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NF-kB1 deficiency is suggested to be the most common cause of common variable
immunodeficiency (CVID). NFKB1 encodes for the p105 precursor protein of NF-kB1,
which is converted into the active transcriptional subunit p50 through proteasomal
processing of its C-terminal half upon stimulation and is implicated in the canonical NF-
kB pathway. Rare monoallelic NFKB1 variants have been shown to cause (haplo)
insufficiency. Our report describes a novel NFKB1 missense variant (c.691C>T,
p.R230C; allele frequency 0.00004953) in a family vulnerable to meningitis, sepsis, and
late-onset hypogammaglobulinemia. We investigated the pathogenic relevance of this
variant by lymphocyte stimulation, immunophenotyping, overexpression study and
immunoblotting. The ectopic expression of p50 for c.691 C>T restricted transcriptionally
active p50 in the cytoplasm, and immunoblotting revealed reduced p105/50 expression.
This study shows that the deleterious missense variant in NFKB1 adversely affects the
transcriptional and translational activity of NFkB1, impairing its function. Patients
immunological parameters show a progressive course of hypogammaglobulinemia, which
may partially account for the incomplete disease penetrance and suggest the need for
closer immunological monitoring of those mutation carriers.

Keywords: common variable immune deficiency (CVID), NFKB1, Nfkb1 (p50), hypogammaglobulinemia, primary
antibody deficiency (PAD)
INTRODUCTION

Primary antibody deficiencies, particularly common variable immunodeficiency (CVID), is the
most common symptomatic primary immunodeficiency disorder. Patients with CVID have a highly
variable clinical presentation. Besides an increased susceptibility to upper and/or lower respiratory
infections, patients also present a high incidence of severe bacterial infections such as sepsis and
meningitis and immune dysregulation features including lymphoproliferative, gastrointestinal and
autoimmune manifestations (1–3). Before diagnosing CVID, secondary cause of antibody deficiency
org December 2021 | Volume 12 | Article 7671881
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(SAD) must be excluded in clinical practice (4). So far, several
monogenic defects such as ICOS, CD19, CD20, CD21, CD27,
CD81, IL21, IL21R, LRBA, PRKCD, RAC2, TNFSF12, CTLA4,
PLCG2, NFKB1, NFKB2, PIK3CD, PIK3R1, VAV1, BLK, IKZF1,
IRF2BP2, as well as mutations in TNFRSF13B and TNFRSF13C
have been identified in CVID (1, 5, 6). Recently NF-kB1 haplo
(insufficiency) has been described as a novel monogenic cause of
CVID (6). Several independent studies have reported that loss-
of-function variants in NFKB1 are probably the common cause
of antibody deficiency with a highly variable clinical and
immunological presentation (7). The nuclear factor of kappa
light polypeptide gene enhancer in B cells (NF-kB) is a family of
closely related ubiquitous transcription factors that regulate an
extensive array of genes involved in different immune and
inflammatory responses. This family is composed of five
structurally related proteins including NF-kB1 (p50/p105), NF-
kB2 (p52/p100), RelA (p65), c-Rel, and RelB that mediates
transcription of target genes by binding to a specific DNA
element, kB enhancer, as various hetero- or homo-dimers (8).
The NF-kB proteins are usually sequestered in the cytoplasm by
a family of inhibitory proteins, including IkB family members
and related proteins defined by the presence of ankyrin repeats.
Two different signal pathways have been proposed for NF-kB
activities, the classical/canonical or non-canonical pathway.
Upon stimulation of classical pathway by Toll-like-receptors,
or B and T cell receptors, the IkKB subunit phosphorylates and
polyubiquitinates, leading to its degradation by the 26S
proteasome (8) and translocation of p50 into the nucleus to
exert its function as a transcription factor (9).

We have recently identified the pathogenic impact of identified
NFKB1 deleterious variants in our PAD cohort; we have shown
that missense mutation in the NFKB1 causes late-onset PAD by
impairing the function of the transcriptionally active p50 (10). We
identified further a previously uncharacterized NFKB1 missense
variant in a family with a history of meningococcal meningitis and
late-onset hypogammaglobulinemia by next-generation
sequencing (NGS) as the only predicted deleterious variant
within genes of inborn errors of immunity. Hence in the current
work, we mainly focused on the relevance of this NFKB1 missense
variant (c.691 C>T, p.R230C) by immunophenotyping,
immunoblotting, and ectopic expression assays.
MATERIALS AND METHOD

Ethical Aapproval
The institutional medical ethical committee at Hannover
Medical School approved the study (ethics approval number:
Nr.8875_BO_K_2020). The written consent of all study
participants was obtained.

Isolation of Genomic DNA and
Sequencing Methods
Genomic DNA (gDNA) was isolated from peripheral blood of
patients and healthy donors with QIAamp Kit (QIAamp DNA
Blood Midi Kit; Lot# 16902455; Qiagen). Whole exome
sequencing (WES) was performed on genomic DNA samples
Frontiers in Immunology | www.frontiersin.org 2
from patients S1 and S2 as described previously (11). Briefly, the
concentration and quality of the purified genomic DNA (gDNA)
was determined with an Agilent Technologies 2100 Bioanalyzer
(Agilent Technologies, Santa Clara, CA, USA). The DNA
sequencing library consisted of 100 ng fragmented gDNA and
was generated with Agilent SureSelectXT Reagent Kits v5 UTR
(70 Mb) according to the manufacturer’s protocols (Illumina,
San Diego, CA, USA). Libraries were sequenced on an Illumina
HiSeq2500 platform using TruSeq SBS Kit v3-HS (200 cycles,
paired end run) with an average of 12.5 × 106 reads per
single exome (mean coverage: 50X). The GATK-Pipeline
(GenomeAnalysisTK-1.7) was applied for read quality
trimming, read alignment to reference (GRCh37/hg19) and
quality trimmed variant calling. Variant annotation was
performed using Gsvar software. We selected for rare variants
with low minor allele frequency (MAF < 0.05). Sanger
sequencing was performed by (Eurofins Genomics) to validate
the identified rare NFKB1 variant and its co-segregation with
disease phenotype in this family using the primers: forward;
5'-GTCTATTCTTGGTGTGCCCC-3' and reverse; 3'-
TGCAGCAGACCAAGGAGATG-5'.

PBMCs Isolation
Whole blood was collected from both patients and healthy control.
PBMCs were isolated using the standard centrifugation method.
Briefly, whole blood was mixed with PBS in a 1:2 ratio, and the
diluted cell suspension was gently layered on the Ficol-plaque
separation gradient. Centrifugation was carried out at 1000xg for
20 mins with no break at 21°C. The mononuclear cell layer was
carefully removed, transferred into new 50 ml falcon tubes, and
washed with PBS. Cells were either stored in 10% DMSO or
immediately used.

Lymphocyte Stimulation Assays
For stimulation experiments, PBMCs were treated with phorbol
12-myristate 13-acetate (PMA; 50 ng/ml) and ionomycin (1 mg/
ml) and incubated for 30 min at 37°C and 5% carbon dioxide.
After incubation cells were harvested and used immediately for
total protein extraction.

For standard T cell proliferation assays, PBMCs were
stimulated with phytohemagglutinin (PHA), concanavalin A
(ConA), pokeweed mitogen (PWM), purified protein derivative
(PPD), interleukin 2 (IL-2) and anti-CD3mAb as described
previously (10, 12).

Cell Culture and Transfection
Human Embryonic Kidney 293 (HEK 293) cells were cultured in
Dulbecco’s modified Eagle’s medium (DMEM) supplemented
with 10% heat-inactivated fetal bovine serum (FBS), 1%
penicillin/streptomycin, and 1% Sodium pyruvate (Invitrogen)
at 37°C with 5% CO2. A day before transfection, 5 ×10^5 HEK
293 cells/ well were seeded into a six-well plate and cultured at
37°C. Transfection was carried out using a 2 µg plasmid, each
using x-tremegene hp DNA transfection reagent (Merck,
6366244001) following the manufacturer’s protocol utilizing
eGFP plasmid expression vector and Opti-Mem as a negative
December 2021 | Volume 12 | Article 767188
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control. Transfected cells were selected two days post-
transfection using 400 µg/ m G418 sulfate.

Cloning
Plasmids encoding either p105 or p50 wild type and mutant with
N-terminal GFP tag were cloned into pc.DNA3.1 (+)-N-eGFP
(Genescript). Competent E. coli (NEB, 5-alpha) were
transformed with the vectors constructs, and plasmids were
isolated with QIAprep Spin Mini Kit (Qiagen).

Fluorescence Staining and
Confocal Imaging
HEK293 cells that were transiently expressing eGFP alone or N-
terminally EGFP-tag p50-wt or p50-R230C mutant were fixed
with 4% paraformaldehyde for 20 mins at RT followed by 3X
washing with PBS and permeabilized with 0.1% Triton X-100.
The nuclei were stained with DAPI. For microscopy analysis,
glass coverslips were mounted with a drop of the fluorescence-
mounting medium (DAKO). Confocal fluorescence images were
taken on an Olympus FV1000 laser-scanning microscope.
Images were evaluated and processed with Fiji software.

Western Blotting and qRT-PCR
Total RNA and proteins were isolated from transfected HEK293
cells or subjects´ and healthy control PBMCs using NE-PER
Nuclear and cytoplasmic extraction reagent (Thermo Scientific;
lot # TA259812) and Allprep DNA/RNA micro-kit (Qiagen;
#80284), respectively. Proteins were separated on 7.5% Mini-
Protean TGX (BIO-RAD; #4561024) and transferred onto
Invitrogen PVDF membranes (Thermo Scientific). Both p105
and p50 proteins were detected using a primary polyclonal
rabbit antibody directed against the N-terminal amino acids
(Cell Signaling; #3035). A monoclonal rabbit antibody was used
to detect levels of phosphorylated p105 at serine 933 (#4806; Cell
Signaling). Horseradish-peroxidase-coupled goat anti-rabbit
secondary antibody (#6721; Abcam) was used to detect signals
via enhanced chemiluminescence (SuperSignal West Dura
Extended Duration Substrate; Thermo Fischer). For the loading
controls rabbit beta actin (#12620; cell signaling) and histone H3
(#12648; cell signaling) directly coupled to horseradish-peroxidase
was used. Rabbit antibody against beta-actin directly coupled to
horseradish peroxidase was used as a loading control. For
quantitative Real-Time polymerase chine reaction (qRT-PCR), 1
µg of total RNA was used for cDNA synthesis. Reverse
transcription was performed using High-Capacity cDNA
Reverse Transcription Kit (Applied biosynthesis, Lithuania)
following the manufacturer’s protocol. No RNA and no reverse
transcriptase served as the negative control. Expression levels of
NFkB1 and GAPDH transcript were quantified using Taqman
Gene Expression Master Mix with custom-made probes were used
for the qRT-RT assay. The average changed in threshold cycle
values was determined for each sample relative to the endogenous
GAPDH levels and compared with the control.

Statistics
Statistical analyses were performed using Graph Pad Prism,
version 8. One-way analysis of variance (ANOVA) test was
Frontiers in Immunology | www.frontiersin.org 3
used to compare NFkB1 expression. Densitometry analyses of
western blots were performed with ImageJ software (Version
1.52 v), and the graphs were prepared using Microsoft Excel 365.
RESULTS

Identification of NFKB1 Missense
Variants by tNGS
We identified a NFKB1 deleterious missense variant (691 C>T,
p.R230C) in a family with antibody deficiency (Figure 1A). This
variant was confirmed by Sanger sequencing (Figure 1B) and
predicted to be deleterious by in silico tools.

Clinical History
A 23-year-old patient (S2) born to non-consanguineous
Caucasian healthy parents of German descent presented to our
Immunology outpatient clinic due to a history of meningococcal
meningitis with sepsis (Waterhouse–Friderichsen syndrome) at
the age of 10 years. He additionally had a parechovirus meningitis
at the age of 20 years. Except for the aforementioned two
meningitides and the identification of 2-3 isolated boils through
the physical examination, his infection record was inconspicuous.
This patient’s two years younger brother (S3) also suffered from
meningococcal meningitis with sepsis at the age of 17 years, at a
different time point than his brother. He additionally reported
recurrent bronchitis and one pneumonia. On the bases of
immunological investigations S2 were consistent with the
diagnosis of a combined immunodeficiency (CID), whereas S3
was diagnosed with common variable immunodeficiency (CVID).
Findings of immunological investigations of both brothers are
summarized in Table 1. Patients' clinical and immunological
values are regularly monitored and examined in our clinic.
Furthermore, none in the family had a history of severe or
recurrent infections.

Missense Variant 691 C>T, p.R230C
Causes p105/p50 Reduction and Impair
p50 Nuclear Translocation
Both the two brothers (S2/3) were identified to carry the missense
variant 691 C>T, p.R230C in NFKB1 located on the N-terminal of
the RHD (Figure 1C). This variant refers to the group of NFKB1
mutations, affecting both the precursor p105 and the mature p50
as we described previously (10). HEK293 cells were transiently
transfected with EGFP-fused mutant proteins or EGFP-fused
wild-type proteins. Immunoblotting and qRT-PCR were carried
out. A reduced mRNA level and a drastically reduced protein
level (approximately 92%) were observed for p105/50 (Figures 2B;
Supplementary Figure 1) in transfected HEK293 cells. In
transfected HEK293 cells, the EGFP-fused p50-R230C mutant
showed an aberrant localization into the nucleus while the wild-
type localization was normal (Figure 2A). More importantly, the
expression of p50 using the EGFP-fused p50-R230C mutant in
HEK293 showed that p50 expression in the mutant was reduced
compared to the wild type (Figure 1C). These results indicate
that the functional defect influences both the precursor p105 and
mature p50.
December 2021 | Volume 12 | Article 767188
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PBMCs from mutation carriers (n=3), healthy control (n=1)
were stimulated with PMA plus ionomycin and protein were
extracted from cytoplasm and nucleus and analyzed by western
blotting. Representative results are shown (Figures 1D, E). p105
amounts, phosphorylation of p105, and processing to p50 are
severely reduced compared to control. The b-actin control
confirms equal loading.
Frontiers in Immunology | www.frontiersin.org 4
DISCUSSION

The Pathogenic NFKB1 c.691 C>T,
p.R230C Variant Causes Progressive
Late-Onset Antibody Deficiency
This study assayed the pathogenicity of a deleterious missense
NFKB1 variant, c.691 C>T, detected in two brothers (S2/3) and
A B

D E

C

FIGURE 1 | Monoallelic NFKB1 missense mutation in a family with late-onset antibody deficiency. (A) Segregation of NFKB1variant was analyzed by sequencing
genomic PCR product and revealed an autosomal-dominant inheritance in families with reduced clinical penetrance. The analysis excluded the mother of patients
because of material lack. (B) Sanger sequencing of genomic PCR products results in the chromatogram of missense variant and wild type (WT) (C) Structure of
NFkB protein showing the position of the identified mutation. (D) Immunoblotting was performed in PBMCs of subjects (S1, S2, and S3) and healthy control (HC),
and the expression of p105/50 was evaluated. The expression of p105 was reduced for all the subjects compared to the control. However, the expression of p50
was reduced in S2. (E) PBMCs from HC and S1, S2 and S3 were stimulated with PMA; 50 ng/ml and ionomycin; 1 mg/ml and the expression of p105/50 evaluated.
There were no significant changes in the p105/50 expression after stimulation in the subjects; however, p105 phosphorylation at serine 933 was detected in only the
HC but not in the subject. Beta-actin was used as a cytoplasmic loading control.
December 2021 | Volume 12 | Article 767188
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TABLE 1 | Clinical and immunological characteristics of studied subjects with NF-kB1 LOF variant.

S.1 S.2 S.3 Reference
range

Year of birth 1974 1998 2000
Sex male male male
Infections None

reported
Neisseria meningitidis meningitis and sepsis (Waterhouse-
Friderichsen-syndrome); Parechovirus meningitis; isolated
furuncle

Neisseria meningitidis sepsis (Waterhouse-
Friderichsen-syndrome); one pneumonia; twice
bronchitis within a year

Full blood count:
WBC (cells/µl) 6100 8000 5700 4800-

12000
Lymphocytes (cells/µl) 1200 1160 940 1100-4500
Lymphocytes (% WBC) 16.0 14.8 16.5 20-44
Monocytes (% WBC) 8.7 8.8 8.3 2-9.5
Neutrophils (% WBC) 72.9 74 72.2 42-77
Phenotypic profile of peripheral blood lymphocytes:
CD3+ T cells (%
lymphocytes)

36.6 50 69 55-83

CD4+ T cells (%
lymphocytes)

45 31.6 45.4 55-83

CD8+ T cells (%
lymphocytes)

29.3 15.1 18.6 10-39

CD19+ B cells (%
lymphocytes)

10.7 12 5 6-19

gd T-cell (% T cells) 27.7 15.1 9.6 <10%
CD3+CD56+ NK cells (%
lymphocytes)

6.9 22.3 22.3 7-31

Phenotypic profile of peripheral blood CD4+T cells:
naive CD4+ T cells (% of
CD4+ T cells)

46.9 74.6 67.8 (49-72)

memory CD4+ T cells (%
CD4+ T cells)

46.5 17.4 14.3 34 -71

recent thymic emigrant
(RTE) T helper cells (%
CD4+ T cells)

20.6 48.4 55 42-64

Phenotypic profile of peripheral blood CD8+T cells:
early effector memory CD8+
T cells (% of CD8+ T cells)

13.9 5.8 11.5 2.9-16

late effector memory CD8+
T cells (% CD8+ T cells)

9.5 1.6 4.8 2.6-58

Phenotypic profile of peripheral blood CD19+ B cells:
Naive B cells (% B cells) 78.9 71.1 70.7 29-93
IgM+ memory B cells (% B
cells)

5.8 5.9 7.1 2-25

class-switched B cells (% B
cells)

6.9 14.6 14.3 3-23

transitional B cells (% B
cells)

3.7 1.5 1.2 0.6-4-6

plasmablasts (% B cells) 5.2 7.6 5.5 0.4-3.6
CD21low B cells (% B cells) 5.2 3.7 2.1 1-26
Immunoglobulins:
IgG (g/l) 6.2 9.64 6.95 7-16
IgA (g/l) 0.51 0.66 0.53 0.7-4
IgM (g/l) 0.5 0.91 0.62 0.4-2.3
Pneumococcal antibody
(mg/l)**

n.m. 110 251.7 39.4-100.5

Tetanus antibody (IU/ml)** n.m. 1.2 0.8 >1.1
Granulocytes function test:
C3c (g/l) n.m. 1.01 1.4 0.9-1.8
C4 (g/l) n.m. 0.18 0.14 0.1-0.4
CH50 (U/ml) n.m. >60 >60 31.6-57.6
AP50 (%) n.m. 110 92 60-102
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their father (S1) from a German family with variable clinical
presentations but a shared history of meningococcal meningitis
with sepsis and viral meningitis in the different points of their
childhood and adolescence. Later, both developed CID and
CVID, respectively. The variant is located in the N-terminal
part of p105; using the in vitro transfection model, we found an
impaired nuclear translocation of active p50.

Neisseria meningitidis is a restricted human bacterium and a
common nasopharynx colonizer. The bacterium is often harmless
but, in rare cases, can cause life-threatening meningitis and sepsis.
There is solid evidence for the role of host genetics in predisposition
to meningococcal infection. So far, monogenic defects in the
terminal component of complement and polymorphism in the
CFH/CFHR3 region have been described to be associated with
susceptibility to meningococcal meningitis (13). An association
betweenmeningococcal meningitis andNFKB1 is not reported yet.
Frontiers in Immunology | www.frontiersin.org 6
Recently performing the ectopic expression in HEK293T
cells, we have shown that frameshift mutations in N terminal
“p50 half” of p105 lead to seriously truncated proteins that lack
the nuclear localization sequence (NLS) and consequently cause
rapid proteasomal degradation (10). The overall expression levels
of both p105 and p50 were decreased by about ~50% compared
to healthy controls, as previously reported for several NFKB1
haploinsufficiency variants (6, 7, 10). Almost all patients with
alteration in NFKB1 causing p50 haploinsufficiency presented
with diverse clinical manifestations, mainly autoimmunity,
lymphoproliferative disorders, splenomegaly, CMV infections,
and malignancies besides antibody deficiency (14). Our reported
patient with truncating mutation presented the most severe
phenotype; his sons carry the same mutation; however, one
displayed mild IgG while the other showed autoimmune
thyroiditis and asthma bronchial (10). Therefore, both are
A

B C

FIGURE 2 | NFkB1 expression in and nuclear translocation in transfected HEK293 cells. Total proteins were extracted from transfected HEK293 cells to determine
the expression of p105/50. (A) For microscopic analysis of NFkB1-p50 translocation into the nucleus, HEK293 cells transiently expressing the eGFP-p50 wild type
and mutant were used. Nuclei were stained with DAPI. The wild-type p50-construct localizes into the nucleus while the mutant p50-construct was retained in the
cytoplasm. (B) Western blot to analyze the effect of the variant on the expression of p105/50 in the transfected HEK293 cells. The expression in the wild type was
prominent in the wild type, while no noticeable expression in the variant was observed. (C) p50 expression in HEK293 showed an increase in wild-type and a
decrease in the mutant (p. R230C) in the nuclear extract.
December 2021 | Volume 12 | Article 767188
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under closer follow-up because IgG deficiencies can develop into
CVID over time, and the age-dependent exhibition of the NF-
kB1-related phenotype has been reported (14).

Deleterious mutations in the N terminal part of p105,
including frameshift and truncations, have been shown to
cause (haplo) insufficiency, whereas examining the pathogenic
relevance of a vast number of NFKB1 missense variants in
patients with immunodeficiency remained scarce. The recorded
variant p.H67R reduced nuclear entry of p50 and showed
decreased transcriptional activity in a luciferase reporter assay
(15). The three rare substitutions (p.I281M; p.V98D, p.I87S)
identified in sporadic CVID have been shown to reduce p50
levels and affect protein stability. We have recently demonstrated
that the rare p.R157P variant reduced p105/p50 expression in the
patient’s derived cells, whereas the EGFP-fused mutant p50
revealed an aberrant intranuclear pattern (10). Most recently,
the characterization of p.Y350C substitution in transfected
HEK293T cells has shown decreased p105 expression,
indicating an accelerated decay, although forced expression of
mutant p50 affected nuclear translocation (16). Recently, Li et al.
evaluated the functional impact of 365 NFKB1 variants utilizing a
reporter assay and showed that deleteriousness of monoallelic
variants in NFKB1 lies on haploinsufficiency. Characterized
NFKB1 variants included missense LOF or hypomorphic variants,
which all – similar to the variant presented in the present work –
were localized at the RHD domain of p105/p50 (17).

In the present study, we investigated the impact of variant
c.691 C>T, p. R230C by overexpression assay of EGFP-fused
NFkB1 proteins. HEK293 cells were transiently transfected with
EGFP-fused mutant proteins or EGFP-fused wild-type proteins.
Confocal microscopy analysis also showed that p50 was
sequestered in the cytoplasm, whereas wild-type localization
was in the nucleus (Figure 2A). Immunoblotting revealed
reduced expression of mutant p105 compared to the wild type
(Figure 2B) and a drastic diminish of p50 mutant in the nucleus
compared to the wild-type counterpart (Figure 2C), indicating
the functional defect affects both and predominately the p50
localization into the nucleus.

The assessment of NFkB1 protein levels in the PBMCs of the
father (S1) and the two brothers (S2/3) was investigated. We
observed a reduction in p105/50 in all the missense variants
carriers compared to the control (Figure 1D). More importantly,
the expression of p50 was substantially reduced for S2. Although
the patients' father carries the same mutations with a reduced
p105 expression, he is clinically unaffected. This observation is
consistent with previous studies that observed a reduction in
p105/50 expression in clinically and non-clinically affected
family members (18).

Indeed, the diverse clinical phenotypes are seen in these brothers
harbouring the same mutation refer to the incomplete penetrance
nature of the disease and might be explained by additional factors
such as environmental and or epigenetic alterations (19) that
necessitate further investigations. With the coming of NGS in
several independent studies, NFKB1 mutations have been
described as the most frequent monoallelic genetic cause of PAD
with variable clinical phenotype, even within the same affected
Frontiers in Immunology | www.frontiersin.org 7
family (20). In addition, recent cohort studies on patients with
NFKB1 variants have shown that infections, lymphoproliferative
disorders, autoimmune diseases, and malignancies are the most
common and age-dependent manifestations in these patients
(14). Besides its role in regulating B-cell activities such as
differentiation and proliferation, NF-kB1 is also crucial for T-cell
activation, antigen presentation, and regulation of tissue-specific
autoimmunity (21). Thus reduction in p105/p50 expression
may play a role in autoimmunity, lymphadenopathy, and
splenomegaly as observed in mice lacking p105 expression (22).
Our patients currently present milder clinical phenotypes
with hypogammaglobulinemia, moderate lymphopenia, and
reduced CD4+T cells. Since family members, carrying deleterious
NFKB1 variants with moderate phenotype are at high risk for
autoimmunity and malignancy, a closer follow-up for early
initiation of IgG substitution therapy to prevent complications is
strongly recommended.
CONCLUSION

Pathogenic variants within RHD impairs the p50 nuclear
translocation and, therefore, might diminish the functions of
p50, resulting in progressive antibody deficiency and suggests the
need for closer monitoring and counselling of mutation carriers.
This study is a further crucial extension of our knowledge in the
NF-kB1-related phenotype.
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Supplementary Figure 1 | Total RNA was extracted from transfected HEK293
cells to determine the expression of p105 at themRNA level. (A) Quantitative-Real time
PCR showed a reduction in the transcript levels of p105 in themutant compared to the
wild type. Delta delta Ct was then determined by subtracting DCt (variant) from DCt
(wild type). Fold change in expression was calculated using 2-DDCt.

Supplementary Figure 2 | Densitometry analysis. Densitometry analysis was
performed for p105 and p50 expression in the transfected HEK293 cells and
PBMCs. (A) Expression of p105 in HEK293 cells transfected with wild type NFkB1
and mutant (p.R230C). (B) Expression of p50 in HEK293 cells transfected with wild
type NFkB1 and mutant (p.R230C) showed a reduction in the p50 by
immunoblotting. Both p105 and p50 were drastically reduced in the mutant
compared to the wild type. (C) Expression of p105/50 in the PBMCs of healthy
control (HC) and mutation carriers (S1-S3). Densitometry analysis revealed lowered
expression in all subjects compared to the control. (D) PBMCs from HC and S1, S2
and S3 were stimulated with PMA; 50 ng/ml and ionomycin;1 mg/ml and the
expression of p105/50 examined. There was no significant changes in the p105/50
expression after stimulation.
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