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Background: Hypoxia is one driving factor of gastric cancer. It causes a series of
immunosuppressive processes and malignant cell responses, leading to a poor
prognosis. It is clinically important to identify the molecular markers related to hypoxia.

Methods: We screened the prognostic markers related to hypoxia in The Cancer
Genome Atlas database, and a risk score model was developed based on these
markers. The re lat ionships between the r isk score and tumor immune
microenvironment were investigated. An independent validation cohort from Gene
Expression Omnibus was applied to validate the results. A nomogram of risk score
model and clinicopathological factor was developed to individually predict the prognosis.

Results: We developed a hypoxia risk score model based on SERPINE1 and EFNA3.
Quantified real-time PCR was further applied to verified gene expressions of SERPINE1
and EFNA3 in gastric cancer patients and cell lines. A high-risk score is associated with a
poor prognosis through the immunosuppressive microenvironment and immune escape
mechanisms, including infiltration of immunosuppressive cells, expression of immune
checkpoint molecules, and enrichment of signal pathways related to cancer and
immunosuppression. The nomogram basing on the hypoxia-related risk score model
showed a good ability to predict prognosis and high clinical net benefits.

Conclusions: The hypoxia risk score model revealed a close relationship between
hypoxia and tumor immune microenvironment. The current study potentially provides
new insights of how hypoxia affects the prognosis, and may provide a new therapeutic
target for patients with gastric cancer.
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INTRODUCTION

Gastric cancer is a public health burden, ranking fifth in global
incidence and fourth in mortality among all cancers (1).
Therapeutic strategies are still based on the American Joint
Committee on Cancer (AJCC) tumor/node/metastasis (TNM)
staging system (2, 3). However, due to the high heterogeneity of
gastric cancer, patients with similar clinicopathological
characteristics could have different prognosis, suggesting the
current TNM staging system are inadequate for predicting
prognosis and risk stratification (4, 5). Therefore, it is clinically
important to develop a novel biomarker to better guide clinical
treatment and improve prognosis.

Tumor cells always grow faster than their blood vessels.
Owing to the inadequate blood supply, the supply of oxygen
and nutrients to the tumor cells is unbalanced, thereby forming a
hypoxic microenvironment (6–9). Hypoxia is one of the
characteristics of tumor microenvironment (TME) that can
lead directly to the malignant characteristics, including tumor
proliferation, migration and invasion, resulting in a poor
prognosis (10–12). Previous studies have shown a significant
relationship between hypoxia and poor prognosis of GC (13, 14),
and hypoxia plays a key role in metastasis (15). In the hypoxic
microenvironment, hypoxia-inducible factors (HIFs) are key
transcription factors that allow cancer cells to survive under
hypoxic conditions and promote tumor progression (16–18).
Multiple genes transcribed by HIFs, including Glut1, KLF8,
VEGFA, ITGb1, etc., can promote GC metastasis and lead to
poor prognosis (19).

TME is the internal environment in which tumor cells are
produced and survive. It is composed of immune cells,
endothelial cells, mesenchymal cells, inflammatory mediators
and extrace l lu lar matr ix molecu les (20 , 21) . The
immunological components of the TME can inhibit or
promote tumor development (22). Recently, the significance of
hypoxia in promoting tumor immunosuppression and immune
escape has received increasing attentions (23, 24). It is important
to understand the potential mechanisms that are involved
between hypoxia and the tumor immune microenvironment.
Therefore, the establishment of a hypoxia-based signature may
help to identify the potential prognostic value of hypoxia, and
improve the comprehension of the immunogenomic profile of
gastric cancer.

Here, we established a hypoxia-related signature related to
prognosis by The Cancer Genome Atlas (TCGA) data base,
which was validated by the Gene Expression Omnibus (GEO)
data base. Potential mechanisms of the hypoxia-related signature
were further investigated.
MATERIALS AND METHODS

Patients
The Clinical data (375 cancer and 72 non-cancerous samples)
and FPKM RNA-seq data from TCGA data base (https://www.
cancer.gov/tcga) was applied as a screening cohort. The data of
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433 cancer samples (GSE84437) from GEO data base (https://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi) was applied as a
validation cohort (25). RNA-seq and microarray data included
were transformed [log2(x+1)] and normalized by the “sva” and
“limma” packages of R software. The baseline characteristics of
the screening and validation cohorts are shown (Supplementary
Table S2).

Development of a Risk Score Model
Univariate analysis was firstly applied to identify potentially
hypoxia-related genes that have a statistically significant
difference of prognosis in gastric cancer patients from TCGA
data base. Least absolute shrinkage and selection operator
(LASSO) method was then applied to shrink the scope of gene
screening (26). Finally, Cox proportional hazards analysis was
used to identify highly hypoxia-related genes. The risk score
formula was constructed as: Risk score = (∑coefficientx * expression
of signature genex) (genex indicated the identified genes). The
regression coefficient was obtained from Cox proportional
hazards analysis. The patients of gastric cancer were divided into
a high-risk and a low-risk groups by the cut-off value of the median
risk score.

Tumor Immune Microenvironment
To investigate the relationships between risk score and TME, the
ESTIMATE algorithm was applied to determine immune score,
stromal score, ESTIMATE score, and tumor purity of individual
patient in the screening and validation cohorts (27). Wilcoxon
test was applied to compare the differences between the high-risk
and low-risk groups in terms of immune score, stromal score,
ESTIMATE score, and tumor purity. The TIMER web server
(http://timer.cistrome.org/) was applied to analyze the
correlations between signature genes and immune cells. The
TIMER algorithm was used to assess the abundances of six
immune infiltration cells (B cells, CD4+ T cells, CD8+ T cells,
neutrophils, macrophages and dendritic cells) and tumor
purity (28).

The ssGSEA method was used to the transcriptome to assess
immune cell infiltrations (29). We obtained a set of marker genes
including immune cell types, immune-related pathways and
functions (30). We used the R package called “GSVA” to
perform ssGSEA to obtain the normalized enrichment score
(NES) of each immune-related item.

Development and Assessment of a
Predictive Nomogram
Univariate analysis and Cox proportional hazards analysis were
conducted on risk score of target genes and patient
clinicopathological characteristics to determine independent
prognostic factors related to prognosis. The predictive
nomograms were developed by including all independently
prognostic factors.

GC Cell Lines and Tissue Samples
The human gastric epithelial cell line GES-1 and gastric cancer
cell lines AGS, SGC-7901, HGC-27, MKN-45 and MGC-803
were purchased from the Chinese Academy of Sciences
June 2021 | Volume 12 | Article 705511
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(Shanghai, China). Cells were cultured in RPMI 1640 medium
(HyClone, Logan, UT, USA) with 10% fetal bovine serum (FBS,
Invitrogen) and 1% penicillin/streptomycin in a humidified
atmosphere of 5% CO2 at 37°C. Totally, 39 pairs of gastric
cancer together with their adjacent non-cancerous tissues
(> 5 cm away from cancer tissue) were collected. This study
was approved by the Ethics Committee of the Fourth Affiliated
Hospital of China Medical University (EC-2021-KS-043). All
patients included in this study provided written informed
consent in accordance with the Declaration of Helsinki.

Quantitative Real-Time PCR Analysis
Total RNA was extracted using Trizol reagent (Invitrogen,
Eugene, OR) and was used to synthesize cDNA using Prime-
Script RT Master Mix (TaKaRa, Shiga, Japan), and quantitative
real-time PCR (qRT-PCR) was performed by TaKaRa SYBR®

Premix Ex Taq™ (TaKaRa, Shiga, Japan). All primers of qRT-
PCR were listed in Table S1.

Statistical Analyses
All analyses were performed by R version 4.0.2 (http://www.R-
project.org). The calibration curve and area under the curve
(AUC) were used to evaluate the predictive performance of the
predictive nomogram. The clinical benefit was further evaluated
by the decision curve analysis (DCA) (31, 32). An independent
validation cohort was applied to validate these findings. All tests
were two-sided, and a P value less than 0.05 was considered as
statistically significant.
RESULTS

Patient Characteristics
The baseline characteristics of the screening and validation
cohorts are shown in Table S2. In the screening cohort, a total
of 234 (63.1%) patients were male and 137 (36.9%) were female.
Among them, 17 (4.6%) patients were T1, 74 (19.9%) were T2,
177 (47.7%) were T3, and 103 (27.8%) were T4 cases. 117
(31.5%) patients were N0, 97 (26.1%) were N1, 79 (21.3%)
were N2, and 78 (21.1%) were N3 cases. Accordingly, 8 (2.2%)
patients were Grade I, 126 (34.0%) were Grade II, and 237
(63.8%) were Grade III. Considering the TNM staging system, 46
(12.4%) patients were stage I, 119 (32.1%) were stage II, 165
(44.4%) were stage III, 41 (11.1%) were stage IV cases.

In the validation cohort, a total of 296 (68.4%) patients were
male and 137 (31.6%) were female. Among them, 11 (2.5%)
patients were T1, 38 (8.8%) were T2, 92 (21.2%) were T3, and
292 (67.5%) were T4 cases. Accordingly, 80 (18.5%) patients
were N0, 188 (43.4%) were N1, 132 (30.5%) were N2, and 33
(7.6%) were N3 cases.

Screening of Hypoxia-Related Risk
Signature in Gastric Cancer
The hallmark hypoxia-related 200 genes, was obtained from the
Molecular Signatures data base (MSigDB version 6.0). Among
them, the TCGA data base contains 197 hypoxia-related genes,
Frontiers in Immunology | www.frontiersin.org 3
and 41 differentially expressed genes (DEGs) have been identified
(Table S3 and Figures 1A–C). To better visualize the
interactions between these hypoxia genes, the STRING online
data base was used to analyze the protein-protein interaction
network (Figure 1D). We evaluated the hypoxia-related genes in
the screening cohort, and identified 14 of the 41 genes that were
significantly associated with prognosis (all P < 0.05, Table S4).
The LASSO method was further used to analyze these 14 genes,
which minimized the potential over-fitting problem and
established the minimum standard. Five of the 14 genes in the
model are under the optimal adjustment parameter (l)
(Figures 1E, F). Finally, the Cox proportional hazards analysis
confirmed that two genes (SERPINE1, EFNA3) (Figure 1G) met
the proportional hazard hypothesis and were finally used to
establish the following risk score model: Risk score = (0.223 *
expression level of SERPINE1) + (–0.165 * expression level of
EFNA3). Of the two signature genes, SERPINE1 was a risk DEG,
and EFNA3 was protective. The risk score of individual patient
was calculated and all patients were classified into a high-risk and
a low-risk groups based on the median risk score.

Prognostic Ability of Hypoxia-Related Risk
Score in Gastric Cancer
Hypoxia usually promotes an aggressive tumor phenotype, so the
prognostic ability of the hypoxia-related risk score was explored.
In the high-risk group of the screening cohort, the heatmap
showed that the expression of SERPINE1 was up-regulated and
EFNA3 was down-regulated (Figure 2A). The mortality rate in
the low-risk group was significantly lower than that in the high-
risk group (Figures 2B, C). Kaplan–Meier analysis indicated that
the prognosis of the low-risk group was significantly superior
than that of the high-risk group (log-rank test, P < 0.001)
(Figure 2D). Similar results were found in the validation
cohort (Figures 2E–H).

Hypoxia-Related Signaling Pathways
In the screening cohort, we used GSEA to analyze the
signaling pathways activated in the hypoxia-related high-risk
group. In the high-risk group, the JAK-STAT signaling pathway,
NOTCH signaling pathway, pathway in cancer, and TGF-b
signaling pathway were activated (Figure 3A). These signaling
pathways are related to the stimulation of tumor proliferation,
migration, invasion, anti-apoptosis, Epithelial-Mesenchymal
Transition (EMT), immune escape and drug resistance. These
results have been confirmed in the independent validation
cohort (Figure 3B).

The Correlation Between Risk Score
and TME
The ESTIMATE analysis showed that the immune score, stromal
score and ESTIMATE score were significantly positively
correlated with the risk score in both the screening and
validation cohorts, while tumor purity was significantly
negatively correlated with the risk score (Figures S1A–H). It
also indicated that the immune score, stromal score and
ESTIMATE score of the high-risk group were significantly
June 2021 | Volume 12 | Article 705511
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higher than those of the low-risk group (P < 0.001), while the
tumor purity of the high-risk group was significantly lower than
that of the low-risk group (P < 0.001, Figures 3C–F).

The Correlation Between Risk Score and
Immune Cell Subtypes
As the tumors of the high-risk group were proved to be
infiltrated with a large number of immune cells, we further
analyzed the subtypes of infiltrating immune cells. It indicated
that the levels of immune cell infiltration in the high-risk group,
including regulatory T cells, macrophages, neutrophils, and mast
Frontiers in Immunology | www.frontiersin.org 4
cells, were higher than those in the low-risk group (P < 0.05,
Figures 4A–H). Accordingly, the high-risk group reflects the
immunosuppressive tumor microenvironment, full of
immunosuppressive cells, which is consistent with the poor
prognosis of the high-risk group.

Then, TIMER was applied to evaluate the correlation between
the expression levels of EFNA3 and SERPINE1 with tumor purity
and infiltrating levels of immune cells (Figures S2A, B). It
showed a correlation between immune cell infiltration and the
expression levels of EFNA3 and SERPINE1. It showed that the
risk gene SPERPINE1 had a significant positive correlation with
A B

D

E

F
G

C

FIGURE 1 | Identification of the hypoxia risk signature. (A) The Venn diagram shows the hypoxia-related genes in TCGA. (B) The Volcano plot for differentially
expressed genes (DEGs) in cancer and non-cancer tissues. (C) The heatmap plot for DEGs in cancer and non-cancer tissues. (D) The PPI network visualizes the
interaction between these DEGs. (E, F) The LASSO method identified five genes associated with prognosis. (G) The Cox proportional hazards analysis identified the
hypoxia risk signature.
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the infiltration of macrophages, neutrophils and dendritic cells,
and a significant negative correlation with tumor purity and B
cells (P < 0.05, Figure S2A). However, the prognostic protective
gene EFNA3 showed the opposite trend for most aspects except B
cells (Figure S2B, all P < 0.05).

The Correlation Between Risk Score and
Immune Checkpoint Molecules
We compared the immune checkpoint molecules between the
high-risk and low-risk groups. The expression levels of many
immune checkpoint molecules were higher in the high-risk
group than those in the low-risk group (Figures 5A, B). In the
screening cohort, the expression level of five key immune
checkpoint molecules (PD-1, PD-L1, CTLA-4, HAVCR2 and
TGF-b) in the high-risk group was significantly higher than
those in the low-risk group, and significantly positively
Frontiers in Immunology | www.frontiersin.org 5
correlated with risk score (Figures 5C–G). Similar results were
obtained in the validation cohort, except that CTLA4 and PD-L1
showed no significant difference between the high-risk and low-
risk groups (Figures 5H–L).

The Correlation Between Risk Score and
Tumor Mutation Burden and Somatic
Mutation
It showed that the risk score was significantly negatively
correlated with tumor mutation burden (TMB) (R = –0.36, P <
0.001; Figure 6A). We further compared the TMB of patients in
the low-risk and high-risk groups. It showed that the TMB of the
low-risk group was significantly higher than that of the high-risk
group (Wilcoxon test P < 0.001) (Figure 6B). We determined the
optimal cutoff value of TMB (cutoff value = 0.68) by using the
minimum P-value method, and divided the patients into a high
A

B

D

E

F

G

H

C

FIGURE 2 | Prognostic value of the hypoxia risk signature in gastric cancer. (A, E) Heatmaps of the prognostic signature in the screening (TCGA) and validation
(GEO) cohorts. (B, F) Patient risk score in the screening and validation cohorts. (C, G) The status distribution of patients in the high-risk and low-risk groups in the
screening and validation cohort. (D, H) Kaplan-Meier analysis of patients in the high-risk and low-risk groups in the screening and validation cohorts.
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TMB group (n = 320) and a low TMB group (n = 42). It showed
that patients in the high TMB group had a better survival
prognosis than those in the low TMB group (log-rank test, P <
0.001, Figure 6C). We further evaluated the synergistic effect of
the TMB grouping and the risk score grouping in the prognostic
stratification. It showed that TMB status did not affect the
survival prognosis prediction based on the risk score group.
The risk score subgroup indicated significant survival differences
in both the low and high TMB subgroups (log rank test, high
TMB & high-risk vs. high TMB & low-risk, P < 0.001; low TMB
& low-risk vs. low TMB & low-risk, P < 0.001; Figure 6D).
Moreover, the high TMB & low-risk group had the best overall
Frontiers in Immunology | www.frontiersin.org 6
survival rate, and the low TMB & high-risk group had the worst
overall survival rate.

Furthermore, we estimated somatic variations in gastric
cancer driver genes between the low-risk and high-risk
subgroups. We used Maftools to access gastric cancer driver
genes and further analyzed the top 20 ones with the highest
mutation frequency (Figures 6E, F). The results showed that
there were significant differences in the mutation frequency of
PCLO, TTN, FLG, LRP1B, KMT2D, SYNE1, RYR2, OBSCN,
CSMD1, FAT3, ARID1A, ZFHX4, FAT4 and SPTA1 in the
high-risk and low-risk groups (Chi-square test, all P < 0.05;
Table S5).
A B

D

E F

C

FIGURE 3 | Enrichment of pathways related to hypoxia and analysis of tumor immune microenvironment. (A, B) The enrichment plots show the signaling pathways
related to hypoxia in the screening and validation cohorts. (C, D) The heatmaps show 29 immune-related gene sets, immune score, stromal score, ESTIMATE score
and tumor purity in the screening and validation cohorts. (E, F) The relationship between risk score and immune score, stromal score, ESTIMATE score, and tumor
purity in the screening and validation cohorts.
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The Correlation Between Risk Score and
Chemotherapeutic Drugs
We further analyzed the association between the risk score and
the efficacy of chemotherapy in the treatment of gastric cancer. It
showed that the high-risk group was associated with lower half
inhibitory centration (IC50) of chemotherapeutic drugs, such as
axitinib (P = 0.0053), bexarotene (P < 0.001), bortezomib (P <
0.001), bryostatin.1 (P = 0.0067), dasatinib (P < 0.001), imatinib
(P < 0.001), midostaurin (P < 0.001), nilotinib (P = 0.04),
pazopanib (P = 0.0024), sunitinib (P < 0.001), temsirolimus
(P < 0.001), and vinblastine (P = 0.031), while the IC50 of
methotrexate (P = 0.019) and mitomycin.C (P = 0.0035) was
higher, indicating that the risk scores can be used as a potential
predictor of chemical sensitivity (Figures 7A–O).

The Correlation Between Risk Score and
Clinicopathological Characteristics
We conducted correlation analyses between clinicopathological
factors and risk score in the screening cohort (Figures S3C), and
Frontiers in Immunology | www.frontiersin.org 7
tumor grade and T stage were significantly associated with risk
score (Figures S3C, D). In the validation cohort, age, T stage,
and N stage were significantly associated with risk score (Figures
S3H, J, K).

Development of Nomograms to Predict
Individual Survival Outcomes
We developed nomograms based on the screening cohort and
further verified their predictive ability in the validation cohort. It
showed that age, T stage, N stage, M stage, and risk score are
significant prognostic factors (Figure 8A). In the first step Cox
proportional hazards analysis, we incorporated age, T stage, N
stage, and M stage. It showed that age, T stage, and N stage were
independent prognostic factors (Figure 8B) and were used to
construct nomogram 1 (Figure 8D). In the second step Cox
proportional hazards analysis, we incorporated age, T stage, N
stage, M stage and risk score. It showed that age, T stage, N stage
and risk score were independent prognostic factors (Figure 8C)
and were used to construct nomogram 2 (Figure 8E).
A
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F
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C

FIGURE 4 | Correlation of the risk score with immune cell subtypes in the screening and validation cohorts. (A, E) Regulatory T cells; (B, F) Macrophages;
(C, G) Neutrophils; (D, H) Mast cells.
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Comparison of Prognostic Performance
and Clinical Usefulness Between
Nomogram 1 and Nomogram 2
In the screening cohort, nomogram 2 showed superior
prognostic ability [AUC 0.684, 95% confidence interval (CI),
0.630–0.735] compared with nomogram 1 (AUC 0.639, 95% CI,
0.584–0.692) (Figure 9A). The calibration curves of nomogram 2
Frontiers in Immunology | www.frontiersin.org 8
at 3 years also showed better consistency between the predicted
and observed survivals than that of nomogram 1 (Figure 9B).
Nomogram 2 showed higher net benefit than nomogram 1
between the threshold probabilities of around 37–60% in
predicting 3-year overall survival (Figure 9C). Similar results
were found in the independent val idat ion cohort
(Figures 9D–F).
A B
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FIGURE 5 | Relationships between hypoxia risk score and immune checkpoint molecules. (A, G) Heatmaps show the expression level of immune checkpoint
molecules in high-risk and low-risk groups in the screening and validation cohorts (*P < 0.05; **P < 0.01; ***P < 0.001). Scatter plots and box plots show the
relationship between the risk score and the expression level of (B, H) PD-1, (C, I) HAVCR2, (D, J) TGF-b, (E, K) PD-L1, and (F, L) CTLA4 in the screening and
validation cohorts.
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Expression Levels of SERPINE1 and
EFNA3 in GC Cell Lines and Tissues
In the screening cohort, the expression of SERPINE1 and EFNA3
in tumor tissues was up-regulated when compared with adjacent
non-cancerous tissues and normal tissues (P < 0.05,
Figures 10A–D). To confirm the expression levels of
SERPINE1 and EFNA3 in gastric cancer, we subsequently
verified it in gastric cancer cell lines and patient tissues by
qRT-PCR experiments. The results showed that, when
compared with gastric normal epithelial mucosae cell line
Frontiers in Immunology | www.frontiersin.org 9
GES-1 and adjacent non-cancerous tissues, the expression of
SERPINE1 and EFNA3 were significantly higher in gastric cancer
cell lines (Figures 10E, F, except for SERPINE1 in HGC-27, P >
0.05) and gastric cancer tissues (P < 0.05) (Figures 10G, H).
DISCUSSION

Hypoxia is caused by an imbalance between insufficient oxygen
supply and increased oxygen demand (21, 33). It is also one
June 2021 | Volume 12 | Article 705511
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FIGURE 6 | The correlation between the risk score and somatic variants. (A) The scatter plot depicts the negative correlation between risk score and tumor
mutation burden (TMB) in the screening cohort. (B) TMB difference in the high-risk and low-risk groups. (C) Kaplan-Meier curves for high-risk and low-TMB groups
of the screening cohort. (D) Kaplan-Meier curves for patients in the screening cohort stratified by both risk score and TMB. (E, F) Waterfall plots display the
frequently mutated genes in low-risk and high-risk groups in the screening cohort. The left panel shows the genes ordered by their mutation frequencies. The right
panel presents different mutation types.
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significant characteristic of tumor microenvironment. Tumor
cells adapt to and rely on tumor microenvironment, contributing
to instability and diversity of gene mutations, and activating a
variety of signaling pathways and cytokines, contributing to the
angiogenesis, invasion, metastasis, epithelial-mesenchymal
transition, cancer stem cell maintenance, immune escape and
resistance to radiotherapy and chemotherapy (34, 35). Therefore,
understanding the molecular mechanism of hypoxia is critical to
improving the survival of cancer therapy.

In this study, we identified two prognosis-related hypoxia
genes, SERPINE1 and EFNA3, and establish a hypoxia risk score
model based on the two genes. Subsequent survival analysis
indicated that the high-risk group was associated with poorer
prognosis, which was verified by an independent GEO
cohort. GSEA analysis showed that the high-risk group was
significantly enriched in pathways for tumor progression, such
as the JAK-STAT signaling pathway (36), cancer in pathway,
TGF-b signaling pathway (37, 38), and NOTCH signaling
pathway (39), leading to poor prognosis. In the hypoxic
Frontiers in Immunology | www.frontiersin.org 10
microenvironment, HIFs are the main regulators of hypoxic
response (18, 35). HIFs can cause the malignant phenotype of
tumors by activating or enhancing JAK-STAT signaling
pathway, TGF-b signaling pathway and NOTCH signaling
pathway (40–43). Besides, the TCGA data base and qRT-PCR
analysis confirmed the overexpression of these two hypoxia
genes in tumor tissues and gastric cancer cell lines when
compared with normal tissues and gastric normal epithelial cell
line. Finally, the risk score model, age, T stage, and N stage were
identified as independent risk factors related to OS and included
in the nomogram. It showed that the nomogram was an effective
tool for predicting the prognosis. The two-gene signature has a
powerful ability to predict the prognosis of patients with gastric
cancer, and may be helpful to guide clinical treatment decisions.

Tumor purity can reflect the characteristics of the tumor
microenvironment. The risk score was significantly positively
correlated with infiltrating immune cells and stromal cells, but
negatively correlated with tumor purity. Previous studies showed
that low tumor purity is associated with poor prognosis of
A B D
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FIGURE 7 | The correlation between low-risk and high-risk groups and chemotherapeutics. Sensitivity to chemotherapeutic drugs is expressed by the half inhibitory
centration (IC50) of chemotherapeutic drugs. (A) Axitinib; (B) Bexarotene; (C) Bortezomib; (D) Bryostatin.1; (E) Dasatinib; (F) Imatinib; (G) Midostaurin; (H) Nilotinib;
(I) Pazopanib; (J) Rapamycin; (K) Sunitinib; (L) Temsirolimus; (M) Vinblastine; (N) Methotrexate; (O) Mitomycin.C.
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multiple tumor types (44–46). We speculated that low-purity
tumors may recruit more tumor immunosuppressive cells than
high-purity tumors, and further studied the relationship between
the risk score and the subtypes of infiltrating immune cells. We
found that the tumors in the high-risk group contained more
infi l trating immunosuppressive cells such as Tregs,
macrophages, neutrophils, para-inflammatory and mast cells
than the low-risk group. A previous study found that Tregs
suppressed the anti-tumor immune response by weakening the
cell-mediated immune response to tumors, thereby promoting
disease progression (47). Hypoxia can protect tumors from the
intrinsic anti-tumor immune response by forming an
Frontiers in Immunology | www.frontiersin.org 11
immunosuppressive microenvironment, which may explain a
poor prognosis of the high-risk group.

Cytokine are important factors in regulating tumor immunity.
Among them, tumor immunosuppressive cytokines are important
factors inhibiting immune cell activity. Transforming growth
factor-b (TGF-b) suppresses the immune system by inhibiting
the maturation of dendritic cells, inhibiting the activity of NK
cells, and reducing the cytotoxicity of T cells (47, 48). Interleukin 10
(IL-10) is an immunosuppressive cytokine secreted by T-helper 2
(Th2) cells, Tregs, and M2 macrophages. It has been shown to
impair the proliferation, cytokine production and migration
capabilities of effector T cells (49). IL-10 also promotes the stable
A
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FIGURE 8 | Construction of nomograms. (A) Univariate analysis included risk score, age, gender, grade, M stage, T stage and N stage in the screening cohort.
(B) Cox proportional hazards analysis included age, M stage, T stage and N stage in the screening cohort. (C) Cox proportional hazards analysis included risk score,
age, M stage, T stage and N stage in the screening cohort. (D) Nomogram 1 based on the clinicopathological characteristics. (E) Nomogram 2 based on the risk
score and clinicopathological characteristics.
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expression of Foxp3, TGF-b-receptor 2 and TGF-b, thereby
stabilizing the phenotype and functions of Treg (50). In our
research, the immunosuppressive cytokines, such as IL-10 and
TGF-b, were up-regulated in the high-risk group, thereby further
promoting immunosuppression.

The correlation between the intrinsic escape mechanism and
risk score is clinically important. The inherent immune escape of
tumors demonstrates that tumor cells can mediate their own
immune escape directly. Previous study has illustrated that the
expression of immune check-point molecules and tumor
immunogenicity are two important aspects of intrinsic
immune escape (51). Immune checkpoint molecules play a key
role in tumor progression and carcinogenesis by promoting
tumor immunosuppression. Malignant tumors can evade
immune killing by stimulating immune checkpoint target
genes (such as PD-1, PD-L1, CTLA-4, TGF-b, and HAVCR2).
In this study, immune checkpoint molecules of PD-1, TGF-b,
and HAVCR2 were up-regulated in the high-risk group. This
Frontiers in Immunology | www.frontiersin.org 12
result indicates that tumor cells in the high-risk group express
immune checkpoint molecules to protect themselves from attack.

Another potentially significant intrinsic immune escape
mechanism is immunogenicity. Some somatic mutations in
tumor DNA produce neoantigens, and the antigens from this
mutation are recognized and targeted by the immune system,
especially after treatment with drugs that activate T cells (52–56).
The more somatic mutations are present in a tumor, the more
neoantigens it may form. TMBmay represent a better estimate of
tumor neoantigen burden (57). Here, we found that the high-risk
group had a lower proportion of somatic mutations, and the
hypoxia risk score was significantly negatively correlated with
TMB. Tumor cells in the hyperoxia group produced fewer
neoantigens, thus avoiding being recognized and killed by T cells.

To investigate the role of hypoxia risk in drug treatment, our
research showed that, the tumors in the high-risk group were not
sensitive to most chemotherapy drugs, such as axitinib,
bexarotene, bortezomib, and imatinib. However, the tumors in
A
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FIGURE 9 | The areas under the curve (AUC), calibration curve and decision curve analysis (DCA) for predicting patient survival. (A, D) The AUCs assess the
accuracy of the nomograms in the screening and validation cohorts. (B, E) The calibration curves assess the consistency of the nomograms in the screening and
validation cohorts. (C, F) DCAs assess the clinical usefulness of nomograms in the screening and validation cohorts.
June 2021 | Volume 12 | Article 705511

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Pei et al. Hypoxia and Immunity in GC
the high-risk group were more sensitive to methotrexate and
mitomycin.c and may benefit from these two chemotherapy
drugs. Those in the high-risk group express higher levels of
PD-1, HAVCR2 and other immune checkpoint molecules to
avoid the attack of anti-tumor immune cells. The high-risk
group may benefit from immunotherapy, such as the use of
PD-1 and HAVCR2 inhibitors.

Nomograms are commonly used to assess the prognosis of
tumors (58, 59). In this study, we constructed two prognostic
nomograms. Nomogram 1 is based on clinical characteristics,
and nomogram 2 is developed by the combination of clinical
characteristics and the hypoxia risk score model. It showed that
the prognostic nomogram based on the combination of clinical
Frontiers in Immunology | www.frontiersin.org 13
characteristics and hypoxia risk score model has better predictive
ability and higher clinical usefulness. However, owing to the lack
of in vitro or in vivo experiments, the reliability of our molecular
mechanism analysis may be limited.
CONCLUSIONS

In summary, we developed and validated a hypoxia risk score
model based on a novel hypoxia-related gene signature revealing
the relationship between hypoxia and tumor immune
microenvironment. The current study may provide new
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FIGURE 10 | EFNA3 and SERPINE1 are upregulated in gastric cancer cell lines and tissues. (A, B) Bioinformatics analysis of the expression of EFNA3 and
SERPINE1 in cancer and non-cancerous tissues in TCGA. (C, D) Bioinformatics analysis of the expression of EFNA3 and SERPINE1 in 27 pairs of gastric cancer and
adjacent non-cancerous tissues in TCGA. (E, F) qRT-PCR results of EFNA3 and SERPINE1 expression level in GES-1 and gastric cancer cell lines. (Data are
presented as mean ± SD. NS: P ≥ 0.05, *P < 0.05, **P < 0.01, ***P < 0.001). (G, H) qRT-PCR results of EFNA3 and SERPINE1 expression level in 39 pairs of
gastric cancer and adjacent non-cancerous tissues. (Data are shown as –DDCT values).
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insights into how hypoxia affects the prognosis, and may be
helpful in guiding targeted hypoxia therapy for gastric cancer.
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