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Atopic dermatitis (AD) is a multifaceted, chronic relapsing inflammatory skin disease that
affects people of all ages. It is characterized by chronic eczema, constant pruritus, and
severe discomfort. AD often progresses from mild annoyance to intractable pruritic
inflammatory lesions associated with exacerbated skin sensitivity. The T helper-2 (Th2)
response is mainly linked to the acute and subacute phase, whereas Th1 response has
been associated in addition with the chronic phase. IL-17, IL-22, TSLP, and IL-31 also
play a role in AD. Transient receptor potential (TRP) cation channels play a significant role
in neuroinflammation, itch and pain, indicating neuroimmune circuits in AD. However, the
Th2-driven cutaneous sensitization of TRP channels is underappreciated. Emerging
findings suggest that critical Th2-related cytokines cause potentiation of TRP channels,
thereby exaggerating inflammation and itch sensation. Evidence involves the following: (i)
IL-13 enhances TRPV1 and TRPA1 transcription levels; (ii) IL-31 sensitizes TRPV1 via
transcriptional and channel modulation, and indirectly modulates TRPV3 in keratinocytes;
(iii) The Th2-cytokine TSLP increases TRPA1 synthesis in sensory neurons. These
changes could be further enhanced by other Th2 cytokines, including IL-4, IL-25, and
IL-33, which are inducers for IL-13, IL-31, or TSLP in skin. Taken together, this review
highlights that Th2 cytokines potentiate TRP channels through diverse mechanisms under
different inflammatory and pruritic conditions, and link this effect to distinct signaling
cascades in AD. This review strengthens the notion that interrupting Th2-driven
modulation of TRP channels will inhibit transition from acute to chronic AD, thereby
aiding the development of effective therapeutics and treatment optimization.
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INTRODUCTION

Chronic-relapsing skin inflammation and intense itch are
hallmarks in patients with atopic dermatitis (AD) (1–3). AD
significantly impacts patient’s quality of life; however, the
underlying mechanism is inadequately understood, particularly
for patients in whom common treatments provide almost
no relief.

In AD, pruritogens trigger somatosensory neurons to open
transduction channels that depolarize the nerve terminal and
promote action potential firing (4). In turn, these neurons release
inflammatory mediators and signal to itch-specific neurons in
the spinal cord. Subsequent pro-inflammatory response activates
and sensitizes the transient receptor potential (TRP) channels,
thereby worsens itching and inflammation.

During cutaneous neurogenic inflammation in chronic itch
and AD, somatosensory afferents are activated by itch-producing
compounds released by a variety of cells in the skin, including
Th1/2 cells, Group 2 innate lymphoid cell (ILC2s), basophils,
eosinophils, and mast cells (5). In addition, other cell types [e.g.,
keratinocytes and dendritic cells (DCs)] release inflammatory
mediators in the periphery and further promote itch (6, 7).
Altogether, these cascades shift AD from an acute phase to a
systemic as well as neuropathic condition (4). Understanding the
underlying molecular mechanisms and neuroimmune circuits
helps to understand the transfer from acute to chronic condition,
from non-lesional to lesional skin, and from chronic to
recalcitrant itch.

The general consensus, to date, provides compelling evidence
that inflammatory mediators can potentiate TRP channels.
Particularly, Th1 cytokines involved in psoriasis or chronic
phase of AD are known to potentiate TRP channels. However,
to date, the role of Th2 cytokines in potentiation of these
channels in AD is underappreciated. Recently emerged
evidence suggests that several critical AD-associated Th2
cytokines potentiate TRP channel function in many ways. For
instance, Th2 cytokines enhance TRP channel transcription and
synthesis, rapidly modulate and sensitize channels (8). Th2
cytokines also regulate itch-selective peptide to modulate
epidermal TRP channel function (9). Moreover, the TRP
channel modulation is enhanced through an interplay between
different Th2 or related cytokines (10). Thus, there is substantial
evidence that the linkage of Th2 cytokines to sensory transducers
like TRP channels substantially contributes to disease severity
Abbreviations: AD, atopic dermatitis; BoNT, botulinum neurotoxin; BNP, B-type
natriuretic peptide; CGRP, calcitonin gene-related peptide; CNI, cutaneous
neurogenic inflammation; COX, cyclooxygenase; DC, dendritic cells; DRG,
dorsal root ganglia; FDA, Food and Drug Administration; GRPR, gastrin-
releasing peptide receptor; ILC, innate lymphoid cell; LDCVs, large dense core
vesicles; LPC, lysophosphatidylcholine; LTB4, leukotriene B4; NGF, nerve growth
factor; OSMR, oncostatin M receptor; PAR2, protease activated receptor 2; PGE2,
prostaglandin E2; PLC, phospholipase C; SADBE, aggravated the squaric acid
dibutylester; SNAP-25, synaptosomal associated protein-25 kDa; SNAREs, soluble
N-ethylmaleimide-sensitive factor attachment protein receptor; Th, T helper cells;
TRP, transient receptor potential cation channels; TRPV1, transient receptor
potential cation channel, subfamily V, member 1; TSLP, thymic stromal
lymphopoietin; TSLPR, thymic stromal lymphopoietin receptor; VAMP1,
vesicle-associated membrane protein.
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in AD. Hence, this review will help our understanding of chronic
itch propagation, the basis how inflammation contributes to
peripheral sensitization, and to develop new innovative strategies
for the treatment of inflammation and itch in AD.
MOLECULAR MECHANISM OF CHRONIC
ITCH IN AD: TH2 CYTOKINES AND TRP
CHANNELS IN ITCH SENSATION

AD itch results from dysregulation of neuro-immune circuits
involving crosstalk between various receptors [TRP family
members, Toll-like receptors, protease-activated receptor 2
(PAR2), IL-4R, IL-13R, IL-31RA, OSMR, Mas-related G
proteins], itch peptides [substance P (SP), natriuretic peptide
(BNP), and proteases], and pruritogenic cytokines [thymic
stromal lymphopoietin (TSLP), IL-2, IL-4, IL-13, and IL-31]
(11–13). Sensory nerves communicate with and can be activated
by environmental factors including allergens, toxins, microbes,
and pollution, thereby transmitting itch to the brain. The
sensation of AD itch is mediated by the interplay between
epidermal barrier dysfunction, upregulated immune cascades,
and the activation of structures in the central nervous system.
Endogenous or exogenous trigger factors of AD, such as protons,
microbes, irritants or allergens can both directly or indirectly
activate high-affinity receptors (e.g., TRP channels, Toll-like
receptors, protease-activated receptors etc.) on peripheral
sensory nerve endings (14, 15).

Th2 cells frequently reside in close anatomical vicinity to
sensory skin nerve endings, whose somatosensory neuron cell
bodies reside outside the spinal cord. Th2 cytokines including IL-
4, IL-5 IL-13, IL-25, IL-31, TSLP, and periostin are the central
mediators of human AD (16). These are also released by mast cells,
basophils, eosinophils, ILC2s, keratinocytes, and are master
regulators of chronic itch (17). IL-31 signaling in skin
keratinocytes also dysregulates filaggrin expression and epidermal
differentiation contributing to skin barrier dysfunction in AD,
consequently leading to pruritus (18). TSLP induces DCs to
release Th2-attracting chemokines (i.e. CCL17, CCL22), resulting
in priming naïve T cells and subsequent release of Th2 cytokines
(16). Cell expansion of Th2 central memory cells stimulated by
TSLP-activated DCs can be promoted by type-2 immune
responses, which is augmented by IL-25 (19). TSLP as a primary
pruritogen pointing to an epidermal/immuno-neuronal
communication pathway could feed into inflammation and itch
in human AD. Mouse sensory neurons express TSLPR mostly in
TRPA1+ neurons (10). In addition, TSLP triggers itch indirectly via
stimulation of immune cells that release pruritogens such as IL-4
and IL-13, which in turn stimulate sensory neurons to induce
pruritus (10). Interestingly, mechanical injury inflicted by tape
stripping to the skin induced TSLP expression in murine
keratinocytes, suggesting that the ‘vicious’ itch-scratch cycle
observed in AD patients could in part be mediated and sustained
by TSLP signaling (20). Accordingly, a recent study showed that
TRPA1 knockout mice reveal a lower pruritus score by reducing
the infiltration of mast cells, macrophages, as well as Th2 cytokine
levels after challenge with 2,4-dinitrochlorobenzene (21).
June 2021 | Volume 12 | Article 696784
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Increasing evidence supports the evidence that many of Th
cell-release cytokines are also produced by innate lymphoid cell
subsets (e.g. ILC1, ILC2, ILC3). Group 2 ILC (ILC2s) are
suggested to produce lots of Th2 cytokines, like Th2 cells, to
contribute to the pathogenesis of type 2 dominated inflammation
as seen in pathogenesis of AD (22). ILC2s express high levels of
IL-5, IL-13, and the epidermal growth factor–like molecule
amphiregulin (23), and receptors for IL-25, TSLP, and IL-33
(24), thus ILC2s also contribute to the Th2 cytokine-promoted
TRP sensitization.

Activation of sensory nerve endings by Th2 pruritogenic
cytokines leads to depolarization and electric “firing,” which in
turn leads to the release of further neuro-mediators from central
primary afferent nerve endings into the dorsal horn of the spinal
cord (4, 25).
T HELPER INFLAMMATORY AXIS IN AD
AND ITS DIFFERENCE FROM PSORIASIS

AD has been considered the paradigm of an allergic Th2-
mediated disease, characterized by excessive IgE production,
peripheral eosinophilia, mast cell activation, and induction of
Th2 lymphocyte expressing IL-4, IL-10, IL-13, and so on, which
promote cutaneous lesions from an acute phase (characterized by
erythematous papules, intense itching, excoriation, and serous
exudation) to a chronic phase (with lichenification) (1–3).

AD defects in the epidermal barrier result in a degree of
inflammation, eczema, pruritus, dryness, and discomfort (26).
Distinctive phenotypes, immunological, and genetic biomarkers,
including cytokines, are essential for the classification of AD and
chronic itch. Activated T helper cells in AD (mainly are Th2, less
Th1, Th17, Th22) trigger the release of interleukins and other
mediators of inflammation, which are essential markers in
chronic AD. Th2-biased nature cytokines play important roles
in the initiating stages of acute AD lesions and attract
macrophages and eosinophils. A Th2 to Th1 switch promotes
disease chronicity in the skin. Th1/Th2 dysbalance represents the
immunological hallmark of AD. A mixed Th1 and Th2 cytokine
pattern is implicated in chronic lesions (27). Th17 cytokines are
also expressed in AD skin lesions but are less dominant than Th1
and Th2 cytokines, and they are rather linked to the acute than
chronic lesions.

In contrast to AD, psoriasis is driven by Th1 and Th17 helper
T cells. The expression of TRP channels (TRPV1, TRPA1,
TRPV3) is elevated in both AD and psoriatic skin (9, 28–30).
TRPV2 is upregulated in pruritic atopic skin, and TRPM8 is
upregulated in pruritic psoriatic skin (28). The major difference
between lesional skin samples from AD and psoriasis is that
psoriasis plaques contain mainly cytokines secreted from Th1
and Th17 cells, for example, g-interferon and IL-17, whereas AD
skin samples contain relatively higher numbers of cytokines
secreted from Th2 and Th22 cells (1, 2, 31). Since both AD
and psoriasis are the common chronic itch diseases, thus, while
this review talks about the updated mechanisms of Th2-
mediated sensitization, we also discuss the current findings of
Frontiers in Immunology | www.frontiersin.org 3
Th1 and Th17 cytokines in potentiation of TRP channels to
broaden our view on the difference in roles of Th1/Th17 and Th2
mediated TRP channel potentiation.

Systematic and critical analyses of the recent studies with
focus on the mechanism of disease driven-modulation of
hypersensitivity in chronic itch states in AD and comorbidities
will aid the development of novel anti-itch therapeutics.
HYPERSENSITIZATION OF TRP
CHANNELS

Considerable research has focused on TRP cation channels in
sensory neurons and skin cells because of their pivotal roles in
the transduction of itch signals. In the skin with AD, an increase
of sensitivity and expression of certain members of the
polymodal TRP ion channel superfamily is unveiled, especially,
TRPV1, TRPA1, TRPV3, and TRPV4 (32–39). These channels
play key roles in cell proliferation, inflammation, pain, and the
propagation of itch signaling. With additional receptor overlaps,
this generates several functional distinct populations, particular
in sensory neurons, as revealed by RNA-seq (40), endowing
afferent fibers with a complex array of polymodal capabilities.

In rat sensory neurons, the TRPV1-positive population is
about double the size of the TRPA1-positive population, and the
former largely engulfs the latter (41). TRPA1 expression is
detected in dermal afferents and mast cells of mouse AD skin,
and is essentially involved in chronic itch in mouse and human
(36, 38, 42–44).

It has been reported that inflammatory agents, including
nerve growth factor (NGF), bradykinin, insulin, and
insulin-like growth factor 1, enhance sensory neuronal
plasma membrane insertion of TRPV1 after undergoing
phosphorylation by increased activity of certain kinases, such
as protein kinase A or C, phosphatidylinositol 3-kinase, and/or
sarcoma kinase (45–50).

Elevated expression of NGF and its receptors was observed in
the basal layer of epidermis of involved AD skin, not in normal
healthy volunteers, and AD uninvolved skin. This indicates their
function in regulating immune response and inflammation, as
well as in neuronally induced skin hyperplasia of AD (51). IL-31,
which co-opts with TRPV1 and TRPA1 on sensory nerves, can
also act as a neurotrophin by interacting with TRP channels (52).

Bradykinin is a classic endogenous algogen, which acts as a
potent histamine-independent pruritogen in lesional AD skin
and takes function in switching from pain to itch (53).
Interestingly, in non-lesional skin of patients and in healthy
volunteers, bradykinin evokes only weak itch and pain of similar
intensities. However, in lesional skin, it induces intense itch
which cannot be suppressed by the simultaneously increased
pain, indicating an involvement of central sensitization (53).

In epidermal keratinocytes, TRPV3 is a dominant channel for
chronic itch transmission that can be potentiated or sensitized
by unsaturated fatty acids (54). Another pruriceptor-TRP
in skin keratinocytes, TRPV4, functions differentially to the
pathogenesis of chronic itch (55). Both TRPV3 and TRPV4 are
June 2021 | Volume 12 | Article 696784
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also activated and potentiated by stimuli that are related to itch
signaling, keratinocyte modulation, and inflammation (56, 57).
AD-RELATED CYTOKINES IN
MODULATION OF TRP CHANNELS

TRP channel modulation/potentiation has been observed in
different stages associated by certain types of Th1, Th2, and
Th17 cytokines, a mechanism underlying the progression and
pathophysiological condition of AD (58). The Th1/Th2
dysbalance, indicative of a unique feature in AD, is of great
importance in the manipulation of the TRP channel activation
(31). AD begins with an acute phase that is signified by excessive
Th2-dominated, but mixed with Th22 and Th17 cell activation.
These T cells were increased in peripheral blood in patients with
acute AD. In addition to the activated Th2 cells, increased ILC2s,
basophils, eosinophils, and mast cells are also dominant sources
during the acute stage of AD (58–62). These cells secrete large
amount of Th2 cytokines, including IL-4, IL-5, IL-13, and IL-31.
Epithelial cytokine IL-25, which can be released by dendritic
cells, is also significantly up-regulated (63) and involved in Th2
inflammation. Moreover, IL-31 expression appears to be under
control of AD-associated IL-4 and IL-33 (64).

When the acute phase of AD is switched to chronic phase
subtype, Th1/Th17/Th22 inflammation response co-dominates.
Th17 cells are characterized by the production of inflammatory
cytokines, such as IL-17A, IL-17F, but also can secrete IL-22 and
IL-26. Th22 cells produce cytokines, such as IL-22, IL-26, and IL-
33 (65, 66).

A well-known Th1 pro-algesic cytokine that increases
TRPV1 protein expression is TNF-a, which is released from
mast cells, lymphocytes, macrophages as well as skin
keratinocytes (67, 68). TNF-a enhances TRPV1 channel
activity in rat dorsal root ganglionic (DRG) neurons and rat
trigeminal ganglionic neurons (TGNs) (68–70). Additionally,
TNF-a facilitates the plasma membrane insertion of TRPV1
and TRPA1 simultaneously in rat sensory neurons, thereby
elevating skin hypersensitivity (7).

In terms of Th17-mediated TRP potentiation, an interesting
cytokine is IL-6, which is produced by several cell types including
antigen-presenting cells (APC), i.e., macrophages, dendritic, and
B-cells. IL-6 upregulates TRPV1 in sensory neurons through
activation of JAK/PI3K pathway (71). IL-6 level is increased in
patients with AD and released in response to allergen challenge,
thus being relevant for the acute-phase reaction of allergy (72,
73). IL-6 mediates activation of nuclear-factor of activated T-
cells (NFkB), leading to the production of IL-4 by naive CD4(+)
T cells and their differentiation into effector Th2 cells.
Meanwhile, IL-6 inhibits Th1 differentiation through
upregulating suppressor of cytokine signaling 1 (SOCS1)
expression to interfere with the development of Th1 cells (74).
Because of the link of IL-6 to Th2 and Th1 activation,
intervening IL-6–mediated TRPV1 upregulation and
hyperexcitability could be beneficial for the treatment of AD
(75). In fact, antagonizing IL-6 signaling using its mAb
Frontiers in Immunology | www.frontiersin.org 4
tocilizumab decreased the clinical activity of severe AD in
patients, highlighting its importance as the therapeutic target
(75). However, the inhibition of IL-6 receptor by tocilizumab can
improve AD in patients but associated with higher risk of
bacterial infection (75).

Apart from IL-6, TRPV4 channel expression is stimulated by
IL-17A, a Th17 cytokine involved in Th2-type immune
responses in AD (76).

In contrast to the aforementioned Th1- and Th17-
potentiation of TRP channels in AD and chronic itch, the
Th2-driven potentiation of these TRP channels only recently
attracted the attention of researchers. Accumulation of the
released itch mediators and other inflammatory factors
induced by Th2-cytokines in the early-onset, subclinical state
can amplify the inflammatory response, to induce severe AD and
itch (77). This could be attributed by sensitization and/or
potentiation of TRPV1 and TRPA1 observed with heightened
currents evoked by its agonists in sensory neurons (78). TRP
channel expressing neurons activated by Th2 cytokines release
inflammatory molecules and itch neuropeptides, and these
cytokines and their downstream signaling molecules (i.e.
substance P) also modulate the activity of TRP channels. These
effects will exaggerate dermatitis and itch; therefore, the pathway
from Th2 cytokines to TRP channels provides emerging targets
for AD treatment.

Evidences reinforcing the information of Th2-driven
modulation of TRP channels in progression of AD include IL-
13–enhancing TRPV1 (79) and TRPA1 transcription (44), IL-31
transcriptionally regulating TRPV1 (80), and rapidly sensitizing
TRPV1 channel activity (see below), and Pro-Th2 cytokine TSLP
upregulating TRPA1 synthesis in sensory neurons (10). The
modulation effect by the abovementioned Th2 cytokines could
be further augmented by other IL-4, IL-25, and IL-33 cytokines,
because these are the upstream regulators of IL-13 and IL-31 in
AD skin. Moreover, IL-1b and TNF-a, which are known to
potentiate TRP channels, can also induce TSLP release in human
dendritic cells, human keratinocytes, and human skin explants
(81, 82), resulting in compounded effects.

Taken together, Th2 inflammation plays critical roles in AD
by directly activating pruriceptive sensory neurons and
potentiating TRP channels to initiate pruritic inflammation
and modulate the progression from acute to chronic stages.
For example, IL-4Ra and IL-13Ra1 are expressed in sensory
small diameter DRG neurons expressed in mice (40, 83–85),
supporting the finding that IL-4 and IL-13 directly trigger
sensory neurons (83, 86). IL-31 binds and activates a
heterodimeric receptor composed of IL31RA and OSMRb (87,
88), which is expressed by mouse sensory neurons (9). IL-31
activates TRPV1+/TRPA1+/IL31RA+ mouse sensory neurons to
promote itch (8). TH2-derived IL-31 initiates STAT3-dependent
proliferation, branching, and survival of small-diameter neurons
in mice, underlying the basis for the increased sensory nerve fiber
density in the skin of patients with AD (52). Mouse sensory
neurons express TSLPR mostly in neurons that also co-express
TRPA1 (10). TSLP can directly activate a subset of mouse
TRPA1+ sensory neurons to elicit itch (10).
June 2021 | Volume 12 | Article 696784
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In order to fully understand the functions of cytokines in
regulation TRP proteins in AD, the results of studies carried out
to date are summarized in Table 1.
MECHANISMS FOR TH2-PROMOTED TRP
CHANNEL SENSITIZATION

Increased levels of IL-4, IL-5, IL-9, IL-13, IL-25, IL-31, IL-33, and
the keratinocyte-derived factor TSLP, a master regulator of Th2-
driven inflammation, have been identified in the skin of AD
patients (100, 110, 111). These mediators are known to influence
keratinocyte function and skin barrier integrity, which are
prominent in atopic itch and hyper-pruritic condition (15).

In transgenic mice that overproduce Th2 cytokines, like IL-4,
IL-5, IL-13, and IL-31, a positive correlation between the onset
and progression of AD-like disease and the expression of these
Th2 cytokines were observed (112). IL-4, IL-13, and TSLP
directly activate sensory neurons to elicit or enhance itch
sensation, indicative of a further hallmark of atopic skin (10,
83, 86). IL-31 induces pruritus by initiating the transduction (act
as pruritogens) and sensitizes the TRP channels, thereby worsen
Frontiers in Immunology | www.frontiersin.org 5
the itch condition (8). IL-13 and IL-4 sensitize response of
sensory neurons to many different pruritogens, including
histamine (83). IL-4 or IL-13 induces the production of TSLP
(82). In turn, TSLP triggers an inflammatory cascade, first, by
activating myeloid DCs that provoke the proliferation of naïve
CD4+ T cells, which then differentiate into Th2 cells that secrete
inflammatory cytokines IL-4, IL-5, and IL-13 (113). The nature
of Th2 cytokines being pruritogenic and the crosstalk between
different Th2 cytokines further augments the potentiation of
TRP channels, thereby contributing to the perpetuation of itch
and neuro-inflammation.

IL-13 Enhances TRPV1 and TRPA1
Expression in Itchy Skin
In the IL-13 transgenic mouse model of AD, intensive chronic
itch is associated with enhanced expression of TRPA1 in dermal
sensory nerve fibers, DRG neurons, and mast cells (83). TRPA1
expression is highly enhanced in epidermis from patients with
lesional AD skin, in contrast to healthy subjects, might be
attributed to IL-13 in induction of enhanced growth of dermal
neuropeptide-secreting afferent nerve fibers (44). Moreover,
IL-13 strongly induces the elevated expression of functional
TRPA1 in mast cells (114). These findings highlight the
TABLE 1 | AD-related cytokines in modulation of TRP channels.

Group Cytokine Pathological function in AD Modulation of TRP channels References

Th1 IL-1b Serum levels increased in AD; induces TSLP and an AD-like phenotype in reconstructed
healthy human epidermis; receptor expressions are associated with disease severity

Does not potentiate TRPV1; potentiates
TRPA1 indirectly

(89, 90)

TNF-a Serum levels is increased in AD; induces TSLP expression in human keratinocyte; initiates
the process of tethering, activation, and adhesion to the endothelium followed by
extravasation of inflammatory cells

Increases TRPV1 expression; enhances
TRPV1 activity; increases TRPV1 and
TRPA1 membrane insertion in sensory
neurons

(68–70,
91–93)

Th17 IL-6 Serum level is increased in AD; regulates immune response, inflammation, pathogen
responses, bone metabolism, and hematopoiesis

Functionally upregulates TRPV1
expression in DRG neurons

(71, 75)

IL-17 IL-17A decreases during the progression of AD from acute to chronic forms; triggers the
production of IL-4 by Th2 cells; detected in acute AD lesions; number of peripheral blood
IL-17+ CD4+ T cells correlated with disease severity; stimulates eosinophils to produce
profibrotic cytokines

Neuronal IL-17 receptor upregulates
TRPV4 but not TRPV1 receptors in
DRG neurons

(76, 90,
94–97)

TGF-b Immunosuppressive; serum levels are increased during progression of acute AD to chronic
forms; inhibits activity of Th1/2 cell types in human subjects; regulates TNF-a in mast cells
and maturation of B cells; induces IL-31 expression from dermal dendritic cells to activate
sensory neurons

Sensitizes TRPV1 through Cdk5
signaling in pulpal neurons and in DRG
neurons

(80, 98, 99)

Th2 IL-4 The levels decrease during the progression of AD from acute to chronic forms; induces
TSLP production in keratinocytes; activates sensory neurons; activates Th2 cells to release
IL-4, 5, 6, 10, 13 to support allergic reaction; activates B cell to produce IgE

Indirectly potentiates TRPV1 and
TRPA1 by inducing IL-13

(82, 83, 90,
100–104)

IL-13 Involved in barrier dysfunction; induces TSLP production in keratinocytes; activates sensory
neurons

Increases TRPV1 levels in lungs and
bronchial epithelia of BALB/c mice;
increases TRPA1 levels in mast cells.

(44, 79, 82,
90)

IL-25 Epithelial cytokine; induces inflammation and skin barrier dysfunction; transgenic mice that
overexpress IL-25 have elevated expression of IL-4, -5, and -13; dendritic IL-25 induces
Th2 response and inhibits filaggrin synthesis, thereby affecting skin barrier function

May indirectly potentiate TRPV1 and
TRPA1 though inducing release of
IL-13

(90, 105,
106)

IL-31 Itch inducer; elevated in AD lesions; enhances skin inflammation; leads to recruitment of T
cells; induces IL-lb, IL-6, CXCL1, CXCL8, CCL2, and CCL18 release from eosinophils

Increases TRPV1 expression in DRG
neurons; potentiates proton-activated
TRPV1 in DRG neurons.

(80, 107,
108)

IL-33 Over-expressed in keratinocytes of patients with AD; stimulates Th2 lymphocytes, mast
cells, and eosinophils to release IL-5, -13, and -31; promotes Th2-type immunity; reduces
filaggrin and claudin-1 expression; reduces skin barrier function

Indirectly potentiate TRPV1 and TRPA1
though inducing release of IL-13 and
IL-31

(90, 109,
110)

Pro-
Th2

TSLP Epithelial-derived; crucial for APC maturation; associated with autoimmune disorders;
skews immune response toward Th2 phenotype; increases circulating levels of IL-4 and
IL-13; activates subset of TRPV1+ and TRPA1+ sensory neurons

Upregulate TRPA1 synthesis in sensory
neurons and promotes TRPA1 activity

(10)
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complex interactions among dermal afferent nerves and mast
cells in a Th2-dominated inflammatory environment
(44). Nevertheless, it is not clear yet if rapid sensitization
contributes to the IL-13 mediated itch condition and how this
may differentially impacts sensory function.

Apart from TRPV1 and TRPA1, the levels of both IL-4 and
IL-13, and epithelial-driven cytokines IL-25 and TSLP are also
strongly correlated with expression of cold-activated TRPM8, a
channel that is involved in non-neurogenic skin inflammation
(115–117). As this is only observed in the sputum of patients
with asthma so far, it remains unknown if IL-13 also modulates
TRPM8 expression/function in AD. Nevertheless, this finding
highlights that Th2 cytokines could also modulate TRPM8
expression levels.

IL-31 Increases TRPV1 Expression
and Rapidly Regulates Sensory
Neuronal Activity
The transition from acute to chronic disease stages, the factors
and mechanisms to shape chronic inflammatory activity and
alter the responsiveness of sensory neurons, may not only
depend on transcriptome global change over a long period but
also on the modulation of sensitivity of TRP channels.

Overexpression of IL-31 is characterized by severe itch and
chronic dermatitis (118). IL-31 receptor a (IL-31RA) is known
to associate with Oncostatin M receptor (OSMR) to form the
interleukin-31 receptor heterodimer complex to bind to IL-31 in
mice (8). IL-31RA+/OSMR+ neurons are a small subset of
TRPV1+-peptidergic sensory neurons (3, 8). IL-31 induces itch
via the activation of TRPV1 and TRPA1 (8). IL-31 is an inducer
of itching after cutaneous incision and is responsible for itch
responses during wound healing (80), acts as a neurotrophin
(52), and is involved in peripheral, as well as central pruritus (4,
88). In the skin wound, IL-31 increases expression of TRPV1 in
3 h after intradermal injection, and this potentiates calcium
influx in DRG neurons, whereas expression of TRPA1 did not
change significantly (80), highlighting IL-31 acts as a TRPV1
channel transcription modulator.

IL-31 activates TRPV1+/TRPA1+ sensory neurons to regulate
pathogenesis of AD (8). In addition to the ability in driving itch-
related neuropeptide release, it also acts as a sensitizer of TRP
channel activity within seconds to minutes (6). In our finding,
IL-31 modulated TRPV1 in DRG neurons in a fast mode. IL-31
potentiated proton (pH 5.8)-induced activation of TRPV1 in
DRG neurons. Repeated application of pH 5.8 solution in DRG
neurons for 30 s at intervals of 3 min resulted in increases in
intracellular calcium with a stable amplitude after some initial
tachyphylaxis (Figure 1A). After administration of IL-31, the pH
5.8 induced significant rise in calcium level compared to pH 5.8
alone. The analyzed data confirmed that IL-31 dose-dependently
increased the area under the curve (AUC) of the spikes
(Figure 1B). This effect requires activity of cyclooxygenase
(COX) 1/2 because IL-31 effects were abrogated in the
presence of the flurbiprofen (Figure 1C). Our finding
supported IL-31 could re-sensitize TRPV1 channel in a fast
mode. It suggests that during tissue damage and inflammation
Frontiers in Immunology | www.frontiersin.org 6
in AD, IL-31 can sensitize the pruriceptive neurons to respond to
further stimuli, which itself is no longer sufficient to activate
the neurons.

Taken together, Th2 mediators might have the ability to
activate or sensitize nociceptive or pruriceptive nerve terminals
to elicit itch and promote tenderness at the site of injury or skin
lesion. Particularly, low pH (acidosis) is considered a hallmark of
inflammatory responses and tissue acidosis implicated in AD.
TRPV1-mediated proton sensing in tissues is physiologically
relevant under normal conditions and in disease states of AD
(119). Both local acidification as well as inflammation result in
the lowering of the low PH threshold activating TRPV1 or bring
it closer to activation.

Apart from low PH, aggravation of itch by warming
temperatures is attributed by thermal sensor TRPV1 being
sensitized by inflammatory factors in pathological condition in
skin dermatitis, which possibly lowers the heat threshold to
warmth sensation (120, 121) and increases the sensitivity to
endogenous ligands in TRPV1 activation (122), to provoke itch
in AD under environmental temperature changes.

IL-31 Pathway Modulates Epidermal
Keratinocyte TRPV3
Th2 immune responses could indirectly lead to the dermal
remodeling and epidermal hyperplasia typical of chronic AD.
An example can be seen from the IL-31 signaling-regulated
TRPV3 hypersensitization.

Normal TRPV3 signaling is essential in maintaining
homeostasis of the epidermal barrier. TRPV3 over-activation
illustrates a critical cellular signaling cascade that directly
influences normal cell proliferation, skin barrier formation,
normal hair growth, release of immune mediators, and so on.
This change of TRPV3 is seen in many cases of AD and similar
skin diseases. The gain of function mutation of TRPV3 can alter
or inhibit hair growth in the dermis, thus disturbing homeostasis
of the skin barrier (123, 124). Loss of hair growth due to up-
regulation of TRPV3 may further exaggerate pruritus in patients
presenting with AD (9).

In AD, TRPV3 channel up-regulation in human keratinocytes
in response to Th2 inflammation is thought to increase TSLP
levels, and the upregulation might be attributed to NF-kB
activation (30, 125). In human keratinocytes, PLCb activation
by Gq/11 protein coupled receptor hugely enhances TRPV3
currents and M1 acetylcholine receptor stimulation increases
the sensitivity of TRPV3 channel activation (126, 127). Such
mechanism is also crucial for T-cell activation at sites of
inflammation causing sensitization of TRPV3 channel.

Our findings have recently identified a neuro-immune
modulatory cascade for amplification of TRPV3 synthesis and
activity in mouse chronic itch (9). This involves IL-31 and itch-
selective neuropeptide B-type natriuretic peptide (BNP) (9).
First, IL-31 upregulates itch-related neuropeptide BNP
synthesis and induces its release from mouse sensory neurons
(6, 128) (Figure 1D). Second, BNP binds to its receptor NPR1
located on human keratinocytes and induces upregulation of
TRPV3 transcriptional levels (9) (Figure 1D). Thirdly, BNP
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modifies TRPV3 activity and potentiates its mediated calcium
influx (9) (Figure 1D). This cascade underlies a mechanism
contributing to transition from acute itch to noxious stimulation,
which then progresses to a prolonged itch and hyper-pruritic
skin condition. We predicate that BNP increases TRPV3 levels
on the cell surface probably through a vesicular transportation
Frontiers in Immunology | www.frontiersin.org 7
and membrane insertion (9). The IL-31-BNP-TRPV3
amplification cascade enhances Serpin E1 release from human
keratinocytes. Serpin E1 is implicated in severe AD itch and has
been identified as a new itch inducer in mice (9).

The link between IL-31 and TRPV3 through neuropeptide
BNP might be a promising target for therapeutic development.
A

B

D

C

FIGURE 1 | Th2-cytokine induced potentiation and sensitization of TRP channels in sensory neurons and skin. IL-31 potentiates TRPV1 in cultured murine DRG
neurons. Calcium spikes on mDRG neurons excited with 200 ms exposure time at 1 Hz when continuously superfused with extracellular solution (145 mM NaCl,
1.25 mM CaCl2, 1 mM MgCl2, 5 mM KCl, 10 mM glucose, and 10 mM HEPES; adjusted to pH 7.3). IL-31 was diluted in this solution. Experimental procedures had
been approved by the Medical University of Vienna Ethics Committee and local Authorities. (A) TRPV1 was repetitively stimulated by pH 5.8 solution. A 60 s pre-
application of IL-31 dose-dependently potentiated acid-induced activation of TRPV1 based on AUC; (B) Abolishment of this sensitization in the presence of Cox1/2
blocker, flurbiprofen at 1 µM. (C) Quantitative analysis of panels (A, B); changes in the AUC (DAUC) are presented relative to the third stimulation of (A, B); n = 26,
p = 0.009 vs. IL-31, ANOVA, post-hoc HSD; *P < 0.05. (D) IL-31 and IL-13, and PAR2-TSLP activation potentiate sensory neuronal TRPV1 and TRPA1 through fast
and slow mechanism. In detail, disease-driven IL-31 upregulates TRPV1 synthesis and rapidly sensitizes TRPV1 channel function in sensory neurons. IL-13 enhances
TRPA1 synthesis in mast cells. TSLP upregulates TRPA1 synthesis in sensory neurons. IL-31 induced BNP release from sensory neurons can increase the
transcription level of TRPV3 in keratinocytes and elevate its activity. The Th2-cytokine mediated potentiation worsens pruritic and inflammatory conditions, resulting
severe impairment of the skin barrier, increased susceptibility to infections, and elevated allergen sensitization in AD.
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The PAR2-TSLP Interaction Modulates
TRP Channel Function
PAR2 has been extensively documented to promote Th2
inflammation and pruritus (129–131). In the skin of the PAR2
KO mice, the levels of the Th2 cell-secreted cytokines, IL-4, IL-5,
and IL-13 were markedly reduced as compared to that from the
wild type. Conversely, PAR2 activation induces a pro-Th2
cytokine TSLP, which is sufficient to trigger AD-like disease (10).

TSLP is an epithelial-derived cytokine, which is crucial for the
maturation of antigen-presenting cells, and can be associated with
various autoimmune disorders (132). TSLP may contribute to AD
early in the course of the disease by causing itching, scratching,
and breakdown of the skin barrier. It skews a T-helper immune
response toward the Th2 phenotype and increases circulating
levels of IL-4 and IL-13. Sensitivity to TSLP is significantly
decreased in TRPA1-deficient neurons, but not TRPV1-deficient
neurons (Figure 1D). TSLP activates a subset of TRPV1+/TRPA1+

sensory neurons and promotes TRPA1 activity via phospholipase
C (PLC) signaling (10). As a support, inhibition of PLC not only
reduces the prevalence of TSLP-sensitive neurons but also
attenuates the TSLP-induced scratching (10).

PAR2 is a potent regulator for TRP channels as it indirectly
modulates TRPA1 channel function (78), and also facilitates the
activation and potentiation of TRPV1 and TRPV4 in mouse
sensory neurons (133). When stimulated by PAR2 activator, co-
regulation of TRPV1 and TRPV4 in a subset of mouse sensory
neurons resulted in enhanced formation of functional complex to
contribute to elevated histamine and chloroquine-induced itch
(133). It is unclear whether facilitation by PAR2 on these channel
proteins occurs at the plasma membrane or involves enhanced
trafficking to the cell surface or how these channels are directed
to the specific regions of the cell (133). Nevertheless, the PAR2
pathway by modulating TRP channel function represents a
cutaneous feedback mechanism on sensory itch receptors to
worsen AD severity (134).

Hypersensitivity of TRP Channels Leads to
Enhanced Neurogenic Inflammation,
Increased Somatosensations, and
Cutaneous Inflammation in AD
The hypersensitization of TRP family contributes to the
increased somatosensations and persistent itch, neurogenic
inflammation, and cutaneous skin inflammation (34). In AD,
TRPA1 is increased in nerve fibers, keratinocytes, and tryptase
positive mast cells from lesional skin of patients (44). TRPV1 is
up-regulated in lesional skin (135) and increased sensitivity
revealed (136). Activated TRP channels in mouse and rat
sensory neurons release itch neuropeptides, including
substance P and CGRP, both of which contribute to the
characteristic flare and wheal that is concomitant with itch
(85). Itch is also regulated by the VGLUT2-mediated
transmission via the TRPV1+ neurons, through CGRP and
gastrin-releasing peptide receptor (GRPR), the latter is a spinal
itch receptor (137). The itch generation can be associated with
different itch neurotransmitters combined and cooperate with
each other to transmit or regulate itch sensation.
Frontiers in Immunology | www.frontiersin.org 8
In sensory nerve, the identification of a subset of neurons as
the dedicated itch-specific prurinergic fibers, named as
MrgprA3+ neurons, is the first time to establish the existence
of itch-specific nerves (138). In a mouse transgenic line that
TRPV1 is only expressed in the MrgprA3+ neurons, the pain
stimulator capsaicin no longer elicits nocifensive behavior, on
the other hand, it elicits scratching behaviors (138). When the
MrgprA3+ neurons are depleted, itch behaviors were reduced but
thermal and mechanical allodynia was maintained. TRPA1
mediates histamine-independent, MrgprA3, and C11-
dependent itch (139). The key player IL-31 enhances BNP
release and synthesis and orchestrates cytokine and chemokine
release from skin keratinocytes and DCs (6). IL-31–elicited itch
behavior in mice is largely dependent on TRPV1 and TRPA1
channels as mice with either in TRPV1−/− or TRPA1−/− displayed
significant reduction of scratching bouts (8).

In skin, TRP channels regulate cutaneous inflammation.
Activation of cultured human primary keratinocytes by a
TRPA1 agonist elicits pro-inflammatory cytokines, including
IL-1 a and IL-1b (140). Noxious agents like ultraviolet light,
thermal stimuli, low pH, endogenous bradykinin, NGF, lipids,
and metabolites of arachidonic acid and ATP activate the TRP
V1 receptor in the human keratinocyte resulting in the release of
PGE 2, IL-8, and upregulate COX 2 together with other
proinflammatory mediators (5, 141). TRPV2 is also found to
be upregulated in the patient itchy atopic skin (28), and
activation of TRPV2 channels causes mast cells (human cell
line HMC-1) to degranulate (142). Keratinocytes isolated from
AD patients display enhanced expression and heat sensitivity
with hyperactive channel function of TRPV3. Agonists of
TRPV3 increased IL-33 production, as well as TSLP, NGF,
PGE2, in human keratinocytes and induced scratching
behavior upon intradermal injection in mice (143). Activation
of TRPV3 also triggers release of multiple factors, including
PGE2, ATP, nitric oxide, and NGF, further contributing to the
inflammation processes in dermatitis in skin level (144). Apart
from this, TRPV4 is also selectively expressed by dermal
macrophages and epidermal keratinocytes in mice, and
critically and dynamically mediate chronic itch (55).
PERSPECTIVES FOR THERAPEUTIC
INTERVENTIONS VIA TARGETING
POTENTIATION OF TRP CHANNELS

Current Therapeutic Development
Targeting Th Cytokines and TRP Channels
for Treatment of AD and Itch
The treatment of chronic itch and AD is challenging because of
the fact that it is a chronic relapsing disease, sometimes refractory
to current treatments, adverse event from long-term topical and
systemic therapies, and a lack of clear understanding about the
exact mechanisms of pruritic mediation. Also, the involvement of
underlying disease processes that carry their own complex
etiologies further augments the problematic nature of treating
chronic itch. Inhibition, desensitization, or downregulation
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(i.e., probably a consequence of anti-inflammatory therapies) of
the TRP channels are possible therapeutic avenues, along with the
identification of antagonists that can function to selectively
inhibit signaling upstream of TRP channels, leading to
promising antipruritic therapies (145).

Th2-cytokine modulation of TRP channels might be related
to its intrinsic property as strong inflammatory progenitors. Th2
cytokines exhibit fast and slow modulatory effects for TRP
channel potentiation through either potentiation of TRP
channels via phosphorylation, thereby lowering the gating
threshold, or increasing the plasma membrane translocation
and presence of the channels at the membrane, or
enhancement of channel transcription and protein synthesis,
thereby increase the amount of channel trafficking and delivery
to the plasma membrane.

Despite the importance of Th2 in potentiation of TRP
channels, no therapeutics have been developed to interrupt the
pro-inflammatory and pro-pruritic linkage of Th2-TRP. In fact,
very limited therapeutics have been developed against TRP
channels for itch and AD treatment (Table 2).

Mechanism of TRP Family Antagonists as
Therapeutics for AD Treatment
Because of the limited data available in clinical trials, the clinical
efficacy and safety of TRP family antagonists in the treatment of
AD remains to be explored. However, in the animal models of
chronic and acute itch, as well as AD-like models, systemic and
topical administration of TRP antagonists seem to have potential
Frontiers in Immunology | www.frontiersin.org 9
in improving symptoms of AD, recovering epidermal barrier
function, and reducing itch-like behaviors.

TRPV1 is upregulated in lesional skin in murine AD
models (135, 164). The blockade of activation of TRPV1 by
PAC-14028 is confirmed in murine AD models induced by
Dermatophagoides farina (Df)- and oxazolone (OXZ), whose
AD-like symptoms have been improved, including serum IgE
increase, mast cell degranulation, scratching behavior,
and clinical severity of dermatitis (136). Another TRPV1
antagonist, AMD9810, was found to block excitation of
sensory neurons and dramatically reduce scratching bouts in a
mouse acute itch model induced by subcutaneous injection of
immepip into the nape of the neck, but this is not observed for
TRPA1 antagonist HC030031, suggesting that TRPV1 is
implicated in histamine H4 receptor-mediated itch signaling
(167). In AD, H4 receptor antagonists have shown both
antipruritic and anti-inflammatory effects in murine models
and in human clinical trials, implicating H4 receptors in AD
(184, 185). TRPV1 agonist SB366791 and HC030031 alleviated
PAR-4 agonist (AYPGKF-NH)-induced itch in mice, suggesting
that this type of itch involves TRPV1/TRPA1-dependent
mechanism (168). PAR4 is overexpressed in itchy AD skin,
although the detailed function in AD remains to be defined
(28). SB366791 may also block release of itch-related
neuropeptide (SP) that is released by TRPV1/TRPA1 neurons
at both peripheral and central levels. In IL-13–overexpressing
transgenic mouse AD model, HC030031 administration
markedly decreased IL-13–induced AD itch, and reduced
TABLE 2 | Overview of Th-cytokine pathway-related and TRP channel-based anti-pruritic therapeutics investigated in both animal and clinical trials (Data are based on
the ClinicalTrials.Gov 2021).

Mechanism of Action Therapeutic Route Development Stage Reference

IL-31RA antagonist Nemolizumab Systemic Phase II (146–154)
NCT03100344 NCT04365387

Anti-IL‐4Ra antibody (antagonist) Dupilumab Systemic Phase II/III NCT04256759 NCT02277743 NCT02277769
NCT02260986 NCT03054428

(155, 156)

Anti-IL-17a antibody (antagonist) Secukinumab Systemic Phase III/IV NCT01806597 NCT03440736 NCT02752776 (157–159)
IL-13 antagonist Tralokinumab Systemic Phase III (160, 161)

NCT03363854
IL-13 antagonist Lebrikizumab Systemic Phase III (162, 163)

NCT04250337
NCT04146363

TRPV1 antagonist PAC-14028 (Asivatrep) Topical Phase III (135, 164, 165)
NCT02965118

TRPV1 antagonist SB-705498 Topical Phase I NCT01673529 (166)
TRPV1 antagonist AMG-9810 Topical Animal study (mouse) (167)
TRPV1 antagonist SB366791 Systemic Animal study (mouse) (168)
TRPA1 antagonist HC030031 Systemic Animal study (mouse) (38, 44, 168–170)
TRPA1 antagonist A-967079 Systemic Animal study (mouse) (34, 38)
TRPV4 antagonist HC-067047 Systemic Animal Study (mouse) (171–173)
TRPV4 antagonist GSK2193874 Systemic Animal Study (mouse) (55, 174)
TRPV4 antagonist GSK205 Systemic Animal Study (mouse) (175, 176)
TRPM8 agonist Menthol solution Topical Animal Study (mouse) (177)
TRPM8 agonist ph5 Eucerin Topical Proof of Concept NCT00669708 (178)
NPRA and GRPR antagonists A71915 Systemic Animal (mouse) Study (114, 179)

RC-3095
Anti-OSMR antibody (antagonist) KPL-716 Systemic Phase II NCT03858634 NCT03816891 (180, 181)
Anti-TSLP antibody (antagonist) Tezepelumab Systemic Phase III NCT03809663(terminated) (182, 183)
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TRPA1 expression in skin, but did not completely abrogate IL-
13–induced itch responses, suggesting that TRPA1-independent
mechanisms regulate the pathogenesis of IL-13–induced
itch (44).

Skin dryness, excoriation, erythema, edema, cellular
inflammatory responses, and histamine-independent pruritus
are associated with OX-induced AD model. AD-like
phenotypes were found to be attenuated by HC030031 in this
model, but not by TRPV1 inhibitor, approving that TRPA1, but
not TRPV1, is related closely to skin edema, keratinocyte
hyperplasia, nerve growth, leukocyte infiltration, and
histamine-independent scratching behavior in these mice (38).
A similar observation was also obtained in mice exposed to the
haptens, urushiol, and the contact allergen of poison ivy, which
are the inducers for allergic contact dermatitis (ACD) (38).

A known neutrophil chemoattractant factor leukotriene B4
(LTB4)-induced acute itch (186), was found to be inhibited by
SB366791 and TRPA1 antagonists TCS 5861528 and HC-030031
(169). LTB4 may initiate/amplify dermal inflammation, and
abnormal T cell response (186, 187).. In addition, LTB4 is
upregulated in AD lesions and is required for neutrophil
recruitment to areas of injury or challenge, subsequent
recruitment of CD4+ T cells, and Th2 inflammation (188).

Exposure to formaldehyde upregulates the activation of DRG
neurons and exacerbates AD by inducing skin barrier
dysfunction in AD patients (189). Repeated exposure of
formaldehyde causes allergic contact dermatitis in both human
(190) and animal models (191). In line with this, formalin-
evoked acute itch in mice can be significantly reduced by
HC030031 (172).

TRPV1 antagonist AMG517 aggravated the squaric acid
dibutylester (SADBE)-induced skin inflammation, whereas it
was not affected by administration of a selective TRPA1
channel blocker A967079, suggesting that TRPV1, but not
TRPA1, plays a critical role in modulating ear edema in the
SADBE-induced allergic contact dermatitis model (34). TRPV4
expression is elevated in skin samples from Human chronic
idiopathic pruritus patients and TRPV4 function is required for
generating mouse models of both allergic and nonallergic
chronic itch (55). AEW-induced dry skin itch and SADBE-
induced itch in mice both require TRPV4; therefore, the
antagonist of TRPV4 alleviate scratching in these models (55).
5-hydroxytryptamine (5-HT) is an inflammatory and capable to
induce itch in mice (not human), which is linked to TRPV4
function in epithelial and immune cells in skin, thus can be
attenuated by TRPV4 antagonist HC067047 (173).
Lysophosphatidylcholine (LPC)-induced scratching in mice
was reduced by systemically TRPV4 inhibitors, GSK205 and
HC067047, and the elevated LPC was previously observed in
patients with AD (176).

Despite the fact many antagonists have been tested in
different animal models, there is lack of inhibitor toward the
potentiation of TRP family that can be used clinically. Moreover,
even in different AD models, the effect of antagonists can be
different, attributed by differential involvement of TRPV1 and
TRPA1. For example, the phenotype of OX-induced murine AD
Frontiers in Immunology | www.frontiersin.org 10
requires TRPA1 (38), whereas SADBE-induced murine AD
requires TRPV1 (34). The effectiveness of TRPA1 or TRPV1 in
these models may not mimic/reflect the future findings in human
AD that is characterized as a more complexed and heterogenous
disease, in which the multiple cytokines may potentiates several
TRP channels. Thus, an ubiquitous inhibitor that attenuate
sensitization of TRP channel potentiation is needed. In this
aspect, blockage the exocytotic delivery of TRP channels to the
cell surface might be a promising stratagem.

Future Therapeutic Against Potentiation of
TRP Channels
Upregulation and activity-gated exocytotic vesicular insertion of
channels contribute to increased TRP channel signaling in
sensory neurons (192). Transportation of TRPV1 and TRPA1
occurred predominantly in large dense core vesicles (LDCVs)
packing neuropeptides calcitonin gene-related peptide (CGRP)
and substance P (SP) (7, 193). In neuronal subset expressing both
channels, TRPA1 and TRPV1 are co-trafficked to the plasma
membrane upon stimulation by an inflammatory cytokine. For
example, TNFa and IL-1b enhance cell surface TRPV1/A1 via
membrane fusion mediated by soluble N-ethylmaleimide-
sensitive factor attachment protein receptor (SNAREs), which
involve vesicle-associated membrane protein (VAMP1),
synaptosomal-associated protein-25 kDa (SNAP-25), and
possible syntaxin 1 (7). Interestingly, TRPV1 and TRPA1
channels are located in VAMP1- containing vesicles.
Inflammatory cells released cytokine, such as TNFa, binds to
its receptor on sensory neurons, resulting in activation of
intracellular cascades, including MAPK, p38, and other
translational factors to increase neuropeptide or itch mediator
synthesis. These culminate in the enhancement of trafficking of
TRPV1 or TRPA1-containing vesicles and release of
neuropeptides plus probably other mediators. Enhancement by
TNFa of Ca2+ influx through the upregulated surface-expressed
TRPV1 and TRPA1 is normalized by truncation of SNAP-25 to
disassemble SNARE complex (Figure 2A). It is reasonable to
assume that equivalent processes apply in a sub-population of
sensory neurons that contain one or other of these TRP channels.
Under such conditions, the delivery of these channels to the
neuronal surface via such processes is elevated; this cascade likely
contributes to the genesis of severe itch.

Identification of peripheral components of AD has pushed
forward the discovery of novel and effective therapeutics. Long-
acting SNARE-cleaving botulinum neurotoxin (BoNT) is ideal
therapeutic for breaking immune-nerve communication. There
are seven serotypes of BoNTs (type/A to/G) present in nature.
BoNT/A has the longest duration of action and sensory neurons
are susceptible to BoNT/A. Our previous findings have
demonstrated that BoNT/A can potently cleave SNAP-25 and
inhibit depolarization-evoked pain-mediator release, e.g.,
substance P and CGRP (194). Most importantly, BoNT/A can
also inhibit the cytokine-induced upregulation of TRPA1 and
TRPV1 (7). It is likely the fast mode potentiation through Th2
cytokines mediated vesicle fusion contribute to the delivery
of TRPV1 and TRPA1 channels to the plasma membrane,
June 2021 | Volume 12 | Article 696784
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a mechanism that can be blocked by BoNTs (Figure 2B). In this
content, Th2 mediator IL-31–elevated release of the important
itch mediator BNP from sensory neurons, but not the basal
release, requires SNAP-25 (6). Thus, it is reasonable to deduce
that truncation of SNAP-25 by BoNT/A would also inhibit Th2
cytokine-evoked excessive BNP release from pruriceptive
Frontiers in Immunology | www.frontiersin.org 11
neurons and prevent the cutaneous itch sensitization by
reducing the surface delivery of TRPA1 and TRPV1
(Figure 2B). Moreover, the BNP potentiation of TRPV3,
which is partly mediated by vesicular membrane fusion with
plasma-membrane of keratinocytes in skin, would also be
prevented by BoNT protease/B or/D serotypes, which
A

B

FIGURE 2 | TNFa enhanced Ca2+ influx in cultured TGNs is blocked by truncation of SNAP-25. A model of SNARE mediated vesicle fusion and surface delivery of
TRP channels mediated by inflammation. (A) Cultured rat TGNs, pre-treated with or without 100 nM botulinum neurotoxin A (BoNT/A), were incubated with TNFa for
24 h before measuring capsaicin-evoked Ca2+ influx with Fluo-4 AM, using confocal microscope imaging. Fluorescent readings (f) at each time point relative to the
baseline (f0) are plotted. Note that capsaicin-elicited Ca2+-influx in TNFa-treated TGNs was normalized by BoNT/A pre-treatment. Data are the means ± S.E.M; >20
cells recorded from three independent culture preparations. Experimental procedures had been approved by the Dublin City University Ethics Committee and the
Irish Authorities. (B) TRPV1 and TRPA1 mainly reside on the vesicle membrane of LDCVs that pack neuropeptides, including CGRP, SP or BNP. SNARE proteins
(SNAP, VAMP, and syntaxin), and associated Munc-18 mediate the inflammation-stimulated vesicle trafficking and membrane fusion as well as the resultant
membrane insertion of TRPV1 and TRPA1. Serotypes of BoNT that selectively cleave their respective SNAREs can block pain and itch-related neuropeptide release
and membrane delivery of TRPV1 and TRPA1. This mechanism should aid the future designing of novel therapeutics for normalizing the increased surface
appearance of itch transducing channels and the associated neuronal hyper-excitability upon inflammatory/pruritic stimulation. (B) Was modified from our
previous paper (7).
June 2021 | Volume 12 | Article 696784

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Meng et al. Th2-Cytokines Promote TRP Channel Sensitization
inactivate VAMPs. Thus, attenuation of TRPA1 and TRPV1
expression and their surface trafficking, plus inhibition of itch-
related neuropeptide release from pruritic nerve would underlie
the observed anti-pruritic activity of BoNTs in animal models of
chronic itch and in patients with itch conditions (171, 174).
CONCLUDING REMARKS

AD is a common chronic disease, which is associated with
cutaneous inflammation and the unpleasant itch sensation.
Distinctive phenotypes, as well as immunological and genetic
biomarkers, are essential for the classification of AD and further
highlight the need for personalized and targeted therapies for such
skin diseases. The newly emerging antibody therapy is less cost-
effective compared with traditional medicines, but the latter do
not treat the underlying causes. Conversely, some forms of AD are
resistant to the new antibody therapy, which is also associated
with side effects. A prime outstanding question in the field
involves the molecular mechanisms by which Th2 inflammation
causes itch and inflammatory stimuli and potentiates pruriceptive
TRP sensors. The newly emerging evidence on Th2-TRP channel
linkage provide promising scope for therapeutic development.
Interrupting neuronal type-2 cytokine signaling on TRP channel
Frontiers in Immunology | www.frontiersin.org 12
sensitization could ameliorate pathologic AD and an effective
strategy to target chronic itch.
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