (B) Immunohistochemistry analysis (VEGFA)
of the CIP and Control group. (C) Immunohistochemistry analysis (TNFRSF14) of the CIP and Control group. (D) Immunohistochemistry analysis (TNFSF15) of the
CIP and Control group.
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cells, which depend on fatty acid oxidation (FAO) to obtain
energy. Furthermore, after ROSs and NLRP3 inflammatory
corpuscles were activated, the secretion of IL-1b was promoted,
and the rates of proliferation, migration, and invasion of hepatoma
cells were accelerated. Wu et al. (38) found that unsaturated fatty
acids derived from lipid droplets in tumor cells induced
polarization of myeloid cells with M2 macrophages by
promoting mitochondrial respiration. Activated T cells also
increased the intake of fatty acids, but inhibited FAO while
promoting lipid synthesis (39). In this study, the CIP group had
s ignificant ly downregu la ted immune deple t ion or
immunosuppressive pathway activity, which resulted in
significantly downregulated ROS and fat metabolism, as well as
significantly upregulated glycolysis activity. These results suggest
Frontiers in Immunology | www.frontiersin.org 9
that significantly downregulated immune depletion may be another
major mechanism of CIP manifestation and development.
CONCLUSIONS

In this study, we explored data on NSCLC patients who developed
CIP after ICIs treatment and exhibited an inflammatory immune
microenvironment, which is mainly characterized by significantly
increased activated immune cells, significantly increased
expression of inflammatory molecules, and downregulated
immunosuppressive lymphocytes and signal pathways, in the
hopes of providing theoretical guidance to clinical guidelines for
the prevention and treatment of CIP in the future.
A B

C

D

FIGURE 6 | A comparison of drug sensitivity of NSCLC patients in both the CIP and Control groups. (A) A comparison of the groups’ IC50 values of PI3K-AKT
signaling inhibitors. (B) A comparison between the ssGSEA scores of the PI3K-AKT signaling in each group’s NSCLC. (C) A comparison between the IC50 values of
the ERK/MAPK signaling inhibitors in each group’s NSCLC. (D) Based on the GSEA results, the CIP group displayed significantly downregulated ERK/MAPK
signaling in comparison to the Control group. *P < 0.05; ***P < 0.001; ****P < 0.0001.
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