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Systemic lupus erythematosus (SLE) is a prototypic autoimmune disease characterized by
the loss of immune tolerance. Lupus nephritis (LN) is still a major cause of the morbidity
and mortality of SLE. In clinical practice, diagnosis, and therapy of SLE is complicated and
challenging due to lack of ideal biomarkers. Exosomes could be detected from numerous
kinds of biological fluids and their specific contents are considered as hallmarks of
autoimmune diseases. The exosomal miRNA profiles of SLE/LN patients significantly differ
from those of the healthy controls making them as attractive biomarkers for renal injury.
Exosomes are considered as optimal delivery vehicles owing to their higher stable, minimal
toxicity, lower immunogenicity features and specific target effects. Endogenous miRNAs
can be functionally transferred by exosomes from donor cells to recipient cells, displaying
their immunomodulatory effects. In addition, it has been confirmed that exosomal miRNAs
could directly interact with Toll-like receptors (TLRs) signaling pathways to regulate NF-kB
activation and the secretion of inflammatory cytokines. The present Reviewmainly focuses
on the immunomodulatory effects of exosomal-miRNAs, the complex interplay between
exosomes, miRNAs and TLR signaling pathways, and how the exosomal-miRNAs can
become non-invasive diagnostic molecules and potential therapeutic strategies for the
management of SLE.

Keywords: systemic lupus erythematosus, exosomal microRNA, immunomodulation, Toll-like receptor,
biomarker, therapy
INTRODUCTION

Systemic lupus erythematosus (SLE) is a prototypic autoimmune disease which is characterized by
the loss of immunological tolerance, production of inflammatory cytokines and autoantibodies that
form immune complex (IC) deposits (1). IC deposition is a major event in the renal glomeruli of
patients with lupus nephritis (LN) which is one of the most serious manifestations of SLE and is
associated with significant morbidity and mortality (2). To date, our understanding of SLE
pathogenesis has increased. However, SLE patients are still suffering from a meaningful burden
org December 2021 | Volume 12 | Article 7570961
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of poor outcomes (3). Great effort is required to define easily-
measurable, highly-sensitive, non-invasive, and reliable
biomarkers for SLE in order to early diagnosis and assess
disease activity or improve therapeutic regimen in clinical
application (4).

MicroRNAs (miRNAs) are a class of small non-coding RNA
(about 22 nucleotides) that play a critical role in the regulation of
diverse biological processes. Altered miRNA profile is closely
associated with progression or remission of SLE (5–7). miRNAs
are not only localized within the cell but presence in various
biological fluids. A majority of extracellular miRNAs detected in
human urine, serum, and saliva are concentrated in exosomes
and they are protected from degradation by RNases through
inclusion in a lipid bilayer (8, 9).

Exosomes are a type of extracellular vesicles (EVs), ranging
from 30 to 150 nm in diameter. Existing evidence suggests that
the levels of circulating exosomes correlate with disease activity
in patients with SLE (10). Exosome-delivered miRNAs carry out
transport of genetic information, and can be taken as diagnostic
biosignatures or therapeutic approaches for autoimmune
diseases. Abnormal expression of exosomal-miRNAs has been
found in SLE/LN patients and this exosomal-miRNA profile
could reflect the SLE activity and histological alterations (11–13).
These findings highlight the promising applications of exosomal-
miRNAs as ideal biomarkers of SLE progression, especially the
kidney activity.

Increasing evidence indicate that Toll-like receptors (TLRs)
play critical roles in SLE pathogenesis (14). There is much
interest in targeting TLRs for the prevention and treatment of
SLE (15). Specifically, miRNAs within exosomes could be
transferred to recipient cells, where they could canonically bind
to their target mRNAs or directly interact with TLRs (16, 17).
Nevertheless, effects of exosomal miRNAs by targeting TLRs
pathways on the development of SLE are not well reviewed until
now. This review mainly introduce the characteristics of
exosomes, the mechanisms of sorting miRNAs into exosomes,
and specifically focus on immunomodulatory properties of
exosomal miRNAs. Moreover, the interplay between exosomes,
miRNAs and TLRs are highlighted. The potential applications of
exosomal miRNAs as diagnostic biomarkers and therapeutic
strategies for SLE in clinical settings are also discussed. This
review will renew our understanding of the mechanisms
underlying intracellular communication and provide an
attractive therapeutic approach for autoimmune diseases.
CHARACTERISTICS OF EXOSOMES

Biogenesis of Exosomes
Exosomes are released by most cell types into the extracellular
space (18) and they can be found in various body fluids (19). The
mechanism of the biogenesis of exosomes is very complex
(Figure 1). In the first stage, inward invagination of clathrin-
coated microdomains on plasma membrane forms the endocytic
vesicles, creating early endosomes (EEs) that can interact with
the Golgi apparatus and the endoplasmic reticulum, then these
Frontiers in Immunology | www.frontiersin.org 2
early EEs matured into late endosomes (20). Exosomes are
intraluminal vesicles (ILVs) generated within endosomal
system by inward budding of endosomes to form
multivesicular bodies (MVBs) (21). Exosome-specific proteins
and other biomolecules are sorted into the ILVs. The endosomal
sorting complex responsible for transport (ESCRT) complex
facilitates the development of invaginated vacuoles into EEs
and participates in the recognition of ubiquitinated cargo by
MVBs, as well as the invagination of the MVBs outer membrane
(21). In last stage, later MVBs can be transformed in one of two
ways: degradative MVBs or secretory MVBs. Degradative MVBs
fuse with lysosome and their contents will undergo lysosomal
degradation. Secretory MVBs fuse with the plasma membrane
and release ILVs and these released ILVs are termed as exosomes
(20–22).

Determination of the destination of these vesicles is not fully
understood and they were demonstrated to be mediated by Rab
family of proteins (23). Exosomes may exert their function in
distinct modes: 1) triggering a second messenger signaling; 2)
internalization into recipient cells and downloading their
contents; and 3) releasing its components into the extracellular
space (24).

Composition of Exosomes
The biogenesis of exosomes determines their composition which
includes certain extracellular, membrane and endosomal-
associated components from their origin, including a variety of
proteins, lipids, RNAs, DNAs, et al., termed as “cargo” (25, 26).
Many research teams have focused on the contents of exosomes,
which leads to the knowledge of their composition has grown
significantly (Figure 1). Specific database ExoCarta (http://www.
exocarta.org) lists the molecules that have been found
in exosomes.

Although the composition of exosomes shows variation,
exosomes usually harbor cytoskeleton proteins, metabolic
enzymes, signal transduction proteins, heat shock proteins,
proteins involved in MVB biogenesis (Alix, TSG101, and
clathrin), lysosomal-associated membrane proteins (LAMP1
and LAMP2), tetraspanins (CD81, CD9, CD63, and CD82),
adhesion molecules (ICAMs and integrins), Rab proteins, as
well as antigen presentation related proteins (CD86, MHC-I and
-II) (20, 25, 27, 28). These proteins can be used as biomarkers to
detect the presence of exosomes.

The main lipid compounds of the membrane of exosomes
include cholesterol, sphingolipids, and glycerophospholipids (20,
29). Previous studies have also reported that exosomes contain
bioactive lipids, such as prostaglandins and leukotrienes (30).
Moreover, exosomes also harbor a wide array of RNAs in the
form mRNA, miRNA, transfer RNA (tRNA), ribosomal RNA
(rRNA), piwi-interacting RNAs (25, 31). A specific database
(http://www.exoRBase.org), exoRBase, is a repository of different
kinds of RNAs from RNA-seq data analyses of human blood
exosomes, and experimental validations from the published
literature (32). It has also been investigated that exosomes
contain saccharide groups on their surface membranes
including mannose, polylactosamine, a-2,6 sialic acid, and
complex N-linked glycans (33).
December 2021 | Volume 12 | Article 757096
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MECHANISMS FOR SORTING OF miRNAs
INTO EXOSOMES

Several studies have shed light on the mechanisms for sorting of
miRNAs into exosomes. According to previous literature, the
process of sorting miRNAs into exosomes follows distinct
proposed ways. Potential modes are shown as follows: 1) The
sumoylated heterogeneous nuclear ribonucleoprotein-(hnRNP-)
dependent pathway which mainly includes hnRNPA2B1 and
hnRNP-Q: miRNAs that contain the EXOmotif (GGAGmotif in
the the 3′portion of miRNA sequences) can be recognized by
sumoylated hnRNPA2B1 (34). Once this recognition occurs,
specific miRNAs are efficiently sorted into exosomes, while
miRNAs without this motif remain in the cytoplasm (34).
miRNAs that contain the hEXO motif are recognized by
hnRNP-Q also called SYNCRIP, leading to sorting of these
miRNAs into the exosomes (35). 2) Y-box protein 1 (YBX1) is
also involved in sorting miRNAs (36). In HEK293T cells, YBX1
was identified as a protein required for miR-223 sorting into the
exosomes (36). Besides the sorting of miRNAs, YBX1 is also
involved in the sorting of other non-coding RNAs in exosomes
(37). 3) The involvement of neutral sphingomyelinase 2-
(nSMase2-) in exosomal miRNA sorting mechanism: after the
inhibition of nSMase2 expression and function, the quantum of
exosomal miRNAs reduces, which indicates the role of nSMase2
in miRNA package into exosomes (38). 4) The miRNA-induced
silencing complex-(miRISC-) dependent pathway which relies
on Ago2: combination of Ago2 and miRNA to form Ago2-
Frontiers in Immunology | www.frontiersin.org 3
miRNA complex is packaged into exosomes which is regulated
by MEK/ERK pathway (39, 40). After the deficiency of Ago2, the
main component of miRISC is more conducive to bind to the 5′-
end of miRNA, reducing the number of privileged-transported
miRNAs in exosomes (41). 5) Post-translational modification
related pathway: Koppers-Lalic and his colleagues reported that
uridylation of 3′-ends of endogenous miRNAs promotes their
sorting to exosomes (42).
IMMUNOMODULATORY EFFECTS OF
EXOSOMAL miRNAs

Not only intracellular miRNAs have been recognized as key
modulators in gene expressions (43), exosome-shuttled miRNAs
have also been revealed to possess pivotal immunomodulatory
properties. The transfer of miRNAs through exosomes plays
important roles in the physiological immune responses and also
in the development of autoimmune diseases. The immunologic
function of exosomal miRNAs-derived from immune cells is
mainly discussed in this section (Table 1).

MSC-Derived Exosomal miRNAs
Mesenchymal stem cells (MSCs) have been proposed for the
therapy of autoimmune diseases for their immunosuppressive
properties which is closely associated with the exosomes. miR-
146a acts as a critical molecular brake on aberrant inflammation
which is the root cause of numerous human diseases (71).
FIGURE 1 | Biogenesis and composition of exosome. Exosomes are derived from endosomes that formed from cellular membrane compartments. The endosomes
harboring intraluminal vesicles (ILVs) are called multivesicular bodies (MVBs). During this process, early endosomes (EEs) communicate with the Golgi apparatus
through bidirectional vesicle exchange. MVBs may be degraded by lysosomes or fuse with the plasma membrane, and then release ILVs into extracellular space
termed as exosomes. Exosomes contain a range of proteins, miRNAs, mRNAs, and DNA molecular cargo. Details are provided in the main text.
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Therefore, it is well known for its anti-inflammatory effects in
several kinds of autoimmune disorders such as rheumatoid
arthritis (RA) (72), SLE (73), and psoriasis (74). Mice loss of
miR-146a develop a spontaneous autoimmune disorder later in
life and many of them die prematurely (75). Exosomes are often
used as delivery tools to study the therapeutic effect of miR-146a in
a variety of inflammatory diseases in vivo. Pre-treatment with
IL-1b strongly up-regulated the level of miR-146a in human
umbilical cord-derived MSCs (UC-MSCs), and this miRNA was
selectively packaged into exosomes (44). Furthermore, exosome-
mediated transfer of miR-146a contributed to the enhanced
immunomodulatory properties of MSCs by ameliorating the
Frontiers in Immunology | www.frontiersin.org 4
symptoms of murine sepsis and inducing macrophage
polarization toward M2 phenotype (44). Administration of EVs-
miR-146a generated from MSCs dampened TRAF6 and IRAK1
expression, and suppressed TNBC-induced inflammatory
cytokines production in colon tissue of rats through inhibiting
NF-kB signaling pathway (45).

LPS-preconditioned MSCs has been an attractive therapeutic
approach for chronic diseases and tissue injury as demonstrated
by Ti et al. They found that exosomes from LPS-preconditioned
MSCs possessed advantages for the transform of macrophages
into M2 type. This effect was mainly mediated by let-7b that
shuttled by MSC-exosomes. In vivo, LPS pre-exosomes greatly
TABLE 1 | Functions of exosome-associated miRNAs in immune modulation.

Source Exo-miRNA Recipient Function Ref.

Species Cell Species Cell/Animal

Human UC-MSC miR-146a Mouse Mø Enhancing polarization of macrophages to M2 and attenuating inflammation (44)
Rat BM-MSC miR-146a Rat Colitis Attenuating inflammation in colitis of rats via NF-kB (45)
Human UC-MSC let-7b Human/

Rat
Mø/diabetic rat Modifying macrophage polarization and alleviating chronic inflammation (46)

Mouse MSC miR-21 Mouse Mø/sepsis Inducing macrophage M2 polarization and ameliorate sepsis (47)
Mouse BM-MSC miR-150-5p Human

Mouse
FLS/CIA Decrease migration and invasion in FLS and reducing joint destruction in CIA

mouse model
(48)

Rat BM-MSC miR-192-5p Rat CIA Delay the inflammatory response in CIA model (49)
Human UC-MSC miR-181a Mouse I/R injury Possessing the immune-suppressing role and exerting a therapeutic effect on I/R

injury
(50)

Human UC-MSC miR-181c Rat Mø/burn model Attenuating burn-induced inflammation by inhibiting TLR4 pathway (51)
Mouse DC miR-148a

miR-451,
et al.

Mouse DC An inhibitory effect on target mRNAs of acceptor DC (52)

Mouse BM-DC miR-155
miR-146

Mouse BM-DC miR-155 enhancing while miR-146a reducing inflammatory gene expression (53)

Mouse BM-DC miR-146 Mouse EAMG Suppressing ongoing clinical MG in mice and altering Th cell profiles (54)
Mouse BM-DC miR-682 Mouse Renal allograft model Promoting Tregs differentiation to induce immune tolerance after kidney

transplantation
(55)

Human M1 miR-16-5p Human GC cell Enhancing T cell immune response by regulating PD-L1 in GC (56)
Human Mø miR-223 Human Monocytes Inducing the differentiation of recipient monocytes (57)
Human TAM/

M2
miR-29a-3p
miR-21-5p

Human CD4+ T cell Inducing the Treg/Th17 cell imbalance in EOC (58)

Mouse Mø miR-155 Mouse Cardiac fibroblasts As a regulator for fibroblast proliferation and inflammation (59)
Mouse Mø miR-21-3p

miR-146a
miR-146b

Mouse Pain model Reducing paw swelling and relieving inflammatory response (60)

Mouse B cell anti-miR-150 Mouse CD8+ T cell Down-regulation of endogenous miR-150 (61)
Mouse B cell anti-miR-155 Mouse Mø Reduction in LPS-stimulated TNF-a production (62)
Human B cell miR-155 Human Hepatocytes Inhibition of HCV replication in hepatocytes from RA patients (63)
Mouse CD8+ Ts

cell
miR-150 Mouse Te cell Inhibition of the contact sensitivity of Te cell (64)

Mouse CD8+ Ts
cell

miR-150 Mouse Mø Modulation of Mj antigen-presenting
function

(65)

Human T cell miR-142-3p Human Glandular cell Impairment of the function of salivary gland epithelial cells (66)
Human
Mouse

T cell miR-142-3p
miR-142-5p
miR-155

Mouse Pancreatic b cell/NOD
mice

Promoting pancreatic b cell death and contributing to T1D development (67)

Mouse CD4+ T cell miR-155-3p
miR-25-3p
miR-20a-5p

Mouse B cell Control germinal center reaction and antibody production (68)

Human T cell line miR-335 Human APC Down-regulation of the target gene expression in APC (69)
Mouse Treg cell let-7d Mouse Th1 cell Suppression of Th1 cell proliferation and cytokine secretion (70)
December 2021 | Volume 12 | Article 75
Exo, exosome; miR, microRNA; UC-MSC, umbilical cord-derived MSC; Mø, macrophage; BM-MSC, bone marrow-derived MSC; NF-kB, nuclear factor-kB; FLS, fibroblast-like
synoviocyte; CIA, collagen-induced arthritis; I/R, ischemia-reperfusion; TLR4, Toll-like receptor 4; DC, dendritic cell; BM-DC, bone marrow-derived DC; MG, myasthenia gravis; EAMG,
experimental autoimmune MG; Th, helper T cell; Treg, regulatory T cell; PD-L1, programmed cell death-ligand 1; TAM, tumor-associated macrophage; EOC, epithelial ovarian cancer; GC,
gastric cancer; HCV, hepatitis C virus; RA, rheumatoid arthritis; Ts, suppressor T cell; Te, effector T cell; NOD, non-obese diabetic; T1D, type 1 diabetes; APC, antigen-presenting cell.
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alleviated inflammation (46). Exosomes isolated from IL-1b
primed MSC could induce M2-polarization of macrophages
and attenuate the symptoms in septic mice by delivery of miR-
21 (47).

In RA patients, levels of miR-150-5p in serum and synovial
tissues were strongly decreased compared with osteoarthritis
patients. In vitro, miR-150-5p was effectively transferred by
MSC-derived exosomes to FLS, and reversed the migration and
invasion of FLS by directly suppressing the expression of its
target genes MMP14 and VEGF (48). In vivo, administration of
MSC generated exosomal-miR-150-5p alleviated joint
inflammation in collagen-induced arthritis (CIA) mouse model
(48). Additionally, miR-192-5p overexpressed exosomes derived
from BM-MSC could repress the levels of inflammatory
cytokines in synovial tissues and serum of CIA rats (49).

miR-181 and miR-21 could also be selectively packaged into
exosomes and act as efficient rheostat to modulate inflammatory
response. Studies demonstrated that miR-181a delivery by MSC-
exosome downregulated TNF-a and IL-6, as well as increased
the expression of the IL-10 in PBMCs (50). Previous study found
that burn injury significantly increased the inflammatory
reaction induced by LPS. Whereas, human UC-MSC derived
exosomes enriched miR-181c effectively suppressed LPS-
stimulated inflammatory response in macrophage (51). These
data suggest that miRNAs shuttled by MSC-derived exosomes
possess complex pleiotropic effects on different aspects
of inflammation.

DC-Derived Exosomal miRNAs
Dendritic cells (DCs) are the most important antigen presenting
cells (APCs) in immune system. miR-146a functions as a
negative master regulator for DCs maturation and activation.
Previous studies demonstrated that DCs efficiently transfer
endogenous exosomal-miRNAs including miR-146a and miR-
155 to other target DCs and they are internalized, and fused with
recipient DCs (52, 53). Exosomal miR-146a inhibits the
endotoxin-induced inflammation, whereas exosomal miR-155
promotes inflammation to the same stimulus in recipient DCs
(53). These studies represent a novel mechanism of DC-
DC communication.

Myasthenia gravis (MG) is a neurological autoimmune
disease, resulting from aberrant activation of T and B
lymphocytes in the immune system. Exosomes from miR-146a
transfected DCs were anti-inflammatory and they expressed
lower levels of CD80 and CD86 than that of exosomes from
control DCs. Exosomes rich in miR-146a could alleviate clinical
symptoms of experimental autoimmune MG mice, and this
therapeutic effects were antigen-specific (54). Moreover, they
could suppress T lymphocyte proliferation and shift T helper
(Th) cell profiles from Th1/Th17 to Th2/Treg subsets (54).

The potential of DC-derived exosomes to trigger immunity or
tolerance depends on the maturation status or subtypes of DCs.
Studies have reported that exosomes from immature DCs
(imDCs) or regulatory DCs have shown certain therapeutic
prospects in autoimmune disease by inducing T-cell tolerance.
Pang et al. demonstrated that miR-682 was enriched in imDCs
secreted exosomes (imDex) which remarkably increased survival
Frontiers in Immunology | www.frontiersin.org 5
rate, decrease rejection associated cytokines (IFN-g, IL-2, and
IL-17) production in renal allograft model mice (55). Moreover,
imDex shuttled miR-682 suppressed the IL-17+CD4+ T cells and
promoted Tregs differentiation (55) playing an important role
in autoimmunity.

Macrophage-Derived Exosomal miRNAs
Macrophages, another kind of APCs, can also produce exosomes
with immunomodulatory function. Blockade of PD1/PD-L1
checkpoints could lead to T cells activation and inhibit gastric
cancer (GC) proliferation. M1 macrophage-secreted exosomes
carrying miR-16-5p were confirmed to trigger T cell response
which inhibited tumor progression by targeting PD-L1 in GC
cells (56).

Ismail et al. found that exosomel miR-223 contained in the
macrophage were transported to and activated the target cells
(57). A Treg/Th17 cell imbalance characterizes many human
diseases, including systemic lupus, diabetes, and multiple kinds
of cancers. Tumor-associated macrophage (TAM) derived
exosomes transfer miRNAs to induce the Treg/Th17 imbalance
by targeting STAT3 in CD4+ T cells in epithelial ovarian cancer
(EOC) (58). These results revealed a exosome-related
mechanism of TAMs in tumor progression supplied a
therapeutic strategy in EOC.

miR-155 expression was enriched in activated macrophages
derived exosomes. These miR-155 containing exosomes
inhibited cardiac fibroblast proliferation and promoted
inflammation (59). It was demonstrated that exosomes derived
from LPS-stimulated macrophages carry higher levels of 3
murine homologs for human miRNAs (60). Additionally, these
exosomes were able to reduce paw swelling and relieve
inflammatory response in complete Freund’s adjuvant-induced
pain model (60). Based on this observation, we can summarize
that macrophage-derived exosomes communicate with a variety
cell types, suggesting the impact of these microvesicles may
be widespread.

B Cell-Derived Exosomal miRNAs
Primary B lymphocytes can be genetically programmed with
plasmid DNA comprising the coding sequence for anti-miR-150.
Intriguingly, anti-miR-150 synthesized in these engineered B
cells were secreted both as free and EV-packed fractions while
only EVs-carried ones were apparently internalized by CD8+

T cells during antigen-mediated activation (61). This implies that
B cells represent an efficient platform for the synthesis and
delivery of noncoding RNAs to regulate adaptive immunity,
paving the way for miRNA-based therapy.

miR-155 exerts a positive regulation in LPS-induced TNF-a
production by macrophages through enhancing its translation
(76). Given the importance of macrophages in multiple
inflammatory diseases, including autoimmune diseases,
exosomes might be used as vehicles to deliver a miR-155
inhibitor to alleviate inflammatory responses. In this sense,
Momen et al. generated B cell derived exosomes to deliver
exogenous miR-155 inhibitor into macrophages. They found
that treatment of macrophage cell lines with miR-155 inhibitor
loaded exosomes inhibited the endogenous miR-155 level in
December 2021 | Volume 12 | Article 757096
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recipient cells and significantly reduced TNF-a production (62).
miR-155 was demonstrated to promotes the expression of
inflammatory cytokines, and it is associated with HCV
production inhibition (77, 78). Exo-miR-155 levels were
increased in RA patients infected with HCV. In vitro study
showed that miR-155 delivered by B cell-derived exosomes
could inhibit HCV replication in hepatocytes (63).

T Cell-Derived Exosomal miRNAs
Bryniarski et al. firstly presented evidence that CD8+ suppressor
T-cell (Ts) population produced the exosome-like nanovesicles
carried inhibitory miR-150 that specifically target the effector T-
cell mixture of contact sensitivity (CS) (64). It provides
translational possibilities for the treatment of several human
diseases. In murine CS reaction, antigen-specific immune
tolerance is also mediated by exosomes derived by CD8+ Ts
cells. These exosomes were coated with antibody and carried
miR-150 that were formerly suggested to suppress CS. Nazimek
et al. demonstrated the essential role of Ts cell-secreted exosomes
in antigen-specific immune suppression (65).

miR-142-3p has been previously documented to express in
the salivary glands of patients with Sjogren’s syndrome (SS), but
not in healthy controls. T cell exosome-derived miR-142-3p
acted as a pathogenic driver of immunopathology in SS.
Exosomes containing miR-142-3p from activated T cells
impaired the function of salivary gland epithelial cells. The
mechanisms linked to epithelial secretory function, including
Ca2+ flux, cAMP production, and protein secretion (66).

Type 1 diabetes (T1D) is an autoimmune disease initiated by
the invasion of pancreatic islets by immune cells that selectively
kill the b cells which is a hallmark of this disease. The
autoimmune attack of b cells is a hallmark of T1D, but the
detailed mechanisms remain poorly understood. Guay et al.
provided evidence for the involvement of an exosome-
mediated transfer of miR-142-3p, miR-142-5p, and miR-155
from T lymphocytes that trigger chemokines (CCL2, CCL7,
and CXCL10) expression and apoptosis in recipient pancreatic
b cells in T1D. On the other hand, inactivation of these miRNAs
in recipient b cells prevents exosome-mediated apoptosis and
protects non-obese diabetic (NOD) mice from diabetes
development in vivo (67).

A better understanding of the mechanisms during germinal
center (GC) reaction dynamics may supply new therapeutic
strategies to modulate humoral responses (68). Transferred
EV-miRNAs of T-cell origin target key genes to regulate B-cell
function including antibody production and these small EVs is
required for GC reaction (68). Immunological synapse (IS) is a
highly specific means of intercellular communication between T
cells and APCs during antigen recognition. Mittelbrunn et al.
presented evidence that during cognate immune interactions
there is a unidirectional transfer of miR-335 from T cell to APC
in an Ag-specific manner (69). This genetic communication
appears to connect with formation of the IS. Moreover,
transferred miR-335 during immune synapse could down-
regulate translation of SOX-4 mRNA in recipient cells (69).

Foxp3+ T regulatory (Treg) cells could prevent inflammatory
damage, but the precise mechanisms are incompletely understood.
Frontiers in Immunology | www.frontiersin.org 6
In this regard, exosomal miRNA mediated autonomous gene
silencing is a requirement for Treg cell-mediated suppression.
Exosome-carried transfer of let-7d inhibited Th1 cell proliferation
and IFN-g secretion, which contributes to prevention and
suppression of systemic disease (70).

In summary, the above studies reveal a mechanism of T cell
mediated immunoregulation by miRNA-containing exosomes.
Intriguingly, DCs derived exosomes could transfer functional
miRNAs to target cells (52), whereas exosomes secreted by T
cells transfer miRNA unidirectionally to DCs according to the
previous reports (69). It suggests that exosomes generated from
different cell types might execute their roles in distinctive manners.
INTERACTION BETWEEN EXOSOMES,
miRNAs AND TLRs

TLRs recognize exogenous and endogenous stimuli to prime
immune responses, and excessive activation of TLRs contributes to
disease progression in several autoimmune disorders (79, 80). Lee
et al. demonstrated that circulating exosomes fromSLEcouldactivate
both surface and endosomal TLRs (10). Diverse biomolecules
(proteins, RNAs and DNAs), especially miRNAs, in exosomes have
been confirmed to be recognized bymultiple TLRs and play a pivotal
role in regulating inflammatory and immumodulatory effects on
target cells (81, 82). Therefore, the relationship between miRNA,
exosomes and TLRs was deemed important in discovering the
mechanism of exosomal miRNAs in SLE progression. The
interplay between exosomes, miRNAs, and TLRs occurs at different
levels, which was shown as follows (Figure 2).

TLRs Activation Regulates the Level of
miRNAs in Exosomes
Activation of TLR3 and its adaptor TICAM-1 increased miR-21
levels in EVs but not intracellular miR-21 levels, which indicates
a novel role of the TLR3/TICAM-1 pathway in controlling miR-
21 levels in EVs. Consistently, the siRNA for TICAM-1 reduced
miR-21 levels in EVs after stimulation of TLR3 suggesting that
TICAM-1 augmented sorting of miR-21 to EVs (83). 25% of SLE
patients have antiphospholipid antibodies (aPL) which are a
heterogeneous population of autoantibodies that recognize
anionic phospholipid-binding proteins. A previous study
demonstrated that aPL upregulated levels of miR-146a-3p and
miR-146a-5p in exosomes. This effect could be inhibited by LPS-
RS meaning, which suggests that this up-regulation was TLR4-
mediated (84).

Exosomes Transfer TLRs to
Recipient Cells
Exosomes mediate intercellular communication by transferring
genomic materials between source and target cells. However, few
studies have shown that TLRs within exosomes can be
transferred to recipient cells. Zhang et al. Showed for the first
time that TLR4 on wild type BMDC-derived exosomes can be
taken up by TLR4 knockout BMDCs and increase cellular
December 2021 | Volume 12 | Article 757096
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responsiveness to LPS by activating the TLR4/NF-kB pathway in
recipient cells (85). These results indicate that functional TLR
proteins themselves could also be transferred from original cells
to recipient cells through exosome-like EVs.
Exosomal-miRNAs Modulate
TLR Activation
Zhao et al. demonstrated that exosomal miR-182 derived from
MSC participated in the regulation of macrophage polarization
by targeting TLR4/NF-kB signaling cascades (17). In addition,
other miRNAs are also abundant in MSC derived exosomes that
synergistically targeted the TLR4/NF-kB signaling pathway and
significantly decreased the production of proinflammatory
cytokines (16). A previous study found that exosome-delivered
miR-548a-3p could regulate macrophage-mediated
Frontiers in Immunology | www.frontiersin.org 7
inflammatory response by targeting TLR4/NF-kB signaling
pathway in RA (86). Exosomal miRNAs extracted from the
plasma of SLE patients could induce the production of IFN-a
by pDC which is a hallmark of SLE (87).

Exosome-delivered miRNAs could also act as endogenous
ligands of human TLR7, and induce pDC activation in SLE
patients (87). For instance, miR-21 affects the resolution of
inflammation by interacting with TLR7/8 (82). miR-29b-
containing exosomes participate in the regulation immune
response via TLR7 signaling (88). miR-let-7b packaged in
exosomes is a endogenous ligand of TLR7 which can bind to
TLR7+ myeloid cells. Fusion of exosomal miR-let-7b into M2
cells differentiated these cells into M1 macrophages (89). The
above studies suggest that exosomes-capsuled miRNAs have the
ability to regulate specific TLRs signaling pathways and induce
immune activation and immunosuppression.
FIGURE 2 | Schematic diagram of the interaction between exosomes, miRNAs and TLRs. a. TLR3 senses dsRNA and utilizes the adaptor TRIF to activate IRF3 and
NF-kB. Activation of TLR3 and its adaptor TICAM-1 increased miR-21 levels in exosomes. b. TLRs like TLR4 within exosomes can be transferred from donor cells to
recipient cells. c. Exosome-encapsulated miRNAs, dsRNA and DNAs have the ability to regulate TLR7/8, TLR3, and TLR9 signaling pathways respectively, and
induce immune activation and immunosuppression. d. Exosomal-miRNAs were found to suppress or up-regulate TLRs expression. MyD88 and TRIF are two major
TIR domain-containing adaptors downstream of TLRs. IRFs and NF-kB are the common downstream transcriptional factors in TLRs pathways that regulate gene
expression. Detailed descriptions are provided in the main text.
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Exosome Carried miRNAs Regulate
TLR Expression
Besides the regulating roles of exosomes in the downstream of
TLRs signaling cascade, several studies have demonstrated the
influence of exosomes on the expression of TLRs themselves.
Exosomes derived from pancreatic cancer are enriched in miR-
203 which down-regulates TLR4 expression and inhibits cytokines
production (IL-12 and TNF-a) in DCs (90). miR-181c abrogates
TLR4 expression by directly binding to its 3′-UTR to restrict the
inflammatory response (91) which suggests that miR-181c is an
essential therapeutic tool in anti-inflammation treatment.
Moreover, exosomal-miR-181c from hUC-MSC inhibits the
expression of TLR4 and subsequently reduces NF-kB/p65
activation (51). Similarly, Peng et al. identified that miR-216a-5p
containing exosomes could also bind to 3′-UTR of TLR4 and
suppress inflammatory response (92).
EXOSOMAL miRNAs AS POTENTIAL
BIOMARKERS FOR SLE

In clinical practice, diagnosis of SLE is complicated and
challenging due to lack of ideal biomarkers with high
specificity and sensitivity. Moreover, dysregulation of distinct
miRNAs has been discussed as a pathogenic feature in
autoimmune diseases like SLE (7, 93) and they are easily
detectable in many biological fluids. Therefore, increasing
number of studies focus on the effort to explore the potential
of these molecules to serve as ideal biomarkers for SLE (Table 2).

LN is characterized by autoantibody-induced renal damage and
it is still a major cause of the morbidity and mortality in SLE. The
current “gold standard” to predict renal outcome is renal biopsy,
which is invasive and complicated. miRNAs are indispensable to
Frontiers in Immunology | www.frontiersin.org 8
regulate renal development, function and homeostasis processed in
kidneys. It has been emphasized that there were several urinary
miRNAs changes in LN. Following the discovery of urinary
exosomes by Pisitkun et al. (102), there is great interest in using
urinary exosomal-miRNAs as non-invasive biomarkers in renal
diseases mainly owing to the easy collection and their effects in
reflecting pathophysiological features of organism. Urinary
miRNAs are primarily enriched in exosomes in SLE, and the
increment was found in active LN (9).

miR-146a has been demonstrated to involve in kidney injury
in murine lupus model and human lupus. Previous studies
reported that urinary exosomal miR-146a was strongly
enhanced in patients with SLE when compared to healthy
controls (9, 12). And miR-146a enrichment in urinary
exosomes from SLE was closely associated with renal damage
index such as proteinuria, histological features and lupus activity
suggesting a crucial role of miR-146a during the development of
LN (12). Moreover, exosomal miR-146a was found to
discriminate patients with active from inactive LN patients (9,
12) because the levels of exosomal miR-146a are highest in active
LN patients who suffer from more severe kidney injury, such as
increased glomerular sclerosis, tubular atrophy, and interstitial
fibrosis (12, 98).

In addition, an increased level of miR-26a in urinary
exosomes was found from patients of autoimmune
glomerulonephritis, which is closely correlated with podocyte
injuries indicating that altered miR-26a levels in exosomes may
serve as a biomarker of injured podocytes in these patients
(94).Urinary exosome-associated miRNAs act as epigenetic
factors playing a crucial role in maintaining renal tubular cells
in a paracrine man¬ner. In this sense, decreased miR-26a and
-10a/b could reflect the changes in renal functions and
histopathology in dogs (95).
TABLE 2 | Altered expression and potential roles of exosomal miRNAs in renal damage.

Disease Species Source Exo-miRNAs Potential roles Ref.

SLE/LN Human Urine miR-146a ↑ Discriminating the presence of active LN (9)
SLE/LN Human Urine miR-146a↑ As a biomarker of albuminuria and disease flares in LN of SLE (12)
LN Human

Mouse
Urine miR-26a ↑ As a marker of injured podocytes in autoimmune glomerulonephritis (94)

KD Dog Urine miR-10a/b ↓ Reflecting the changes in renal functions and histopathology (95)
LN Human Urine let-7a ↓

miR-21 ↓
Guiding the clinical stage of LN patients (96)

LN Human Urine miR-29c ↓ Negative correlation with glomerular sclerosis (13)
CKD Human Urine miR-29c ↓ As a noninvasive marker for renal fibrosis (97)
SLE/LN Human Urine miR-150 ↑

miR-21 ↑
miR-29c ↓

For early diagnosis of kidney fibrosis in LN (11)

LN Human Urine miR-3135b ↑
miR-654-5p ↑
miR-146a-5p ↑

As novel non-invasive diagnostic markers for LNIV-CC (98)

LN Human Urine miR-31 ↑
miR-107 ↑

miR-146a-5p ↑

Promising markers for clinical outcomes (99)

SLE Human Serum miR-451a ↓ Serving as a potential biomarker and therapeutic target for SLE (100)
SLE Human Serum Hsa-miR-135b-5p ↑ As a promising diagnostic biomarker for SONFH in SLE (101)
December 2021 | Volume 12 | Article 7
Exo, exosome; miR, microRNA; SLE, systemic lupus erythematosus; LN, lupus nephritis; KD, kidney disease; CKD, chronic kidney disease; LNIV-CC, type IV lupus nephritis with cellular
crescent; SONFH, steroid-induced osteonecrosis of femoral head.
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Immune complexes mediated inflammation at resident kidney
cells contributes to LN pathogenesis. Abnormal expression of miR-
10a, -10b and let-7a could reflex the inflammatory phenotypes of
renal cells because their expression was rapidly changed during the
attackof resident kidney cells by acute immune complexes (103). Let-
7awasdemonstrated tobeable tocontrol inflammationvia inhibiting
IL-6 expression in spontaneous developed LN mouse model (104).
Levels of urinary exosome-associated miR-21 and let-7a was
significantly decreased in active LN patients and they were closely
correlated with the clinical stage of LN (96). miR-21 also mediated
anti-inflammatory effects by targeting several inflammatory
molecules such as IL-12, TNF and IFN-g which are associated with
development of autoimmune disease (105). In addition, miR-21 in
urine acts as a promising biomarker for kidney fibrosis and injuries
(106, 107).

The expression levels of exosomal miRNAs in urine from
chronic kidney disease (CKD) patients were significantly
dysregulated compared to the healthy controls (108). Solé et al.
demonstrated that miR-29c serves as a sensitive and specific
biomarker for determining the degree of chronicity in LN
because the decreased expression of miR-29c negatively
correlated with glomerular sclerosis and histological chronicity
index (13). A study in CKD patients indicated that the level of
miR-29c in exosomes specifically correlated with both estimated
glomerular filtration rate and degree of tubulointerstitial fibrosis,
which suggests that exosomal miR-291c is a noninvasive
biomarker for kidney fibrosis (97).

There is also an attractive method to use combinatory exosomal
miRNAs as diagnosis of SLE/LN. For example, Solé et al.
demonstrated that a urinary exosomal multimarker panel
composed of miR-21, miR-29c, and miR-150 provides an effective
strategy to detect early renal fibrosis, which could be used to predict
disease progression in LN (11). Type IV lupus nephritis (LNIV) is
the class of LN which is characterized by diffuse proliferative lesions.
And the prognosis is worse in LNIV patients complicated by cellular
crescent (LNIV-CC). By comparing miRNA expression profile in
urinary exosomes between LNIV and LNIV-CC, Li et al. found that
LNIV-CC shows a unique expression profile of miRNAs. Among
them, miR-146a-5p, miR-654-5p, and miR-3135b in urinary
exosomes possess predictive values for LNIV-CC (98). Another
set of urinary exosomal miRNA expression profile was identified to
evaluate clinical outcomes in patients with LN following
conventional therapy. It was demonstrated that the levels of miR-
135b-5p, miR-107, and miR-31in urinary exosomes were up-
regulated in responder patients, and they can be used as early
markers of LN outcomes. Moreover, they contribute to renal
recovery by inhibiting HIF-1a (99).

A recent study from Tan et al. showed that downregulated
exosomal miR-451a in serum is correlated with SLE disease activity
and renal damage. In addition, serum exosomes could transfer miR-
451a into B cells and CD4+ T cells, indicating their crucial roles in
intercellular communication (100). The risk of steroid-induced
osteonecrosis of femoral head (SONFH) in patients with SLE is
100 times higher compared to the general population (109). Zhang
et al. demonstrated that exosomal has-miR-135b-5p in serum could
act as unique diagnostic biomarkers for SONFH in SLE patients by
Frontiers in Immunology | www.frontiersin.org 9
providing experimental evidence that specific exosome-associated
has-miR-135b-5p is differentially expressed between healthy
individuals and SLE patients (101). Based on the above findings,
exosome-associated miRNAs in biological fluids especially in the
urine could act as a useful, non-invasive biomarkers for diagnosis
and prognosis of SLE/LN in the clinical setting (Figure 3).
EXOSOMAL-miRNAs AS THERAPEUTIC
POTENTIAL FOR SLE

Although some anti-miRNAs andmiRNAmimics have successfully
entered Phase I and II clinical trials, an optimal delivery system with
minimal toxicity and lower immunogenicity, as well as more specific
target effects are urgently needed during the exploring of miRNA-
based therapy. As a novel delivery system, exosomes possessmultiple
advantages compared to currentmiRNAdelivery vehicles.Due to the
protectionof their unique structure,miRNAcontents are remarkably
stable in exosomes and resistant to degrading conditions (52, 110).
Exosomes are able to travel across the blood-brain barrier (BBB) and
have low immunogenicitywhichalsodefine themas ideal therapeutic
vehicles. Exosomes generated in vitro by miRNA transfected cells
could efficiently deliver thesemiRNAs to recipient cells achieving the
desired effects showing their intrinsic targeting activity (111).
Therefore, patients’ own exosomes can be isolated and modified by
specific therapeutic agents like miRNA. These engineered exosomes
can internalize into the target cells with less immunogenic than other
foreign delivery vectors (112). Given the immunomodulatory
properties of exosomal miRNAs, there is growing interest by using
exosomalmiRNAs as therapeutic approach. Exosomes derived from
MSCs and DCs hold a promising therapeutic approach as cell-free
agents to treat autoimmune disorders owing to their pivotal
immunomodulatory roles (Figure 3).

Numerous studies have found that both MSCs and MSC-
derived exosomes exhibit significantly therapeutic effects in the
treatment of kidney injury (113–115). MSC-derived exosomes
have a similar miRNA profile as their origin cells, which may
explain their therapeutic mechanisms (116). In some cases,
exosomes may be more advantageous than their parental cells,
including easier storage, greater half-life, and increased stability
(117). MSC transplantation has been regarded as a safe and
effective therapeutic approach in SLE while these MSCs exhibited
senescent characteristics. Reversing the senescent phenotypes of
MSCs could improve therapeutic effects of autologous MSCs
transplantation in SLE (118). Levels of miR-146a in the serum
exosomes of SLE patients are significantly declined compared
with healthy group. These exosomes encapsuled miR-146a was
internalized into MSCs and alleviate the senescence of MSCs by
targeting TRAF6/NF-kB pathway (119).

In this sense, previous studies investigated the therapeutic potential
of DC-derived exosomes in autoimmune diseases. For instance,
exosomes secreted from IL-10 treated DCs (120), or genetically
modified IL-4 expressing DCs (121) possess immunosuppressive
and anti-inflammatory properties. Administration of these exosomes
was able to suppress murine CIA as well as reduce severity of
established arthritis (120, 121). Similarly, injection of TGF-b1
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modified DCs was demonstrated to reduce disease activity in murine
inflammatoryboweldisease (IBD) (122).Thus, geneticmodificationof
exosomes to express specific molecule, can enhance their ability in
suppression of inflammatory andmay constitute a novel type cell-free
system for the treatment of autoimmune disorders. Nevertheless, the
use of exosomes/exosomal-miRNAs for therapy is challenging. Until
now, studies on DCs derived exosomes carrying miRNA to treat
autoimmune diseases are very rare. Compared to their applications in
cancer, less information isavailableontheroleofexosomal-miRNAsin
the pathogenesis and treatment of SLE.
CONCLUSION

This review has summarized the characteristics of exosomes, the
mechanisms of sorting miRNAs into exosomes, and the
immunomodulatory effects of exosomal-miRNAs. A better and
more complete understanding of various forms of immune cells
derived exosomal miRNAs is necessary for the development of new
and more effective strategies for optimizing SLE therapies in the
future. Abnormal expression levels of exosomal-miRNAs may serve
as ideal diagnostic biomarkers in renal injury of SLE, which is also
discussed. Furthermore, this review provides new insights into a
complex interplay between exosomes, miRNAs and TLRs, which
might provide promising therapeutic targets for SLE.

Our understanding of the biology of exosomal-miRNAs
increased markedly, but it is still in an early stage and several
challenges remain to overcome. Further researches are required to
decipher the molecular mechanisms involved in exosomes
biogenesis, cargo release and target specificities. For instance, 1) an
effective and standard way to generate most efficient and pure
exosomes remains to be elucidated; 2) more precise mechanisms
Frontiers in Immunology | www.frontiersin.org 10
underlying complex components and immunoregulatory functions
of exosomal-miRNAs are required; 3) sensitive and accurate miRNA
analysis is necessary; 4) more stable and better therapeutic effects of
exosomal-miRNAs in vivo need further exploration. After solving
these basic and clinical problems, exosomes may be applied in
autoimmune diseases in the future.

In summary, although the research on application of exosomes
still face several problems, the advantages and potential
application of exosomal-miRNAs are attracting increasing
attention. Intensive investigation on the biological functions and
the molecular mechanisms of exosomal-miRNAs involved in SLE
will provide potential biomarkers and novel therapeutic strategies
and facilitate the clinical translation of exosomes.
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FIGURE 3 | Schema of potential roles of exosomal miRNAs in SLE. (A) Analysis of exosomal miRNAs isolated from blood or urine can be used for the clinical
diagnosis and prognosis of SLE. (B) Genetically modified cells to secrete exosomes containing specific miRNAs can be used as cell-free agents of SLE.
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11. Solé C, Moliné T, Vidal M, Ordi-Ros J, Cortés-Hernández J. An Exosomal
Urinary MiRNA Signature for Early Diagnosis of Renal Fibrosis in Lupus
Nephritis. Cells (2019) 8(8):773. doi: 10.3390/cells8080773

12. Perez-Hernandez J, Martinez-Arroyo O, Ortega A, Galera M, Solis-Salguero
MA, Chaves FJ, et al. Urinary Exosomal MiR-146a as a Marker of
Albuminuria, Activity Changes and Disease Flares in Lupus Nephritis.
J Nephrol (2021) 34(4):1157–67. doi: 10.1007/s40620-020-00832-y
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18. Yáñez-Mó M, Siljander PR, Andreu Z, Zavec AB, Borràs FE, Buzas EI, et al.
Biological Properties of Extracellular Vesicles and Their Physiological
Functions. J Extracell. Vesicles (2015) 4:27066. doi: 10.3402/jev.v4.27066

19. Lässer C, O’Neil SE, Shelke GV, Sihlbom C, Hansson SF, Gho YS, et al.
Exosomes in the Nose Induce Immune Cell Trafficking and Harbour an
Frontiers in Immunology | www.frontiersin.org 11
Altered Protein Cargo in Chronic Airway Inflammation. J Transl Med
(2016) 14(1):181. doi: 10.1186/s12967-016-0927-4

20. Jan AT, Rahman S, Khan S, Tasduq SA, Choi I. Biology, Pathophysiological
Role, and Clinical Implications of Exosomes: A Critical Appraisal. Cells
(2019) 8(2):99. doi: 10.3390/cells8020099

21. Basu B, Ghosh MK. Extracellular Vesicles in Glioma: From Diagnosis to
Therapy. BioEssays (2019) 41(7):e1800245. doi: 10.1002/bies.201800245
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Vázquez C, Tenreiro S, Seabra MC, et al. Transfer of Extracellular Vesicle-
MicroRNA Controls Germinal Center Reaction and Antibody Production.
EMBO Rep (2020) 21(4):e48925. doi: 10.15252/embr.201948925

69. Mittelbrunn M, Gutiérrez-Vázquez C, Villarroya-Beltri C, González S,
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