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Dengue virus (DENV) is a prevalent human pathogen, infecting approximately 400 million
individuals per year and causing symptomatic disease in approximately 100 million. A
distinct feature of dengue is the increased risk for severe disease in some individuals with
preexisting DENV-specific immunity. One proposed mechanism for this phenomenon is
antibody-dependent enhancement (ADE), in which poorly-neutralizing IgG antibodies
from a prior infection opsonize DENV to increase infection of Fc gamma receptor-
bearing cells. While IgM and IgG are the most commonly studied DENV-reactive
antibody isotypes, our group and others have described the induction of DENV-specific
serum IgA responses during dengue. We hypothesized that monomeric IgA would be able
to neutralize DENV without the possibility of ADE. To test this, we synthesized IgG and IgA
versions of two different DENV-reactive monoclonal antibodies. We demonstrate that
isotype-switching does not affect the antigen binding and neutralization properties of the
two mAbs. We show that DENV-reactive IgG, but not IgA, mediates ADE in Fc gamma
receptor-positive K562 cells. Furthermore, we show that IgA potently antagonizes the
ADE activity of IgG. These results suggest that levels of DENV-reactive IgA induced by
DENV infection might regulate the overall IgG mediated ADE activity of DENV-immune
plasma in vivo, and may serve as a predictor of disease risk.

Keywords: Dengue, DENV, antibody dependent enhancement, IgA, ADE
INTRODUCTION

Dengue virus (DENV) is one of the most widespread vector-borne viral pathogens in the world.
Consisting of four antigenically and genetically distinct serotypes (DENV-1, -2, -3, and -4), DENV is
transmitted primarily by the tropical and subtropical mosquitoes Aedes aegypti and A. albopictus (1,
2). DENV and its mosquito vectors can currently be found across Central and South America, South
and South-East Asia, the Western Pacific, and sub-Saharan Africa, meaning 40% of the world’s
population is currently at risk of exposure and infection (1–3). Consequently, an estimated 400
org November 2021 | Volume 12 | Article 7776721
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million DENV infections are thought to occur every year,
resulting in 100 million clinically apparent infections (2).
Approximately 500,000 cases per year progress to severe
dengue–characterized by thrombocytopenia, vascular leakage
and hemorrhage–resulting in nearly 20,000 deaths (4–7).

A distinct epidemiological feature of dengue as compared to
other flaviviral diseases is the increased risk for severe disease upon
heterologous secondary infection (8). While the risk factors
associated with developing severe dengue upon secondary DENV
exposure are complex and incompletely understood, the leading
mechanistic explanation for thisphenomenon isaprocess knownas
antibody-dependent enhancement (ADE) (9, 10). ADE is thought
to occur when poorly-neutralizing or sub-neutralizing
concentrations of DENV-reactive IgG opsonize DENV and
facilitate its entry into permissive FcgR-bearing cells (11). Various
lines of evidence support the association of ADE with severe
dengue, including increased incidence of severe dengue in infants
born to dengue-immune mothers (12–14); increased viremia in
interferon receptor-deficient mice or non-human primates
passively immunized with anti-DENV antibodies (15, 16);
increased incidence of severe dengue during the second of
sequential heterologous DENV outbreaks; and in patients with a
narrow range of preexisting anti-DENV antibody titers (17, 18).
Furthermore, in-vitro assessmentsof serumADEactivity inDENV-
primed non-human primates have been shown to correlate with
viral titers following heterologous attenuatedDENV infection (19).

The increased risk of severe dengue upon secondary
heterologous infection also presents a challenge to vaccine
development as incomplete or waning vaccine-elicited immunity
may place recipients at an increased risk of developing severe
dengue should they be exposed following vaccination (20). This is
most significantly highlighted by the revelation that the only
currently US FDA licensed DENV vaccine (Dengvaxia®) fails to
protect previously DENV naïve individuals from infection, and
can increase the risk of hospitalization with virologically
confirmed dengue (21–23). Accordingly, understanding the
subtleties of both natural and vaccine-elicited DENV humoral
immunity is critical for further our understanding of disease risk
and infection-associated immunopathogenesis.

To date, the literature on dengue serology has overwhelmingly
focused on the contribution of immunoglobulin isotypes IgM and
IgG to functional dengue immunity and infection-associated
immunopathogenesis. During both primary and secondary
DENV infection, these isotype antibodies follow a highly
predictable pattern of induction, with an IgM response
preceding the rise of DENV-reactive IgG, and DENV-reactive
IgG reaching significantly higher titers during secondary infection
(24, 25). These characteristics, as well as the assumed importance
of IgG-mediated ADE, have left the role of other serum antibody
isotypes relatively unexamined. Notably, this includes IgA, the
second most prevalent antibody isotype in serum and one that has
been suggested to play a unique and non-redundant role in many
viral infections (26). Most work on DENV-reactive serum IgA has
focused on its potential as a diagnostic tool (27), with a small body
of literature examining DENV-reactive serum IgA as a possible
correlate of severe disease (28–31).
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Our group and others recently reported that IgA was the
dominant isotype-switched antibody expressed by circulating
plasmablasts during acute primary DENV infection (32, 33).
IgA-expressing plasmablasts were also observed in secondary
dengue, but constituted a smaller fraction of the total infection-
elicited immune response (32, 33). Importantly, the IgA
antibodies expressed by these plasmablasts exhibited
comparable DENV-binding and DENV-neutralization activity
to IgG antibodies derived from contemporaneous samples (32).
Given the milder symptoms and lower viral burden typically
associated with primary dengue relative to secondary dengue, we
hypothesized that DENV-reactive IgA may play some role in
limiting DENV propagation and potentially the immune-
mediated enhancement of disease.

To test this hypothesis, we isotype-switched pairs of
monoclonal antibodies to show that conversion of IgG to IgA
does not impact the ability of a monoclonal antibody to bind
whole DENV virions or to neutralize DC-SIGN-dependent DENV
infection of a susceptible cell line. However, while DENV-reactive
IgG antibodies exhibited potent infection-enhancing activity in in
vitro ADE assays, we observed that DENV-reactive IgA is
incapable of mediating ADE. Additionally, we observed that
adding DENV-reactive monoclonal IgA to either an enhancing
concentration of monoclonal IgG or to an enhancing dilution of
dengue-immune plasma antagonizes ADE in a dose-dependent
fashion. These results shed new light on the role of the IgA
component of the humoral response to DENV, and suggest a new
avenue of prophylactic and therapeutic approaches to disease.
RESULTS

DENV Binding and Neutralizing Are
Unaffected by Antibody Fc Isotype
To assess the potential contribution of DENV-reactive IgA to a
functional anti-DENV humoral immune response, we synthesized
two pairs of previously described DENV-reactive monoclonal
antibodies with either an IgG or an IgA Fc domain (Figure 1A).
BothmAbs selected for this analysis were previously determined to
bind the fusion loop of the DENV E protein and to react with all 4
DENV serotypes (32). However, VDB33 was initially identified as
an IgG clone, while VDB50 was discovered as an IgA clone
(Table 1). This cross-conversion strategy was chosen so as to
determine if the native Fc configuration of a given antibody
influenced its functionality as either an IgG or IgA protein product.

The DENV-binding capacity of the IgG and IgA versions of
VDB33 and VDB50 was initially assessed with a DENV virion-
capture ELISA. For this analysis, DENV-3 was chosen as the
prototypic DENV serotype as previous work demonstrated that
the IgG versions of both VDB33 and VDB50 exhibited significant
DENV-3 reactivity (32). Consistent with previously published
reports, both VDB33 and VDB50 exhibited potent DENV-3
binding activity with VDB33 demonstrating ~200 fold higher
affinity for DENV-3 than VDB50 (Figure 1B and Table 2).
However, the DENV-binding capacity of the two mAbs was not
impacted by their conversion to either an IgG or IgA format
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FIGURE 1 | Isotype conversion scheme, DENV binding, and DENV neutralization capacity of VDB33 and VDB50 mAbs. (A) Schematic of isotype conversion of
VDB33 and VDB50 from respective parental isotypes, indicating conservation of antigen-binding domains and alteration of Fc domains. (B) DENV-3 binding
capability of VDB33-IgG, VDB33-IgA, VDB50-IgG, and VDB50-IgA measured by DENV virus-capture ELISA. (C) DENV-3 neutralization capability of VDB33-IgG,
VDB33-IgA, VDB50-IgG, and VDB50-IgA as assessed by FlowNT. Neutralization data are presented as a percent of the positive (no neutralizing mAb) control for
each replicate. Error bars +/- SEM. Data are representative of at least 4 independent experiments.
TABLE 1 | Sequence information of DENV-reactive monoclonal antibodies.

Clone name VDB33 VDB50

Parental Isotype IgG1 IgA1
Infecting Serotype DENV-3 DENV-1
Primary/Secondary Secondary Primary
Hc CDR3aa CARLLQYKWNWLFDPW CAKASQMATVFIDYW
Hc V IGHV4-39*01 IGHV3-23*03
Hc D IGHD1-7*01 IGHD5-24*01
Hc J IGHJ5*02 IGHJ4*02
Hc Total SHM 26 13
LC CDR3aa CQVWDSDSDHPVF CQSYDSSLSGGVF
LC V IGLV3-21*03 IGLV1-40*01
LC J IGLJ3*02 IGLJ3*02
LC Total SHM 14 8
Target residues W101, G106, L107, F108 G100, W101, F108
E protein epitope Fusion loop Fusion loop
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(Figure 1B and Table 2). Furthermore, this cross-conversion of
VDB33 and VDB50 to either an IgG or IgA format minimally
impacted the DENV-3 neutralization activity of the clones when
assessed using a flow cytometry-based neutralization assay
(Figure 1C and Table 2). These results indicate that both IgG
and IgA isotype antibodies are equally capable of binding and
neutralizing DENV, reaffirming that antibody epitope/paratope
interactions occur independently of an antibody’s Fc domain.

DENV-Reactive IgA Is Incapable of
Mediating ADE
Having demonstrated that the antigen binding and neutralization
capacity of DENV-reactive monoclonal antibodies is negligibly
impacted by the isotype of the construct, we endeavored to
determine if the infection-enhancing capability of these
antibodies was impacted by their isotype conversion. To this
end, we utilized a K562-based ADE assay, wherein antibody/
DENV immune complexes were pre-formed and added to the Fc-
receptor expressing K562 cell line to assess the ability of defined
antibody complexes to enhance DENV infection.

The IgG versions of both VDB33 and VDB50 exhibited potent
infection-enhancing activity in the K562 ADE assay, with both
antibodies capableoffacilitatingDENVinfection/enhancement ina
dose-dependent fashion (Figures 2A–D). Consistent with their
relative EC50/IC50 values, VDB33-IgG exhibited notably higher
ADE activity than VDB50-IgG, but with the peak of ADE activity
occurring at a similar antibody concentration. However, no
infection enhancement was observed when the same assay was
performedwith eitherVDB33-IgAorVDB50-IgA(Figures2A–D).
This was despite the fact that these IgA isotype antibodies exhibit
nearly identical virus binding and neutralization activity as their
IgG counterparts, underlining the obligate role of an antibody’s Fc
domain in determining the ADE potential of an antibody.

DENV-Reactive IgA Antagonizes IgG-
Mediated Enhancement of DENV Infection
In light of the inability of VDB33-IgA and VDB50-IgA to facilitate
ADE of DENV-3, we next endeavored to determine how DENV-
reactive IgG and IgA behave in a competitive setting. IgG and IgA
antibodies are never found in isolation in a dengue immune
individual, so determining how these antibodies function in a
complex/poly-immune setting is critical for understanding their
potential contribution to functional anti-DENV immunity.

To this end, we utilized the same K562 ADE assay as previously
described, but used a fractional IgG/IgA replacement strategy
wherein the total amount of antibody remained the same across
the different titration schemes but the ratio of IgG to IgAwas varied
from 100:0 to 0:100. The fractional addition of DENV-reactive IgA
significantly reduced the ADE activity observed in cultures
containing either VDB33-IgG or VDB50-IgG (Figure 3). While
both VDB33-IgA and VDB50-IgA were capable of antagonizing
Frontiers in Immunology | www.frontiersin.org 4
IgG-mediatedADE ofDENV-3, the highly avid yet non-enhancing
VDB33-IgA antibody was capable of dramatically blunting IgG-
mediated ADE evenwhen used at low fractional concentrations. Of
note, the addition of DENV-reactive IgA to these ADE assays does
not appear to shift the antibody dilution at which maximal ADE
activity is observed for any of the cultures. Rather, the addition of
DENV-reactive IgA reduces themagnitude of infection achieved at
any given antibody dilution. These results are consistent with IgA
actively antagonizing IgG mediated ADE by competing with
DENV-reactive IgG for the same viral epitopes.

DENV-Reactive IgA Antagonizes DENV-
Immune Plasma Mediated Enhancement
of DENV Infection
A limitation of the analysis presented thus far is that all the
monoclonal antibodies used in this analysis have the same
antigen specificity; namely, the fusion loop of the DENV E
protein. Therefore, it is unclear what impact–if any–DENV-
reactive IgA would have in the presence of a polyclonal IgG
repertoire of divergent DENV antigen specificity. Therefore, we
endeavored to determine how the presence of either VDB33-IgA
or VDB50-IgA impacts the infection-enhancing potential of
polyclonal/DENV-immune serum.

Plasma from DENV-immune donors was screened to identify
sampleswithbothhighDENV-3 reactive IgG titers byELISAaswell
as DENV-3 enhancing activity in the K562 ADE assay. Samples
from four subjects were selected for additional analysis based on
these criteria (Figure 4A, Supplementary Figures 3, 4). VDB33-
IgA or VDB50-IgA were then titrated into cultures containing this
enhancing DENV-immune plasma to determine if IgA isotype
monoclonal antibodies could antagonize polyclonal enhancement
of DENV-3 infection.

Consistent with what was observed with IgG monoclonal
antibodies, the addition of VDB33-IgA or VDB50-IgA
significantly suppressed ADE-mediated K562 infection with
DENV-3 (Figures 4B, C). The additional of DENV-reactive IgA
in these assays suppressed ADE-mediated infection by 75%-90%
in a dose-dependent fashion, a result consistent with the concept
that IgG antibodies targeting the fusion loop of the DENV E
protein are particularly amenable to facilitating ADE activity and
are abundant in DENV-immune serum (34, 35). Notably, an equal
amount of isotype control human serum IgA had no impact on the
ADE activity, suggesting that the observed suppression via
VDB33- and VDB50-IgA is a function of antigen binding rather
than Fc -mediated (Supplementary Figure 5).These data also
indicate that even modest concentrations of DENV-reactive IgA
can significantly antagonize polyclonal IgG-mediated
enhancement of DENV infection, signifying that the presence of
DENV E reactive IgA (especially fusion loop reactive IgA) has the
potential to significantly modulate DENV infection and
associated immunopathogenesis.
TABLE 2 | Functional characteristics isotype-switched monoclonal antibodies.

Clone name VDB33 IgG VDB33 IgA VDB50 IgG VDB50 IgA

Kd (ng/mL) 0.3962 0.8296 19.92 31.12
IC50 (ug/mL) 0.5339 0.3139 0.2391 0.2439
November 2021 | Volume 12 | Ar
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DISCUSSION

In this study we demonstrate that DENV-reactive IgA monoclonal
antibodies can bind and neutralize DENV but are incapable of
facilitating ADE of DENV infection in vitro. Furthermore, the
presence of DENV-reactive IgA can significant blunt the DENV-
infection enhancing activity of bothDENV-reactivemonoclonal IgG
andpolyclonalDENV-immuneseruminacompletive fashion.These
results suggest an unappreciated role for DENV-reactive IgA during
the humoral response to DENV infection and raise the potential that
IgA could act as either a natural or therapeutic regulator of DENV
dissemination and infection-attendant inflammation.

Although we have shown that DENV-reactive IgA is capable of
disruption IgG mediated ADE, IgA may not be unique in this
respect. Indeed, the depletion of IgM from flavivirus-immune
serum has been shown to increase antibody-dependent
enhancement of Zika virus infection of K562 cells, presumably by
removing IgM as an antagonist of IgG-mediated infection
enchantment (36). Accordingly, parallel lines of evidence suggest
Frontiers in Immunology | www.frontiersin.org 5
that the ability of DENV-reactive IgG to interact with FcgRs is
linked to the infection-enhancing potential of DENV-immune
serum and – by extension – the clinical severity of DENV
infection. Polymorphisms in FcgRIIa – a component of the low-
affinity IgG receptor complex – have been associated with a
decreased likelihood of becoming either symptomatically infected
or progressing to severe dengue after DENV exposure (37–39).
While the mechanism behind the phenomenon is hasn’t been
definitively established, it has been shown that at least some of
these polymorphisms decrease the affinity of FcgRIIa for IgG (40).
Furthermore, post-translational modifications of IgG antibodies
have been shown to significant impact their affinity for FcgR
complexes and to correlate with dengue severity (41). Most
notably, the presence of high levels of afucosylated IgG– a post-
translationalmodificationwhich increases the affinity of the IgG Fc
domain for FcgRIIIa (42) – either before or after DENV infection
has been associatedwith increased dengue severity (43–45). Finally,
the presence of serum complement – such as C1q and C3 - can
inhibit IgG mediated ADE both in vitro and in vivo, ostensibly by
A B

C D

FIGURE 2 | ADE activity of DENV-reactive IgG and IgA isotype antibodies. (A) ADE activity of VDB33-IgG and VDB33-IgA against DENV-3 in K562 cells. (B) AUC
values of 7 independent experimental replicates of DENV-3 ADE assay with VDB33-IgG and VDB33-IgA (C) ADE activity of VDB50-IgG and VDB50-IgA against
DENV-3 in K562 cells. (D) AUC values of 7 independent replicates of DENV-3 ADE assay with VDB50-IgG and VDB50-IgA. Error bars +/- SEM. **p < 0.01,
****p < 0.0001, unpaired t test. Data are representative of at least 7 independent experiments.
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FIGURE 3 | Homotypic and heterotypic monoclonal IgA antagonizes IgG-mediated antibody-dependent enhancement. (A) DENV-3 ADE activity of VDB33-IgG
when antagonized with VDB33-IgA. Total antibody concentration for each dilution point was held constant, with varying ratios of VDB33-IgG and VDB33-IgA as
indicated. AUC of each ADE titration was calculated and normalized to that of the 100% IgG condition. (B) DENV-3 ADE activity of VDB33-IgG when antagonized
with VDB50-IgA. The AUC of each ADE titration was calculated and normalized to that of the 100% VDB33-IgG condition. (C) DENV-3 ADE activity of VDB50-IgG
when antagonized with VDB33-IgA. AUC of each ADE titration was calculated and normalized to that of the 100% VDB50-IgG condition. (D) DENV-3 ADE activity of
VDB50-IgG when antagonized with VDB5o-IgA. AUC of each ADE titration was calculated and normalized to that of the 100% VDB33-IgG condition. Blue = 100%
IgG/0% IgA. Green = 90% IgG/10% IgA. Orange = 50% IgG/50% IgA. Red = 0% IgG/100% IgA. "ns" denotes "non-significant" (p > 0.05). *p < 0.05, **p < 0.01,
***p < 0.001, ****p < 0.0001 1-way ANOVA with Dunnett correction for multiple comparisons. Data are representative of at least 4 independent experiments.
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interfering with the ability of IgG Fc to interact with FcgR and/or
forcing a complement-bound antibody into a configuration that is
not amenable to fusion and viral entry (46–48).

While not found in nature, abolishing the ability of IgG
antibodies to interact with FcgR through genetic engineering
the Fc portion of IgG (LALA mutation) also ablates many of the
infection-enhancing properties of DENV-reactive IgG both in
vitro (35) and in vivo (49, 50). Collectively, these this evidence
underlines the importance of IgG/FcgR interactions the process
of ADE, and emphasize the potential diagnostic and therapeutic
implications for factors that can disrupt this immunologic nexus.

The data presentedherein demonstrate thatDENV-reactive IgA
is capable of antagonizing IgG mediated enhancement of DENV
infection, yet it is still unclear what role this process plays in vivo
duringnaturalDENVinfection. Severalprevious studieshavenoted
thathigh levels of serumIgAare associatedwithmore severe disease
following secondary DENV infection (28–31). However, we and
others have observed a higher frequency of IgA expressing
plasmablasts following uncomplicated primary DENV infection
than following severe secondary DENV infections (32, 33). A key
takeaway from the analysis performed in this study is that the
absolute concentration of a given DENV-reactive antibody isotype
may be a incomplete indicator of the infection-enhancing potential
of a serum sample. Severe dengue is accompanied by robust
production of antibodies of all isotypes, so without additional
context the absolute level of any given single antibody isotype
may provide an incomplete or misleading impression of
immunologic features associated with disease severity.
MATERIALS AND METHODS

Viruses
DENV-3 (strain CH53489) propagated in Vero cells were
utilized for ELISA, FlowNT50, and ADE assays. Virus for
Frontiers in Immunology | www.frontiersin.org 7
ELISA was purified by ultracentrifugation through a 30%
sucrose solution and the virus pellet was resuspended in PBS.

Cell lines: Human K562 cells were maintained in IMDM
supplemented with 10% FBS, penicillin, and streptomycin.
U937-DC-SIGN cells were maintained in RPMI supplemented
with 10% FBS, L-glutamine, penicillin, and streptomycin.

Monoclonal Antibodies and Serum
The variable regions from the heavy and light chains were codon
optimized, synthesized in vitro and subcloned into a pcDNA3.4
vector containing the human IgG1 or IgA1 Fc region by a
commercial partner (Genscript). Transfection grade plasmids
were purified by maxiprep and transfected into a 293-6E
expression system. Cells were grown in serum-free FreeStyle
293 Expression Medium (Thermo Fisher), and the cell
supernatants collected on day 6 for antibody purification.
Following centrifugation and filtration, the cell culture
supernatant was loaded onto an affinity purification column,
washed, eluted, and buffer exchanged to the final formulation
buffer (PBS). Antibody lot purity was assessed by SDS-PAGE,
and the final concentration determined by 280 nm absorption.
The clonotype information for all monoclonal antibodies
generated as part of this study is listed in Table 1. Dengue IgG
antibody positive plasma was purchased from SeraCare. Donor
ID and batch numbers are shown in Supplementary Table 1.
Purified polyclonal IgA from human serum was purchased from
a commercial source (Sigma, I4036-1mg).

DENV- Capture ELISA
Monoclonal antibody and plasma DENV-reactivity was assessed
using a 4G2 DENV capture ELISA protocol. In short, 96 well
NUNC MaxSorb flat-bottom plates were coated with 2 mg/ml
flavivirus group-reactive mouse monoclonal antibody 4G2
(Envigo Bioproducts, Inc.) diluted in borate saline buffer.
Plates were washed and blocked with 0.25% BSA + 1% Normal
A B C

FIGURE 4 | Monoclonal IgA antagonizes ADE mediated by polyclonal DENV-immune plasma. (A) DENV immune plasma enhances DENV-3 infection of K562 cells.
Each datapoint represents a unique plasma donor (n = 4). (B) VDB33-IgA antagonizes in vitro enhancement of DENV-3 infection mediated by polyclonal DENV-
immune serum. Serum used at a 1:50 dilution for ADE assay, n = 4 unique plasma donors. The percentage of DENV-positive cells was normalized to that observed
in the plasma-only condition. (C) VDB50-IgA antagonizes in vitro enhancement of DENV-3 infection mediated by polyclonal DENV-immune serum. Serum used at a
1:50 dilution for ADE assay, n = 4 unique plasma donors. The percentage of DENV-positive cells was normalized to that observed in the plasma-only condition.
***p < 0.001, ****p < 0.0001 1-way ANOVA with Dunnett correction for multiple comparisons. Data are representative of at least 4 independent experiments.
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Goat Serum in PBS after overnight incubation. DENV-3 (strain
CH53489) diluted in blocking buffer was captured for 2 hr,
followed by extensive washing with PBS + 0.1% Tween 20.
Serially diluted monoclonal antibody or plasma samples were
incubated for 1 hr at RT on the captured virus, and DENV-
specific antibody binding quantified using anti-human IgG HRP
(Sigma-Aldrich, SAB3701362), anti-human IgA HRP
(Biolegend, 411,002), or anti-human IgM HRP (SeraCare,
5220-0328). Secondary antibody binding was quantified using
the TMB Microwell Peroxidase Substrate System (KPL, cat. #50-
76-00) and Synergy HT plate reader (BioTek, Winooski, VT).
Monoclonal antibody binding data were analyzed by nonlinear
regression (One site total binding) to determine EC50 titers in
GraphPad Prism 8 (GraphPad Software, La Jolla, CA). End-point
titers of DENV-reactive plasma samples were determined as the
reciprocal of the final dilution at which the optical density (OD)
was greater than 2× of a control flavivirus naïve serum.

Neutralization Assay
Neutralizing titers of monoclonal antibodies and heat-
inactivated plasma were assessed using a flow cytometry-based
neutralization assay in U937 cells expressing DC-SIGN as
previously described (51, 52). Four-fold dilutions of antibody
or sera were mixed with an equal volume of virus diluted to a
concentration to achieve 10%–15% infection of U937-DC-SIGN
cells in the absence of antibody. The antibody/virus mixture was
incubated for 1 h at 37°C, after which an equal volume of
medium (RPMI-1640 supplemented with 10% FBS, 1%
penicillin/streptomycin, 1% l-glutamine (200 mM) containing
5 × 104 U937-DC-SIGN cells was added to each well and
incubated 18–20 hr overnight in a 37°C, 5% CO2, humidified
incubator. Following overnight incubation, the cells were fixed
with IC Fixation Buffer (Invitrogen, 00-82222-49), permeabilized
using IC Permeabilization Buffer (Invitrogen, 00-8333-56) and
immunostained with flavivirus group-reactive mouse
monoclonal antibody 4G2 (Envigo Bioproducts, Inc.), and
secondary polyclonal goat anti-mouse IgG PE-conjugated
antibody (#550589, BD Biosciences). The percentage of
infected cells were quantified on a BD Accuri C6 Plus flow
cytometer (BD Biosciences). Data were analyzed by nonlinear
Frontiers in Immunology | www.frontiersin.org 8
regression to determine 50% neutralization titers in GraphPad
Prism 8 (GraphPad Software, La Jolla, CA).

ADE Assay
In vitro antibody-dependent enhancement (ADE) of DENV-3
infection was quantified as previously described (32, 53). Four-
fold serial dilutions of antibody or heat-inactivated sera were
incubated with virus (in sufficient amounts to infect 10%–15% of
U937-DC-SIGN cells) at a 1:1 ratio for 1 h at 37°C. This mixture
was then added to a 96-well plate containing 5 × 104 K562 cells
per well in duplicate. Cells were cultured for 18–20 hr overnight
in a 37°C, 5% CO2, humidified incubator. Processing and
quantification continued as outlined in the FlowNT50 methods.

Statistical Analysis
All statistical analysis was performed using GraphPad Prism 8
Software (GraphPad Software, La Jolla, CA). A P-value < 0.05
was considered significant.
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