AUTHOR=Yang Ziheng , Zhang Jie , Wang Yan , Lu Jing , Sun Quan TITLE=Caveolin-1 Deficiency Protects Mice Against Carbon Tetrachloride-Induced Acute Liver Injury Through Regulating Polarization of Hepatic Macrophages JOURNAL=Frontiers in Immunology VOLUME=12 YEAR=2021 URL=https://www.frontiersin.org/journals/immunology/articles/10.3389/fimmu.2021.713808 DOI=10.3389/fimmu.2021.713808 ISSN=1664-3224 ABSTRACT=
Polarization of hepatic macrophages plays a crucial role in the injury and repair processes of acute and chronic liver diseases. However, the underlying molecular mechanisms remain elusive. Caveolin-1 (Cav1) is the structural protein of caveolae, the invaginations of the plasma membrane. It has distinct functions in regulating hepatitis, cirrhosis, and hepatocarcinogenesis. Given the increasing number of cases of liver cancer, nonalcoholic steatohepatitis, and non-alcoholic fatty liver disease worldwide, investigations on the role of Cav1 in liver diseases are warranted. In this study, we aimed to investigate the role of Cav1 in the pathogenesis of acute liver injury. Wild-type (WT) and Cav1 knockout (KO) mice (Cav1tm1Mls) were injected with carbon tetrachloride (CCl4). Cav1 KO mice showed significantly reduced degeneration, necrosis, and apoptosis of hepatocytes and decreased level of alanine transaminase (ALT) compared to WT mice. Moreover, Cav1 was required for the recruitment of hepatic macrophages. The analysis of the mRNA levels of CD86, tumor necrosis factor (TNF), and interleukin (IL)-6, as well as the protein expression of inducible nitric oxide synthase (iNOS), indicated that Cav1 deficiency inhibited the polarization of hepatic macrophages towards the M1 phenotype in the injured liver. Consistent with