AUTHOR=Zhang Xufei , Monnoye Magali , Mariadassou Mahendra , Beguet-Crespel Fabienne , Lapaque Nicolas , Heberden Christine , Douard Veronique TITLE=Glucose but Not Fructose Alters the Intestinal Paracellular Permeability in Association With Gut Inflammation and Dysbiosis in Mice JOURNAL=Frontiers in Immunology VOLUME=12 YEAR=2021 URL=https://www.frontiersin.org/journals/immunology/articles/10.3389/fimmu.2021.742584 DOI=10.3389/fimmu.2021.742584 ISSN=1664-3224 ABSTRACT=
A causal correlation between the metabolic disorders associated with sugar intake and disruption of the gastrointestinal (GI) homeostasis has been suggested, but the underlying mechanisms remain unclear. To unravel these mechanisms, we investigated the effect of physiological amounts of fructose and glucose on barrier functions and inflammatory status in various regions of the GI tract and on the cecal microbiota composition. C57BL/6 mice were fed chow diet and given 15% glucose or 15% fructose in drinking water for 9 weeks. We monitored caloric intake, body weight, glucose intolerance, and adiposity. The intestinal paracellular permeability, cytokine, and tight junction protein expression were assessed in the jejunum, cecum, and colon. In the cecum, the microbiota composition was determined. Glucose-fed mice developed a marked increase in total adiposity, glucose intolerance, and paracellular permeability in the jejunum and cecum while fructose absorption did not affect any of these parameters. Fructose-fed mice displayed increased circulation levels of IL6. In the cecum, both glucose and fructose intake were associated with an increase in