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Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related deaths
worldwide and is increasing in incidence. Local ablative therapy plays a leading role in
HCC treatment. Radiofrequency (RFA) is one of the first-line therapies for early local
ablation. Other local ablation techniques (e.g., microwave ablation, cryoablation,
irreversible electroporation, phototherapy.) have been extensively explored in clinical
trials or cell/animal studies but have not yet been established as a standard treatment
or applied clinically. On the one hand, single treatment may not meet the needs. On the
other hand, ablative therapy can stimulate local and systemic immune effects. The
combination strategy of immunotherapy and ablation is reasonable. In this review, we
briefly summarized the current status and progress of ablation and immunotherapy for
HCC. The immune effects of local ablation and the strategies of combination therapy,
especially synergistic strategies based on biomedical materials, were discussed. This
review is hoped to provide references for future researches on ablative immunotherapy to
arrive to a promising new era of HCC treatment.

Keywords: hepatocellular carcinoma, ablation, immunotherapy, synergistic therapy, multifunctional
nanoplatform, nanomedicine
INTRODUCTION

Primary liver cancer is one of the most common malignant tumors in the digestive system and the
third leading cause of cancer-related deaths (1). Hepatocellular carcinoma (HCC), which comprises
~90% of cases, is the most common type of primary liver cancer. The management of HCC lies on
the Barcelona Clinic Liver Cancer (BCLC) staging system. Most clinical practices guidelines
recommend resection, thermal ablation and transplantation for patients with early HCC (BCLC
0, A), whereas transarterial chemoembolization (TACE) and systemic therapies are preferred for
patients with intermediate (BCLC B) and advanced (BCLC C) HCCs, respectively (2–5). Surgical
resection and transplantation could offer the best chance for a cure in early HCC, but not all patients
with early-stage HCC, especially those with cirrhosis, benefit from these treatments. Liver function
org December 2021 | Volume 12 | Article 7927811
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and portal hypertension are the fatal selection criteria of
resection, because 80%-90% HCCs develop from cirrhosis (6).
Moreover, the recurrence rate after HCC resection reaches as
high as 68% (7). Scientists and surgeons have exerted much effort
into the removal of tumors (8). However, this task is still an
insurmountable mountain, because HCC cannot be considered a
local disease even in the early stage. The outcomes of liver
transplantation are superior to that of hepatic resection.
However, organ shortage, long waiting time, and high cost are
deterred, except for the strict transplantation indication.
Locoregional ablative therapy including radiofrequency
ablation (RFA) and microwave ablation (MWA), is a
potentially curative strategy for early HCC, coming into sight.
The advent of the genomic era, as well as the increase in the
understanding of the role of immunity in HCC progression,
support targeted therapy and immunotherapy. The combination
of ablative therapy and immunotherapy has been a subject of
recent clinical and basic researches. Herein, we summarized
ablative therapy and immunotherapy for HCC, discussed their
synergistic anti-tumor effects, and envisaged the current trends
and future prospects of their combination.
ABLATION THERAPY

Thermal ablation, demonstrates similar outcomes as hepatic
resection in early HCC (tumors size < 2–3 cm) (9, 10). Other
ablation therapies, such as cryoablation, have not established a
standard clinic procedure and are therefore less used. In recent
years, photodynamic therapy (PDT), photothermal therapy
(PTT), magnetic hyperthermia therapy (MHT), and
irreversible electroporation (IRE) have shown potential
applications in HCC with the prevalence of biomaterials in
medicine. The major mechanism of ablative therapies is to
induce irreversible thermal (i.e., RFA, MWA, and PTT) or
non-thermal tumor destruction (i.e., IRE and PDT) via
electromagnetic or light energy. This section gives a brief
retrospect of traditional ablative therapies for HCC, as well as
novel ablative techniques (Figure 1), and discusses their
immunological effects.
Clinical Applications
RFA, a standard ablative and first-line therapy for small-sized
HCC, is more cost-effective than hepatic resection (10). RFA can
achieve tumor necrosis at 375–480 kHz and > 60°C (11).
However, traditional monopolar RFA is limited in tumors less
than 2–3 cm or near vessels due to heat sink effect, which is also
related to recurrence (12). Novel techniques are developed to
improve ablation efficacy. No-touch multibipolar RFA can be
used to tumors up to 5 cm with similar disease-free survival
(DFS) and overall survival (OS) rates compared with resection
(13). However, insufficient RFA (iRFA) is one of the major
reasons for recurrence after RFA. iRFA could lead to HCC
with a more aggressive phenotype, drug resistance and worse
prognosis (Table 1). The ablative margin assessed by computed
tomography (CT) after RFA can be an important predictor of
Frontiers in Immunology | www.frontiersin.org 2
local tumor progression (LTP) and overall recurrence. A study
indicated that insufficient ablative margin (<5 mm) was
associated with higher rates of LTP and overall recurrence in
HCC, but the sensitivity values were only 36.4% and 46.2%,
respectively (26). iRFA could promote the proliferation,
migration, invasion, epithelial-mesenchymal transition (EMT),
and angiogenesis of residual tumors through the transcriptional
and epigenetic regulation. Some signaling pathways associated
with tumor growth and progression, such as the Akt signaling
pathway involved in cellular proliferation, survival and
angiogenesis are activated after iRFA (20, 22, 24, 25).

Several strategies have been used to counter iRFA. One of
which is to improve the accuracy of imaging guidance for the
specific identification of tumor boundaries, especially with the
application of nanotechnology. Jiang and colleagues developed a
nanobubble conjugated with colony-stimulating factor 1
receptor (CSF-1R), called NBCSF-1R, for HCC margin
detection (27). NBCSF-1R provided a non-invasive effective
ultrasound imaging capabilities for evaluating therapy response
of RFA through the high specificity targeting of CSF-1R-
overexpressing macrophages and HCC tumor margin. Another
strategy is the combination therapy for salvage. For instance,
sorafenib and IFN-a combined with herbal compound inhibited
the EMT of HCC cells after iRFA (28, 29); bevacizumab inhibited
the tumor growth and angiogenesis induced by iRFA (30); and
CTLA-4 blockade suppressed the growth of residual tumors and
improved survival in a subcutaneous murine HCC model (31).
Other agents include metformin (32) and hydroxychloroquine
(HCQ) (33). However, one study demonstrated that ATPase
inhibitory factor 1 (IF1) increased HCC cells’ resistance to
sorafenib after iRFA (16). These results indicated that the
application of systemic therapy or immunotherapy could cope
with the adverse impacts of iRFA but the choice of agents could
be limited by iRFA-induced resistance.
FIGURE 1 | Overview of ablative techniques for HCC. Ablative strategy has
occupied an important position among HCC therapies, based on thermal or
non-thermal tumor destruction. RFA, the most common ablation technique
applied for patients with HCC, has been developed as a standard
treatment, while other ablative techniques have been explored in clinical or
preclinical researches.
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MWA could provide higher temperature with expanded
ablation zone and shorter ablation time because of its higher
frequency (900–2,450 MHz) (11). A recent study showed that
MWA provided more excellent tumor control than RFA for
patients with perivascular HCC (34, 35). In addition, a meta-
analysis of randomized-controlled trials demonstrated that
MWA seemed to benefit disease-free survivals at 5 years
compared with RFA (36). New microwave thermosphere
ablation (MTA) may provide a safer and more effective
ablation with shorter time than RFA with the developments of
novel MWA systems (37).

Cryoablation is also a thermal technique that could be more
effective and safer for tumors not suitable for RFA orMWA, such
as perivascular HCC. The goal of cryoablation is to destroy
tumor tissue by alternating freezing and thawing on the basis of
the Joule-Thomson effect, which benefits low risk vascular
complications (38). Moreover, a multicenter randomized
controlled trial demonstrated that cryoablation achieved lower
local tumor progression than RFA with similar OS and DFS rates
(39). IRE is a non-thermal ablative technique that mediates cell
damage by changing cell permeability and cellular homeostasis,
which lead to cell death (40). Although IRE is a relatively new
technique and few clinical studies have been conducted, its safety
and efficacy have been proven (41, 42). Similar to cryoablation,
one of advantages of IRE is that this technique can be used for
tumors not suitable for RFA or MWA, such as perivascular
HCC (43).

In a word, ablation take an indispensable place in the clinical
treatment of HCC. A series of new techniques have been
developed to improve the ablation efficacy and zone to benefit
Frontiers in Immunology | www.frontiersin.org 3
more patients. However, these technologies are image-guided,
and their efficacy is closely related to the skills of operators
to some extent. This factor is a major barrier to application
and an interfering factor that is difficult to eliminate in
comparative studies.

Emerging Ablative Strategies
Phototherapy (e.g., PDT and PTT) is an emerging and prospective
cancer therapeutic strategy. Phototherapy kills cancer cells
through photochemical or photophysical effects to achieve
therapeutic effects. Various photosensitizers (PSs), such as
porphyrin-based PDT (44), 5-aminolaevulinic acid-PDT (45)
and Radachlorin-PDT (46), could be applied for HCC.
However, several factors need to be improved before these
methods could be clinically used. First, light (laser) is one of the
most indispensable elements in PDT and PTT, on which the
therapeutic effect mostly depends. PSs and photothermal agents
can be activated only when the light wavelength is in a specific
range, known as therapeutic window. Moreover, light wavelength
also determines the depth of tissue penetration, which limits
percutaneous application of phototherapy to tumors in
abdominal parenchymal organs, especially in deep parts. The
rapid development of endoscopic techniques and biomedical
materials gave rise to strategies to overcome the depth
dependence. For example, Li et al. reported laparoscopic-assisted
photothermal ablation method based on superparamagnetic iron
oxide (SPIO) and new indocyanine green (ICG), called IR820@
PEG-SPIO (47). More surprisingly, IR820@PEG-SPIO completely
ablated orthotopic liver cancer in nude mice model, as well as
detect early-stage HCC (diameter < 2 mm) via fluorescence,
TABLE 1 | Mechanisms of phenotype changes after iRFA.

Objects Phenotypes Mechanisms Years Refs.

HepG2 and MHCC97 cell lines and HCC patient-
derived xenograft mouse model

Promoted cell viability and metastasis m6 A-YTHDF1-EGFR axis 2021 (14)

Tumor-associated endothelial cell (TAEC), platelet,
HepG2 and SMMC7721 cell lines, and orthotopic
tumor mouse model

Enhanced TAEC permeability; activated platelets in
vitro; and promoted tumor growth, metastasis and
endothelial permeability in vivo

Upregulation of vascular endothelial-
cadherin and ICAM-1

2021 (15)

Hep3B and Huh7 cell lines Enhanced colony formation, migration, EMT, and
angiogenesis; increased resistance to sorafenib

IF1 overexpression and NF-kB activation 2020 (16)

Huh7 cell line, xenograft nude mouse model, and
liver metastasis model by tail vein injection

Facilitated cell growth and metastasis in vitro and in
vivo

ceRNA mechanism: ASMTL-AS1/miR-
342-3p/NLK/YAP axis

2020 (17)

Huh7 and MHCC97 cell lines Promoted cell proliferation, migration, invasion,
epithelial-mesenchymal transition, and stemness

ceRNA mechanism: GAS6-AS2/miR-
3619-5p/ARL2 axis

2020 (18)

HepG2 cell line Enhanced cell proliferation, colony formation, and
migration

c-Met overexpression and MAPK signal
pathway activation

2020 (19)

HCCLM3 cell line, xenograft nude mouse model Induced tumor growth, EMT changes, and metastasis
in vitro and in vivo

Flotillin-1/2 overexpression and Akt/Wnt/
b-catenin signaling pathway activation

2019 (20)

HepG2 and SMMC7721 cell lines Increased cell proliferation, migration, invasion and
autophagy in vitro

HIF-1a/BNIP3 pathway 2019 (21)

HCCLM3 and HepG2 cell lines, orthotopic nude
mouse model

Promoted lung and intrahepatic residual tumor cells in
vivo and promoted cell migration and invasion in vitro

ITGB3 overexpression and FAK/PI3K/
AKT signaling pathway activation

2017 (22)

HCCLM3 and HepG2 cell lines, orthotopic nude
mouse model

Changed cellular morphology, motility, metastasis, and
EMT in vitro and in vivo

b-catenin signaling activation 2014 (23)

SMMC7721 and Huh7 cell lines, ectopic nude
mouse model, and metastasis model by tail vein
injection

Enhanced cell proliferation, migration, invasion, and
EMT in vitro; increased tumor size and lung metastasis
in vivo

Akt and ERK signaling pathways 2013 (24)

TAEC, HepG2 and HCCLM3 cell lines Inhibited TAECs proliferation, enhanced TAECs
migration and tube formation (angiogenesis); and
promoted HCC cell invasiveness

Activation of Akt, ERK1/2 and NF-kB
signaling pathways and inhibition of
STAT3 signaling pathways

2012 (25)
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photoacoustic and magnetic resonance (MR) imaging. Compared
with visible light, near infrared (NIR) light and X-Ray can provide
deeper penetration (48–51). Besides, MHT, an alternative strategy,
has been proposed to further overcome the limitation of
penetration depth. Qian and colleagues developed a
ferrimagnetic silk fibroin hydrogel (FSH) and demonstrated that
FSH-mediated MHT, without depth limitation, could be more
suitable for treating liver tumors compared with traditional
PTT (52).

Nanoplatforms have stood out because they have improved
therapeutic effects and reduced adverse effects, provide precise
operation with optimized imaging guidance, and combine
therapeutic strategies for synergistic anti-tumor effects. Zhu
et al. designed a nanoparticle (ZnPc/SFB@BSA) that combined
PDT, PTT and sorafenib with increased efficacy and decreased
side effects of sorafenib (53). Jin and colleagues reported another
nanoparticle loaded with sorafenib/indocyanine for PDT/PTT/
chemotherapy, which could provide synergistic effects against
HCC (54). Liu’s group has been devoted to designing different
nanoplatforms for combined phototherapy/chemotherapy by
aptamer (TLS11a) modification to enhance HCC-specific
targeting (55–57). Nanoplatforms may provide more detailed
and comprehensive information about tumor size, anatomical
structure, and location and realize precise theranostic guidance
by applying dual- or multimodal images that integrate optical
and traditional medical images (e.g., CT and MR images). For
instance, Qi et al. synthesized a NIR-II photoacoustic (PA) CT
imaging-guided nanoagent for HCC theranostic strategy, called
Pt@PDA-c (58). Pt@PDA-c had deep tissue penetration and
high resolution, which provided accurate location of deep (~4
mm intraabdominal depth) and small (diameter < 5 mm) HCC
lesions. Moreover, Pt@PDA-c-mediated PTT could eliminated
HCC without recurrence under the guidance of real-time PACT.

Immunological Effects of Ablation
Ablation has long been considered a local treatment. However,
growing evidence shows that ablation does more than physically
eliminating tumors; it can also play a considerable role in distant
lesions through immune effects, also known as abscopal effect.
Changes in circulating immune cells/factors and tumor immune
microenvironments have been explored by analyzing peripheral
blood and tumor models. In 2005, Michael Geissler and
colleagues found that local tumor ablation (percutaneous
ethanol injection [PEI]/RFA) increased HCC immunogenicity
in patients thus to promote endogenous adjuvants release and
dendritic cell (DC) activation (59). Besides, RFA induced
systemic immune variation in innate immune cells (including
natural killer (NK) cells and plasmacytoid DCs) and adaptive
immune cells (including tumor-specific T cells, antigen-
presenting cells [APCs] and CD8 central memory T cells) (60–
62). De novo or enhanced tumor-specific immune responses
could be observed in patients with HCC after MWA (63). Wu
and colleagues observed that neutrophil, monocyte and NK cell
were increased to induce innate immune response and
immunosuppressive lymphocyte was decreased in patients with
HCC post-IRE (64). Moreover, their results indicated an ideal
treatment window for immunotherapy (3–14 days post-IRE) to
Frontiers in Immunology | www.frontiersin.org 4
further control tumor recurrence and metastasis. Moreover, the
expression of immune checkpoints (programmed cell death
protein-1 [PD-1] and PD-1 cognate ligand [PD-L1]), which are
associated with HCC tumor size, blood vessel invasion, and
BCLC staging, can be downregulated by cryoablation but
upregulated at recurrence (65).

The results observed in patients have also been further
validated in various animal models. RFA increased CD8+
T cells, memory CD8+ T cells, and DCs and decreased
regulatory T (Treg) cells in a unique murine model developed
through a combination of intrasplenic inoculated oncogenic
hepatocytes and carbon tetrachloride (66). Dai et al. reported
that IRE could increase anti-tumor CD8+ T cells to prevent
local tumor regrowth and distant metastasis and decrease
immunosuppressive Treg and PD-1+ T cells in C57BL/6J
mouse model bearing subcutaneous H22 hepatoma (67).
Fong’s group demonstrated that IRE induced tumor antigens
and facilitated granulocyte macrophage colony-stimulating
factor plasmid transfer to achieve local and systemic anti-
tumor responses in Yorkshire pig models (68, 69). Similarly, in
other solid tumors, RFA can not only reduce the proportions of
immunosuppressive cells (including Treg cells, tumor-associated
macrophages and neutrophils), but increase the T cell infiltration
as well as expression of the immune checkpoints (PD-1/PD-L1
and lymphocyte-activation gene 3 [LAG3]) in RFA-treated
tumors and distant non-RFA tumors (70, 71). Moreover,
serum and intra-tumoral cytokines, such as IFN-g, IL-1a/b, IL-
2/6/8/10, and TNFa/b, were also increased or activated (64,
72–75).

Increasing evidence have proved that ablation therapy could
activate systemic anti-tumor immunological effects and inhibit
immunosuppressive effects (Figure 2). However, RFA could also
increase PD-1/PD-L1 expression, which was repressed by
FIGURE 2 | Schematic representation of ablation-induced immunological
effects on HCC. Ablation assists local and systemic antitumor responses by
activating antitumor immunity and suppressing immunosuppressive effects.
On the one hand, the activation of or increase in innate immune cells and
cytokines that kill tumor cells achieves non-specific tumor killing. The
activation of or increase in adoptive immune cells and the release of tumor-
associated or tumor-specific antigens mediates specific anti-tumor immunity.
However, these immune effects brought by local ablation are relatively weak
and could not meet the requirement needed to sustain anti-tumor effects and
prevent recurrence.
December 2021 | Volume 12 | Article 792781

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Wang et al. Ablation Combined With Immunotherapy for HCC
sunitinib with activation of immune response (66). This effect
may facilitate checkpoint inhibitor therapy by constructing an
immune-supportive microenvironment. Thus, combining
ablation with immunotherapy is rational to achieve augmented
and longer anti-tumor effects and prevent HCC progression with
improved outcomes.
IMMUNOTHERAPY

The 5-year recurrence rates of early HCC with operation or
ablation are as high as 70% (6). A retrospective study found that
64 of 103 patients with early/intermediate HCC who received
RFA experienced recurrence (76). In addition to the
pathophysiological characteristics of the HCC, incomplete
treatment response results in the high post-operative
recurrence rate, which negatively affects long-term survival. In
a meta-analysis reviewing the recurrence rate of HCC after RFA
over a ten-year period, the size, number, and location of tumors
are partly responsible for incomplete treatment response,
limiting the application of RFA in the early 2000s (77). With
the introduction of multiple treatment modalities, such as RFA +
PEI/TACE, these limitations have been broken and post-
recurrence rates have been significantly reduced. However, to
complicate matters further, recurrent tumors may be more
aggressive (23, 78–80). Thus, adjuvant systemic therapy is
taken in consideration. Sorafenib, a multi-tyrosine kinase
inhibitor (TKI), has considerably improved the survival of
patients with advanced HCC, whereas chemotherapy does not
(81). Other emerging TKI drugs, including lenvatinib,
regorafenib, cabozantinib and donafenib have been proved to
improve the survival benefit of patients with advanced HCC (82–
86). However, sorafenib, as an adjuvant therapy for HCC after
resection or ablation, did not improved recurrence-free survival
(RFS) (82). Furthermore, a phase III STORM trial established a
predictive 146-gene signature, which comprised some genes
involved in immune-related processes; however, the tested
biomarkers and reported prognostic gene signatures lacked value
in predicting adjuvant sorafenib on RFS (87). Surprisingly, iodine
(131I)-labeled metuximab, an immunotherapeutic agent, proved to
benefit RFS of post-operative or post-ablative patients with HCC, in
particularly those with CD147+ (88, 89).

The immune system plays a critical role in HCC, particularly in
the HCC development and progression, as well as the treatment
response or tolerance (Figure 3). Bruno et al. elaborated the HCC
immune microenvironment (e.g., antigens, molecular features,
and immune cells), and reviewed HCC immunotherapies
including immune checkpoint inhibitor (ICI)-based therapies, as
well as others based on adoptive cells and vaccines (90). This
section will not dwell on the above; instead, it will give a brief
retrospect of the application of immune modulators and the
advances in novel immunomodulatory strategies.

In short, the goal of immunomodulatory strategies is to
activate anti-tumor immune response and/or suppress immune
evasion. Immune checkpoints, the surface receptors expressed on
immune system cells, include PD-1, PD-L1, cytotoxic T
Frontiers in Immunology | www.frontiersin.org 5
lymphocyte associated antigen 4 (CTLA4), LAG3, and T cell
immunoglobulin and mucin domain containing-3 (TIM3) (91).
Overexpressed PD-L1 in HCC cells can promote its binding with
PD-1 on effector T cells, resulting in immune escape of tumor
cells and apoptosis of T cells, which is conducive to the growth
and progression of HCC (92). Overexpression of CTLA4 and
TIM3 in Treg cells and overexpression of LAG3 and TIM3 in
tumor infiltrating T lymphocytes can prevent the activation of
effector T cells, also resulting in immune escape of tumor cells
(90). The immune checkpoint is one of the immunosuppressive
mechanisms that can help HCC immune escape by binding to
corresponding ligands in HCC, which is also the rationale for the
therapeutic application of ICIs. Recent clinical trials suggested
that ICIs, whether alone or in combination with other agents,
had a positive effect in HCC. Nivolumab (anti-PD-1),
atezolizumab (anti-PD-L1), and tremelimumab (anti- CTLA4),
have been proved to be safe and have effective anti-tumor
responses for treating HCC (93–95). Notably, nivolumab and
pembrolizumab well tolerated and effective in patients with
advanced HCC after sorafenib failure with promising effects on
long-term survival (96, 97). Atezolizumab, particularly in
combination with bevacizumab (anti-VEGF), has superior
performance compared with sorafenib in term of survival
outcomes and the life quality of patients with unresectable
HCC (98, 99).

Other immunotherapies, including adoptive immunotherapies
(AITs) and immunotherapeutic vaccinations, activate anti-tumor
immune response. AIT improves anti-tumor immunity by
expanding or sensitizing lymphocytes in vitro and reinjecting
them into patients, and cancer vaccines aim to enhance tumor-
FIGURE 3 | Key players in HCC immune microenvironment. In the HCC
microenvironment, natural killer (NK) cells, dendritic cells (DCs) and effector T
cells mainly play an anti-tumor immune role (red). Regulatory T (Treg) cells
and myeloid-derived suppressor cells (MDSCs) promote tumor immune
escape or drug resistance through immunosuppressive effects (green). In
addition, tumor growth factor-b (TGF-b), interleukin-10 (IL-10) and other
cytokines play an important role in tumor immunity. Immunotherapy enhances
anti-tumor immunity or suppresses immunosuppression by targeting these
critical cells and molecules. CTLA4, cytotoxic T lymphocyte-associated
antigen 4; DC, dendritic cell; FasL, Fas ligand; HCC, hepatocellular
carcinoma; IFN-g, interferon-g; IL-10, interleukin-10; MDSC, myeloid-derived
suppressor cell; NK, natural killer; PD-1, programmed cell death protein-1;
PDL-1, programmed cell death protein ligand -1; TGF-b, tumor growth factor-
b; Treg, regulatory T; VEGF, vascular endothelial growth factor.
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specific immune responses that are primarily activated by antigen-
presenting cells (e.g., DCs) and produce endogenous TAAs.
Although these treatments have not been studied as extensively
as ICIs, they are under clinical studies. Clinical trials demonstrated
the safety and efficacy of T cell- (100), DC- (101), and activated
cytokine-induced killer (CIK) cell- (102) based adoptive
immunotherapies, as well as oncolytic virus (103, 104) and
peptide (105–107) vaccines for HCC. Glypican-3 (GPC3), a
carcinoembryonic antigen ideal for immunotherapy target, has
been studied extensively as an anti-tumor vaccine of HCC. Phase
I/II clinical trials suggested that GPC3 peptide vaccine is effective
in inducing cytotoxic T lymphocyte (CTL) killing cancer cells,
reducing RFS, and improving OS, particularly in patients with
GPC3-overexpressing HCC (105, 108, 109). An animal
experiment demonstrated that the synergistic anti-tumor effects
depended on increased GPC3-induced CTL though the
combination of PD-1/PD-L1 blockade and GPC3 peptide
vaccine (110). Moreover, a series of novel GPC3-targeting
vaccine (111, 112) and antibodies (113–115) and cellular
immunotherapeutic strategies (116–118) against GPC3 rely on
the role of GPC3 in HCC and immunotherapy.

Strategies for enhancing therapeutic effects and monitoring
immunotherapies have been developed based on advanced
technologies. For instance, Liao et al. successfully applied NIR-II
fluorescent imaging to NK cell-based immunotherapy for the real-
time quantitative tracking and visualization of the viability of
adoptive NK cells in vivo (119). The potency of immunotherapies
can be enhanced by modification with specific antigens (120–122),
mRNA optimization (123) and combination with adjuvants
(124, 125).
COMBINED ABLATIVE-IMMUNOTHERAPY

As mentioned in Section 2.3, ablation techniques could induce
local and systemic antitumor immune responses, but these
responses are relatively weak, and cannot completely control
the tumor. This reason explains the high local recurrence rates
after treatment. RFA activated tumor-specific T cells, but it could
not identify a new grown tumor or a recurrent tumor, which
resulted in the tumor immune escape and recurrence in a HCC
patient (60). Moreover, only 30% of patients with HCC achieved
long-term remission and better DFS, because of the tumor-
specific immune responses induced by MWA (63). The facts
that the application of a single locoregional therapy has a high
recurrence rate and locoregional ablation can induce anti-tumor
immune responses, have led to the development of combined
ablative and systemic therapy studies for recurrence reduction or
treatment, as well as improved survival outcomes. Indeed, the
advent of TKIs and immunotherapy have improved the
outcomes of patients with HCC. Sorafenib, the most promising
candidate for adjuvant chemotherapy, failed in patients with
HCC after resection or ablation. Results from STORM trial in
2005 showed that compared with placebo, adjuvant sorafenib did
not significantly improve RFS in patients with HCC post
resection or ablation (126), which is consistent with the
findings of existing randomized trials that showed no survival
Frontiers in Immunology | www.frontiersin.org 6
benefit for HCC patients after ablation with adjuvant sorafenib
(127, 128). In addition, a study has shown that vitamin K
combined with angiotensin converting enzyme inhibitors can
inhibit the cumulative recurrence of HCC after treatment (129).
A retrospective study has shown that angiotensin II receptor 1
blockers (sartans) can significantly improve overall survival and
recurrence time in HCC patients after RFA (130), while another
study have shown that this combination can only improve
recurrence time (131). These results suggest that more rigorous
randomized clinical trials are needed to verify the efficacy of this
combination for HCC. On the other hand, the unsatisfying
combinations indicated the emergence of immunotherapy as
an adjuvant candidate.

In the VX2 tumor model, the combination of RFA and CpG-
oligodeoxynuleotides vaccine prevented tumor progression and
improved survival outcomes by enhancing anti-tumor T cell
response and cytotoxicity (132). Using the CT26 tumor model,
Liu et al. studied the roles of palliative RFA (pRFA) in T-cell
immune responses and tumor recurrence, which could be more
significant in combination with antibodies (74). Likewise, MWA
combined with anti-PD-1/anti-CTLA-4 protected mice from
recurrence with improved survival (133).
Clinical Combination on the Way
Table 2 reviews the finished clinical trials of the combinations of
ablation and immunotherapy. Nivolumab and pembrolizumab,
which are PD-1 blockades, received quick approvals as second
line therapy for patients with HCC after sorafenib failure on the
basis of CheckMate-040 (93) and KEYNOTE-224 (97). A recent
proof-of-concept clinical trial suggested that the application of
RFA or MWA enhanced the anti-tumor effects and response
rates (from 10% to 24%) of nivolumab and pembrolizumab
(135). The explanation for synergistic effects may be found in
Section 2.3 in this review. In brief, the critical roles of RFA in T
cell infiltration/response and PD-1 expression may be one of
rationales for combining RFA with PD-1 blockade. Besides, the
combination of RFA with tremelimumab (CTLA-4 blockade)
have been also explored (134, 135).

Various studies have demonstrated the safe and effective to
applicate adjuvant adoptive cellular immunotherapies to patients
with HCC post-ablation with improved RFS and OS (102, 139–
141). For patients with metastatic HCC, the combination of
cryoablation and DC-CIK cell immunotherapy also achieved a
significantly higher OS (median: 32 months) than cryoablation
(median: 17.5 months) and the untreated group (median: 3
months) (144). Moreover, the multiple treatment modality for
cryo-immunotherapy could provide better prognosis than the
single one.

Notably, Tetsuya Nakatsura’s team found that RFA stood out
among other locoregional therapies (including surgical resection
and TACE) by referring to GPC3-specific T-cell-mediated
immune response for HCC (145). Compared with resection,
RFA significantly induced GPC3-specific CTLs, especially in
patients with GPC3-overexpressing HCC. Consequently, the
phase II study of GPC3 peptide vaccine for adjuvant
immunotherapy was carried out, laying a foundation of
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antitumor efficacy of GPC3 peptide vaccine and induced GPC3-
specific CTL (105). Although the combination of resection or
RFA with GPC3 peptide vaccine decreased the 1-year recurrence
rate (142), whether different local strategies had an impact on the
prognosis of the combination treatment remained unclear.
However, another randomized phase II study showed that
adjuvant immunotherapy with tumor associated antigen
(TAA)-pulsed DC vaccine prolonged the RFS of patients with
complete remission in non-RFA (including surgical resection,
TACE, and PEI) groups compared with those in the RFA group
(102). These results suggest that combination strategy benefits
patients, but the choice of optimal combinations is
thought provoking.
Springing Synergistic Strategies Based
on Nanoplatforms
While the clinical trials are in full force, the combination of
ablation and immunotherapy is also attracting the attention of
scientists in basic medicine and biomedical materials. The
development and application of multi-functional nanoplatforms
have enabled synergistic ablative-immunotherapy strategy to
flourish, instead of the sequential combination. On the one
hand, a nanoplatform can deliver multiple drugs with optimized
drug performance and therapeutic efficiency, as well as reduced
drug toxicity. On the other hand, nanoplatforms can apply
imaging technology to identify and locate tumors, guide ablation
procedures, as well as monitor drug responses and therapy efficacy.
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Moreover, such a combination strategy may maximize the
synergistic anti-tumor effects and thus achieve a greater therapeutic
efficacy than the mere sum of the parts.

First, nanoplatforms can improve the targeting ability of
agents through the innate enhanced permeability and retention
effect and modifications with specific targets to enhance the anti-
tumor effects (8). A mesoporous silica based nanosystem co-
loading ICG and sorafenib, named (ICG+S)@mSiO2, was
developed for synergetic PTT/immuno-enhanced therapy
(146). (ICG+S)@mSiO2 improved endocytosis of HCC cells
and photothermal efficiency. Active targeting deliveries were
achieved in SP94-PB-SF-Cy5.5 nanoparticles (NPs) (147) and
PCN-ACF-CpG@HA NPs (148) by conjugated with HCC
specific targeting peptide (such as SP94) and HA (targeting
CD44 receptor-overexpressed HCC cells), respectively.
Moreover, SP94-PB-SF-Cy5.5 and PCN-ACF-CpG@HA, in
combination with PD-L1 blockade and an immunologic
adjuvant (CpG), enhanced the PTT- and PDT-induced weak
immunogenic cell death of cancer cells. Similarly, these strategies
for enhanced immune responses also applied sonodynamic
immunotherapy as recently reported by Tan et al. (149) and
Lin et al. (150). Moreover, anti-TGF-b antibody modification is
an active targeting strategy that enhances cell endocytosis for
improved PTT and an immunotherapeutic strategy for immune
activation (151). Besides, ICG/ICG-SF-Gel-based photothermal-
immunotherapy inhibited primary and distal tumor growth, with
improved survival time with the help of Ganoderma lucidum
polysaccharides (GLP) for enhancing the antitumor immunity (152).
TABLE 2 | Clinical combinations of ablation and immunotherapy.

Ablation
technique

Immunotherapy Efficacies/Outcomes Research type Years Ref.

RFA CTLA-4 blockade
(tremelimumab)

Accumulation of intratumoral CD8+ T cells and reduction of HCV
load

Phase II trial 2017 (134)

RFA CTLA-4 blockade
(tremelimumab)

Activation of tumor-specific T cell with decreased T-cell clonality Correlative study 2019 (135)

RFA PD-1 blockade
(camrelizumab)

improved 1-year RFS and OS of patients with recurrent HCC propensity score matching
analysis

2021 (136)

RFA/MWA PD-1 blockade
(nivolumab/pembrolizumab)

Increased response rate with improved survival in patients with
advanced HCC after sorafenib failure

Proof-of-concept clinical trial 2020 (137)

RFA Adoptive immunotherapy
(RAK cell)

Feasibility and safety with no severe adverse events, recurrences or
deaths in a 7-month follow-up

– 2010 (138)

RFA Adoptive immunotherapy
(NK/gdT/CIK)

Efficiency and safety with improved progression-free survival (PFS)
and survival prognosis,
decreased HVC load

Open-label 2014 (139)

RFA Adoptive immunotherapy
(CIK)

Increased RFS and OS Multicenter, randomized,
open-label, phase III trial

2015 (102)

RFA Adoptive immunotherapy
(CIK)

Safety with prolonged RFS Real-word study 2019 (140)

RFA Adoptive immunotherapy
(OK432-stimulated monocyte-
derived DC)

Safety with longer RFS; associated with enhanced TAA-specific T-
cell responses

Randomized phase I/II trial 2020 (141)

RFA Vaccine (DC) + multiple antigen
(AFP/GPC3/MAGE-1)

Safety and tolerance Phase I/IIa trial 2015 (109)

RFA Vaccine
(GPC3 antigen)

Improved 1-year recurrence rates in patients with GPC3-positive
HCC

Open-label, single-arm
phase II trial

2016 (142)

MWA Adoptive immunotherapy
(DC/CIK/CTL)

Safety with ameliorated peripheral lymphocyte percentage Phase I trial 2011 (143)

cryoablation Adoptive immunotherapy
(DC-CIK)

Increased OS Retrospective study 2013 (144)
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These combined anti-tumor effects led to the application of TAAs
in in situ vaccination to eliminate residual and distant lesions, as
well as inhibit tumor recurrence and metastasis.

Biomimetic nanotechnology, which integrates advantages of
nanoplatform delivery and cellular immunotherapy, provides
novel strategies for synergistic ablative immunotherapy. On the
one hand, biomimetic nanoplatforms are ideal for targeted drug
delivery because of their superior biological characteristics. For
instance, Wang et al. developed a photothermal immunotherapy
nanoplatform based on synthetic high-density lipoprotein
(sHDL) (153). The higher expression of sHDL in HCC cells
than in other normal cells of liver facilitates the preferential
delivery of agents into the cytosol of HCC cells. Ma and
colleagues designed a CAR-T cell membrane-coated
mesoporous silica NP, which specifically recognized GPC3+
HCC cells (154). On the other hand, a programmable
therapeutic strategy based on engineered immune cells provide
a possibility for the synergy of ablation and cellular
immunotherapy. Zhang et al. constructed an artificial
engineered NK cell decorated with TLS11a (a HCC-specific
targeting aptamer) for photothermal immunotherapy (56).
DISCUSSION

The development of science and technology and the deepening of
researches on HCC have promoted vigorous developments of
treatment strategies for HCC, including the local treatment
represented by the clinical standard treatment (RFA) and the
emerging phototherapy, and the systematic treatment
represented by sorafenib and immune blockers. However,
monotherapies have shown some limitations. RFA is a first-
line ablative therapy with established technical standard for
patients with HCC. However, over 30% of patients suffer from
recurrence or metastasis after iRFA (27). The solutions to
the problems after iRFA include two aspects: improving
the efficiency of RFA and applying combination therapy. The
former can be solved well with the development of imaging
technology based on nanomaterials, but the process from new
drug development to clinical application is long and slow.
The latter provides a salvage alternative for residual tumors,
but the choice of drugs is thought provoking because of possible
drug resistance after iRFA. Moreover, high-quality evidence-
based medicine are lacking to support these solutions.

In comparison, increasing evidence support combination
therapy. Thus, the combination of ablation and immunotherapy
is rationale. On the one hand, ablation can promote anti-tumor
immune responses. However, these responses are not strong
enough to completely control tumors. On the other hand, the
addition of immunotherapy may synergistically amplify the anti-
tumor immune effect. The application of nanotechnology and
nanomaterials in ablative immunotherapy strengthens the
combination; enhances therapeutic effects by improving the
physical, chemical, and physiological properties of agents; and
achieves a synergistic effect through theranostic nanoplatforms.
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Of course, many controversies and challenges need to be
resolved. How to develop individualized treatment strategies to
obtain the best treatment effect needs to be taken into
consideration in clinical research. First, most clinical trials of
ablative immunotherapy apply adjuvant immunotherapy after
ablation. The frequency of ablation and the optimal time of
immunotherapy application need to be specified. For example, a
study showed that the ideal time window for immunotherapy
after IRE is 3-14 days post-ablation (64). Another study
suggested that the frequency of cryoablation is related to
prognosis (144). Second, the expression difference of specific
genes, such as GPC3 (105, 108, 109), in some patients with HCC
leads to different immunotherapy responses and outcomes.
Third, the combinations of ablative immunotherapy are
diverse. Although some studies demonstrated that ablative
immunotherapy provides better outcomes than single ablation
or immunotherapy, whether different combinations have
differences is unknown. In addition, more multicenter,
randomized clinical trials with large samples are needed to
confirm the benefits of the ablative immunotherapy. With
regard to basic researches, the animal models used in ablative
therapy, especially phototherapy, and subcutaneous tumor
transplantation model are not suitable because the penetration
depth of such techniques is limited. Moreover, tumors in solid
organs such as liver, are difficult to reach by percutaneous or
laparoscopic ablative techniques, unless the tumor is on the
surface of the organ. The development of new drugs based on
nanomaterials (such as NIR/X-Ray activated PSs and
photothermal drugs) and novel technologies (such as SDT),
has been devoted to address these problems. Of course, the
success of these advances in cell and animal levels is still a long
way from clinical applications. Nonetheless, ablative
immunotherapy is expected to gain a place in HCC therapy
and benefit patients in the near future.
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