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Regulation of amino acid availability and metabolism in immune cells is essential for immune system homeostasis and responses to exogenous and endogenous challenges including microbial infection, tumorigenesis and autoimmunity. In myeloid cells the consumption of amino acids such as arginine and tryptophan and availability of their metabolites are key drivers of cellular identity impacting development, functional polarization to an inflammatory or regulatory phenotype, and interaction with other immune cells. In this review, we discuss recent developments and emerging concepts in our understanding of the impact amino acid availability and consumption has on cellular phenotype focusing on two key myeloid cell populations, macrophages and myeloid derived suppressor cells (MDSCs). We also highlight the potential of myeloid-specific of amino acid transporters and catabolic enzymes as immunotherapy targets in a variety of conditions such as cancer and autoimmune disease discussing the opportunities and limitations in targeting these pathways for clinical therapy.
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Introduction

Myeloid cells are a broad subset of immune cells essential for innate immune responses against infection and injury. Mobilized to infection sites, myeloid populations play key roles in elimination of pathogens. In addition to this direct role in responses to infection, myeloid cells are essential for tissue homeostasis, remodelling, wound repair and scar tissue formation. This crucial function in tissue maintenance has a darker side as myeloid cells also are key drivers of pathophysiology in diseases of chronic inflammation like cancer and autoimmunity. Although interest in myeloid cells in this context has significantly increased as of late, we understand relatively little regarding the signals that influence myeloid fate or function in the local tissue milieu. A concept that has received significant attention is the impact of metabolism and microenvironmental influence on myeloid function. In particular, metabolic/enzymatic consumption of amino acids is a core aspect of myeloid biology as acquired polarization states in myeloid cells are closely associated with increased expression of enzymes that target key amino acids like arginine and tryptophan. Importantly, the data now show that that amino acid metabolization and the local microenvironmental availability of amino acids is an integral component in myeloid development, migration, polarization, and turnover likely impacting a wide range of disease states. In this review, we will focus on two key populations of myeloid cells involved in pathology of diseases of chronic inflammation, macrophages and MDSCs, examining how amino acid availability and metabolism affects their function under homeostatic and pathologic conditions.

Macrophages are the most abundant myeloid cell found in most tissues. Named for the ability to phagocytize large amounts of particulate matter, macrophages are essential for wound healing responses (1) and are enriched in many tumor types where they play varied roles related to stromal support for the neoplastic cells and immune suppression in the tumor microenvironment (2). Likewise, we and others have shown that macrophages are key drivers of immune regulation limiting autoimmune disease pathology via their ability to influence local and systemic inflammatory responses (3, 4). Macrophages are functionally plastic and can exhibit alternate, often opposing characteristics driven by complex combinations of signals dependent on tissue of residence, microenvironmental conditions encountered in the tissue, and developmental origin (albeit developmental influence is still poorly understood). Macrophages do not represent a single cellular lineage; however, they are often described by a binary functional phenotype based in inflammatory or immune suppressive potential (i.e. M1-like versus M2-like respectively). The M1-like phenotype is characterized by prominent production of pro-inflammatory mediators such as the cytokines IL-1β, IL-6, IL-12 and TNFα, and small molecules such as nitric oxide (NO) that amplify inflammation. In opposition to this, macrophage exposure to immune regulatory cytokines (e.g. IL-4, IL-10, IL-13, TGFβ1) or immunoglobulin/antigen immune complexes drives the anti-inflammatory M2-like phenotype. M2-like polarization is associated with induction of IL-10 and TGF-β expression, the chemokines CCL17 and CCL22 and CCL17, and the enzyme arginase 1. In vivo however, it is unlikely that a pure M1 or M2 macrophages polarization state exist, and tissue macrophages display a mixture of traits reflective of the complex milieu they encounter in the microenvironment.

Myeloid-derived suppressor cells (MDSC) were first identified in cancer patients and tumor-bearing mice, where they were found to be significantly increased (up to ten-fold) in the circulation and peripheral lymphoid organs compared to healthy individuals. MDSCs are distinctive in the fact that they appear to be locked in an immature proliferative state distinguished from their mature counterparts by expression of immature stem-like markers and potent immune suppressive function (5). MDSCs are not specific cell lineage, but rather are a mixed population of cells broadly classified by morphological features and patterns of surface receptor expression resembling polymorphonuclear cells (PMN-MDSCs) or monocytes (M-MDSCs). In mice, PMN-MDSCs are CD11b+ Ly6Clo Ly6G+, while M-MDSCs are CD11b+ Ly6Chi Ly6G-; while in humans, PMN-MDSCs are lin-HLA-DR-CD33+CD11b+CD14-CD15+, whereas M-MDSCs are lin-HLA-DR-CD33+CD11b+CD14+CD15- (6). Of particular relevance to this review, MDSC activation drives high expression of amino acid metabolization enzymes which are key drivers of MDSC immunosuppressive properties (5).

Immune cells utilize distinct metabolic pathways depending on need and functionality. In this vein macrophages exhibit very different metabolic profiles depending on the polarization state and tissue site of residence (7). In a broad description, inflammatory macrophages rely mainly on glycolysis for energy production, whereas tissue resident macrophages rely more heavily on oxidative phosphorylation, glutamine metabolism and fatty acid oxidation to meet their energy needs (8). This is in contrast to MDSCs which display more of a mixed metabolic phenotype with both a more glycolytic profile and a reliance on glutamine for function (9). Particularly, in the tumor microenvironment, MDSCs show increased glycolysis compared to neutrophils in a normal setting that has been linked to the accumulation of intratumoral MDSCs (10). However, the shift to glycolysis in intratumoral MDSCs may also alter mechanisms of immunosuppression as it limits reactive oxygen species (ROS) accumulation by decreasing the reliance of MDSCs on OXPHOS and by the production of phosphoenolpyruvate (10).



Arginine Catabolism and Innate Immunity

Arginine metabolism is a key regulator of myeloid function, and the mode of arginine consumption is often indicative of the functional state. Arginine is primarily catabolized by two enzymes families, arginase [i.e.arginase-1 and 2 (Arg1, Arg2)] and nitric oxide synthase [i.e. nitric oxide synthase 1 and 2 (Nos1 and Nos2)]. Nos2 (also known as iNos) is the main Nos isoform expressed in myeloid cells, while Arg1 is the dominant arginase isozyme found in immune cells (11). In response to pro-inflammatory NF-κB signaling, Nos2 expression is strongly induced converting arginine to nitric oxide (NO) and citrulline, conferring cytotoxic ability to inflammatory macrophages (12). This activity requires a steady flow of extracellular arginine into the cell. If arginine availability is low, citrulline can be converted back into arginine by arginosuccinate synthase 1 and arginase lyase 1, which can then be used to synthesize more nitric oxide (11). In contrast to Nos2, Arg1 is the predominant catabolic enzyme of arginine in alternatively activated macrophages. It is induced by a number of cytokines such as IL-10, IL-4 and IL-13 (13) as well as phagocytosis of apoptotic cells (14), converting arginine into ornithine and urea. Ornithine is a key building block in wound healing by conversion into proline via ornithine aminotransferase, which promotes type-I collagen synthesis and extracellular matrix deposition (11).

Arginine is a conditionally essential amino acid which can be synthesized by the body; however, under situations of high metabolic activity or other states of heightened consumption the need can quickly outstrip the supply. Accordingly, in situations of high arginine catabolism (e.g. when myeloid cells induce expression of Arg1 or Nos2), local arginine availability becomes a limiting factor for immune function. An example of this is T cells, which require arginine for activation, proliferation, and survival (15, 16). Uptake of Arginine by T cells is required for acquisition of a central memory phenotype, promoting potent immunity with increased longevity (17). In the tumor microenvironment, a primary mechanism of MDSC-mediated suppression of T cell function is via depletion of arginine from the microenvironment by virtue of Arg1/Nos2 activity (5). While both PMN-MDSCs and M-MDSCs are potently capable of suppressing T cell proliferation via pathways that require arginine consumption, they do so by distinct mechanisms. PMN-MDSCs exert immune suppressive activity through Arg1 activity, whereas M-MDSCs suppress T cell function via Nos2 dependent mechanisms (5, 18). Recently, an additional mechanism of arginine mediated MDSC immune suppressive activity was described. MDSCs, but not other immune cells, produce a dicarbonyl compound, methylglyoxal. Methylglyoxal is released in close proximity to neighboring T cells, where it prevents arginine accumulation, thereby inhibiting activation and production of inflammatory cytokines such as IFNγ (19). In addition to cancer, an increase in MDSCs has been observed in autoimmune disorders (5, 20). Although the function is not clear, it has been reported that PMN-MDSCs and Arg1 activity are significantly upregulated in SLE patients compared to healthy controls. Interestingly, these patients displayed increased TH17 cells and cytokines, and this increase was found to be dependent on Arg1 activity indicating MDSCs and arginine metabolism are vital for the progression of SLE pathophysiology (20).

Sustained Arg1 and Nos2 activity require a steady transport of arginine into the cell. The cationic amino acid transporter family, which includes CAT1, CAT2A, CAT2B and CAT3, is the major transporter of arginine into cells (Figure 1). In particular, CAT2B is thought to be the most efficient in the transport of arginine into cells. It was reported that in macrophages, Arg1, but not Nos2 induces expression of Cat2b (23). In MDSCs however, Cat2b expression is induced by both Arg1 and Nos2 suggesting a dichotomy in the biology (23). Moreover, Cat2-/- M-MDSCs or PMN-MDSCs derived from ascites of prostate tumor-bearing mice displayed a significantly reduced ability to inhibit T cell proliferation in in vitro assays (24). Similarly, using a thymoma tumor model, it was shown that anti-tumor activity of adoptively transferred tumor antigen specific CD8+ T cells was significantly enhanced in Cat2-/- vs. wild-type mice. This was the result of decreased ability of Cat2-/- MDSCs to suppress T cell function and proliferation in vivo (24).




Figure 1 | Amino acid transporters regulate amino acid availability and macrophage polarization. Arginine enters macrophages through cationic amino acid transporters (CAT), while glutamine and aromatic or branched chain amino acids enter macrophages though the neutral amino acid transporters ASCT2 (alanine serine cysteine transporter 2) and LAT1 (large amino acid transporter 1) respectively. Arginine can be catabolized by either arginase-1 (Arg1) or nitric oxide synthase (iNOS). Citrulline, a metabolite produced by the action of iNOS can be converted back to arginine by the enzymes arginosuccinate synthetase (ASS1), which converts citrulline to arginosuccinate and arginosuccinate lyase (ASL1), which converts arginosuccinate back to arginine. The net positive flow and accumulation of amino acids in macrophages through amino acid transporters result in increased mTOR activity and production of pro-inflammatory cytokines such as IL-1b and TNFa. The product of arginase 1-mediated arginine catabolism, ornithine, is converted to polyamines through the action of ornithine decarboxylase (ODC). When Glutamine (Gln) enters macrophages, it is converted to glutamate (Glu) by glutaminase (GLS), and in turn, glutamate will be converted to a-ketogluterate (a-KG) by glutamate dehydrogenase (GDH). Ornithine, polyamines and a-ketoglutarate directly inhibit synthesis of inflammatory macrophage markers and promote the production of regulatory macrophage markers by feeding into the TCA cycle, leading to a regulatory phenotype (7, 21, 22). Image created using biorender.



Arginine catabolism produces the polyamines putrescine, spermidine and spermine. Downstream of Arg1, ornithine decarboxylase (Odc) catalyzes the rate-limiting step that converts ornithine into putrescine which is further metabolized into spermidine and spermine (25). This key pathway of arginine metabolism may provide support for tumor growth. For example, increased polyamine levels and activation of Odc were correlated with tumorigenesis and increased tumor growth in melanoma, mesothelioma, colon and prostate cancer (26, 27). In macrophages, polyamines suppress the production of pro-inflammatory cytokines such as IL-1β, IL-6 and TNF-α, resulting in a more tolerogenic phenotype (28, 29). Moreover, myeloid specific deletion of Odc resulted in more severe H. pylori induced gastritis or C. rodentium induced colitis while bacterial burden remained unchanged, suggesting enhanced responsiveness to inflammatory stimuli (30).



Tryptophan Consumption in Immunity

The role of oxidative tryptophan catabolism in immune regulation was first identified in maternal-fetal tolerance over 20 years ago (31). In mammals this process is mediated by two closely related indoleamine-pyrrole 2,3 dioxygenase enzymes [indoleamine 2,3 dioxygenase (IDO)1 and IDO2] and the unrelated enzyme tryptophan 2,3 dioxygenase (TDO) (32). The IDO1 gene is primarily expressed by myeloid cells and stroma in response to inflammatory immune signals (although it can be expressed by tumor cells), (Figure 2) whereas IDO2 and TDO are largely unresponsive to immune stimuli and have a broader expression pattern (38); thus, this discussion will focus on IDO1. IDO1 catalyzes the first and rate-limiting step of oxidative tryptophan consumption to produce N-formyl-L-kynerunine, which can be catabolized further to immunologically reactive intermediates such as kynerunic acid and 3-hydroxyanthralinic acid (39). Our work has shown that IDO1 expression is induced in macrophages in response to apoptotic cell phagocytosis (4). Importantly apoptotic cell-induced IL-10 production was dependent on IDO1 activity and when Ido1 was deleted or inhibited pharmacologically apoptotic cell-exposure induced a significant proinflammatory cytokine response with increased TNFα, IL-6, and IL-12 production (4). This increased inflammatory activity caused a breakdown in immunologic tolerance to apoptotic cell-associated material with augmented serum and cellular autoreactivity and exacerbation of disease pathology in animal models of systemic lupus erythematosus (4). This data clearly showed that IDO1 is an important driver of tolerance towards autoantigens with implications for autoimmune disease and cancer.




Figure 2 | Tryptophan metabolism regulates macrophage function by AhR and GCN2-dependent mechanism. Inflammation (1) and/or apoptotic cell phagocytosis (2) induces interferon expression that drives expression of the interferon responsive gene (ISG) IDO1 (3). IDO-dependent enzymatic consumption of tryptophan results in the accumulation of tryptophan catabolites such as L-kynerunine that bind to and activate the transcription factor AhR (4), driving a tolerogenic macrophage phenotype. In addition, apoptotic cells can activate AhR in an IDO-independent, TLR9-dependent mechanism (5) (3). In parallel, amino acid starvation results in increased uncharged tRNAs and translational stress driving activation of GCN2 (6). GCN2 activity drives a more regulatory, less inflammatory macrophage phenotype suppressing T cell activation, proliferation, and Th17 responses. In the context of autoimmune disease such as lupus, colitis and autoimmune encephalomyelitis (EAE), decreased inflammation results in a more favorable disease outcome with less severe symptoms and increased survival (4, 33–36). Conversely, amino acid depletion results in a tolerogenic tumor immune microenvironment, tumor growth and decreased survival (37). Image created using biorender.



Research examining the molecular underpinnings of IDO1-mediated immune regulation has focused on the effect of amino acid consumption (i.e. amino acid starvation stress) and the production of effector catabolites (see Figure 2). IDO1-generated N-formyl-L-kynurenine is further catabolized by aryl formamidase to form L-kynurenine (L-Kyn) (40). L-Kyn is a key product of IDO1 catabolism of tryptophan and, together with other downstream catabolic products (e.g. cinnabaric acid), is a regulator of immunity via binding to the aryl hydrocarbon receptor (AhR) (33). AhR is a cytoplasmic receptor/transcription factor that serves a key role in immune function, particularly at mucosal sites (33). While AhR activity can promote inflammation, the evidence suggests it is primarily a driver of immune-regulatory responses (33). In T cells, exposure to L-Kyn promotes FOXP3+CD4+ T reg development from naïve precursors and may potentiate their function (25) and increases PD-1 expression on effector T cells limiting function (41). Similarly, AhR can potently influence macrophage phenotype. For example, AhR null mice exhibit increased susceptibility to LPS-induced toxicity due to elevated STAT1 signaling and IL-6 production in macrophages (42). Likewise, we have demonstrated that AhR is a requisite driver of IL-10 expression in mouse and human macrophages, while macrophage-specific deletion in mice causes autoimmune disease late in life (3). In the same vein, mice with a deletion of AhR in microglia develop more severe autoimmune encephalomyelitis (EAE) symptoms with increased expression of pro-inflammatory genes and a loss of IL-10 and TGFα expression (34). The linkage to tryptophan consumption is clear as a tryptophan-deficient diet leads to worse EAE symptoms, while restoring dietary tryptophan reverses this effect in MICROGLIAL-AhR sufficient but not deficient mice, suggesting tryptophan metabolites exert their function by activating AhR in the microglia (34). These studies underscore the importance of tryptophan metabolism and its effectors such as AhR in controlling the inflammatory functions of macrophages.

AhR function in MDSCs has not been examined in detail. However, MICROGLIAL-AhR potently impacts hematopoietic progenitor development driving expansion of precursors (43) and in acute myeloid leukemia AhR signaling may promote differentiation of leukemic stem cells (44). Since at least some MDSC populations expand as a result of emergency granulopoiesis (45), AhR signaling may impact MDSC expansion and differentiation by causing proliferation and differentiation of hematopoietic precursors. Dioxin (i.e. 2,3,7,8-tetrachlorodibenzo-p-dioxin) is an environmental pollutant that is a high affinity AhR ligand and was used to originally identify the AHR gene (33). Treatment of mice with dioxin increases MDSC expansion and mobilization in an AhR-dependent mechanism further indicating of a role for AhR in MDSC expansion (46). However, it remains to be seen if physiologic AhR ligands like L-Kyn exhibit a similar effect.

General control nonderepressible 2 (GCN2) is an ancient protein found in all eukaryotes that regulates cellular function to match nutrient supply, however in immune cells it serves an additional purpose controlling inflammatory function (38). GCN2 is activated by ribosome translational stress resulting from amino acid deficiency (38) and functions by phosphorylating the α subunit of eucaryotic initiation factor (eIF)2, slowing ribosome assembly and cap-dependent translation (47). Moreover, as a result of altered codon usage when eIF2α is phosphorylated, GCN2 also drastically increases translation of ATF4, a key transcription factor required for GCN2-dependent responses (48). GCN2 can be activated by IDO1-driven tryptophan consumption and is an important component of the biologic effects of IDO1 induction in immune cells. For example, IDO1 fails to induce IL-10 protein in Gcn2 knock out macrophages due to alterations in ribosome association with cytokine mRNA transcripts (35). Moreover, macrophage GCN2 activation inhibits IL-1β and reactive oxygen species production, at least partially by limiting inflammasome complex assembly, worsening colitis in mice (36). Notably, restricting protein in the diet protects WT but not Gcn2-/- mice against colitis, suggesting amino acid starvation signaling pathways, by activating GCN2, dampen gut inflammation (36). In the same vein, we recently reported that GCN2 is a mechanistic driver of macrophage function in the tumor microenvironment (37). The effect was dependent on ATF4, however DNA binding analysis suggested that in tumor macrophages ATF4 was primarily impacting expression of genes involved in metabolism (37). When we examined the transcriptomes and metabolic profile of tumor macrophages lacking GCN2 there was no change in expression of genes involved in glycolysis, however, there was a significant reduction in expression of oxidative metabolism genes. At the functional level, this resulted in a reduction of oxidative respiration in tumor macrophages that shifted polarization to a more proinflammatory glycolytic profile (37).

In MDSCs much less is known regarding the role of GCN2 and function. However, we found that GCN2 activity is requisite for suppression of T cell maturation (37). This is likely attributable to significant reduction in expression of several key suppressive mediators in Gcn2-/- MDSCs compared to wildtype MDSCs (37). Metabolically, the impact of GCN2 deletion on MDSCs is pronounced, drastically reducing basal mitochondrial respiration and spare respiratory capacity suggesting the lack of GCN2 severely compromises MDSCs oxidative metabolic function. Thus, data from our lab and others have clearly shown that GCN2 is a key driver of macrophage and MDSC immune-regulatory function, impacting phenotype via direct regulation of cytokine mRNA translation, and indirectly by alteration of metabolic function. It is important to note that GCN2 can be activated by paucity of any amino acid and is not a specific function of tryptophan depletion per se. Thus, GCN2 effects on myeloid immunity likely extend far beyond the biology of IDO1.



Glutamine

Glutamine is the most abundant free amino acid in the body, providing intermediates for many metabolic pathways and a key source of substrates for diverse physiological functions including production of purines and pyrimidines, conversion of ammonia into urea, acid-base balance, and TCA cycle intermediates (49). Inflammatory macrophages have a break in the TCA cycle that increases succinate in the cell promoting IL-1β production. Recently it was reported that Nos2 inhibits aconitase 2 and pyruvate dehydrogenase limiting entry of metabolites in the TCA cycle and driving glutamine to α-ketoglutarate conversion via anaplerosis (50), a key source of succinate production in inflammatory macrophages (9, 51). This suggests the mode of arginase consumption is linked to glutamine metabolism in macrophages.

One of the metabolic hallmarks of alternatively activated macrophages is their use of oxidative phosphorylation for energy production (8). This metabolic shift is driven by IL-4 and requires glutaminolysis-driven production of α-ketoglutarate and alteration in the α-ketoglutarate/succinate ratio in macrophages promoting an immune-suppressive phenotype (52). Glutamine is not required for inflammatory polarization, however glutamine deprivation decreased levels of regulatory macrophage markers CD206, CD301, and Relmα suggesting a direct role in regulatory polarization (53). In regulatory macrophages, peroxisome proliferator-activated receptor γ (PPARγ) was found to be necessary for usage of glutamine in the TCA cycle and PPARγ-deficient macrophages exhibit defective glutamine with decreased OXPHOS and a more inflammatory phenotype. Glutamine metabolism was also found to be important for the recruitment and function of MDSCs and TAMs at tumour sites. Blocking glutamine metabolism resulted in decreased tumour size and MDSC infiltration in mammary tumors resulting from increased caspase-3 mediated apoptosis in MDSCs. In addition, TAMs exhibited a more pro-inflammatory tumoricidal phenotype, with increased TNFα secretion, activation of Nf-κB and a reduction in STAT3 signaling and IL-10 production (54).



Branched Chain Amino Acids

In addition to glutamine the branched chain amino acids (i.e. BCAA-leucine, isoleucine, valine) are key drivers of metabolic programming and function in myeloid cells. BCAAs are a major carbon source for metabolism, glutamine production, and serve as substrates for generation of acetyl-CoA and succinyl-CoA for the TCA cycle (55). CD98 transports BCAA and aromatic amino acids into the cell and consists of 2 subunits, Slc7a5 or CD98 light chain (CD98lc) and Slc3a2 or CD98 heavy chain (CD98hc). In human monocytes and macrophages, Slc7a5-mediated leucine influx drives mTORC1 activation, with increased IL-1β and TNFα production (56). Moreover, increased Slc7a5 expression in circulating monocytes was linked to rheumatoid arthritis and correlated with severity of the disease (56). In a dextran-sulfate induced model of colitis, selective deletion of Slc3a2 in CX3CR1+ monocytes and macrophages of the colonic lamina propria led to increased apoptosis and reduced expression of MHCII, reducing the severity of the disease (57). Moreover, deletion of branched-chain amino transferase (BCAT)1 reduced inflammatory macrophage polarization (58). BCAT1 transaminates BCAA to begin catabolism to coenzyme A derivatives and glutamate (32, 59, 60) providing key intermediates for the TCA cycle. Since mTOR signals and TCA cycle intermediates (e.g. NAD+, citrate, succinate) are potent drivers of inflammatory macrophage function (61), this suggests sustained import and consumption of BCAAs provides important signals in activated macrophages promoting and supporting inflammatory function.



Serine

Serine is a non-essential amino acid that can be obtained from exogenous sources through amino acid transporters ASCT2 or SNAT or synthesized de novo through the serine synthesis pathway (SSP) (62). The SSP is a branch of glycolysis that allows serine to be synthesized from the glycolytic or gluconeogenic intermediate 3-phosphoglycerate through three catalytic reactions, the first of which being catalysed by phosphoglycerate dehydrogenase (PHGDH). Serine can modulate the SSP through its interaction with pyruvate kinase isoform M2 (PKM2), which catalyses the last step in glycolysis. When serine is at normal physiological levels in cells, it binds to and activates pyruvate kinase isoform M2 (PKM2), leading to production of pyruvate from 3-phosphoglycerate. In contrast, when serine levels are low, PKM2 activity decreases, allowing for 3-phosphoglycerate to be used for serine production. Serine is an important contributor to one-carbon metabolism and is essential for nucleotide synthesis and redox balance through the replenishment of NADPH via the folate cycle as well as to produce s-adenosylmethionine (SAM), a co-substrate required for methylation reactions through the methionine cycle (63).

Recent studies revealed that serine metabolism is a key contributor to IL-1β production in inflammatory macrophages (64, 65). Serine synthesis is increased in macrophages after LPS stimulation serving as a carbon source for glycine and subsequent glutathione (GSH) production. Importantly macrophages cultured in serine-free conditions exhibited a marked reduction in GSH following LPS exposure suggesting that serine is a critical substrate for early GSH production (64). The role of serine in early GSH synthesis post-LPS stimulation is distinct from Nrf2-driven redox responses manifesting at later time points after LPS exposure. This suggests altered serine production/metabolism provides a rapid, transcriptionally independent, mechanism to boost GSH production immediately after LPS exposure for redox balance thereby promoting IL-1β expression. Moreover, both glucose and serine-derived one-carbon metabolism synergize to enhance SAM production in LPS-stimulated macrophages driving increased trimethylation at H3K36, a signature that is linked to transcriptional activation and IL-1β mRNA production (65). Thus, the data suggests the serine production and metabolism are a key component of macrophage inflammatory responses. Much less is known regarding serine metabolism in MDSCs. However, a recent report demonstrated that inhibiting glutamine metabolism with a small molecule antagonist drives MDSC inflammatory maturation that is associated with significant increases in intratumoral glycine and serine metabolm (54). While the report did not assess MDSCs specifically in this context, it is tempting to speculate that in the absence of glutamine metabolism, increased serine metabolism may contribute to inflammatory maturation. However this remains to be tested.



Closing Remarks

Amino acid metabolization is fundamental to myeloid polarization, altering and reinforcing the metabolic wiring that drives functional phenotypes. However, it is only recently that we have begun to understand the mechanistic underpinnings of these processes. With the emerging granular knowledge of amino acid usage and its role in immunity comes the opportunity to target these pathways in therapeutic settings. For example, blocking glutamine metabolism reduces IDO activity in tumor cells, promotes MDSC apoptosis, and shifts macrophages to a proinflammatory phenotype driving anti-tumor immunity (54). Similarly, blocking amino acid consuming enzymes like Arg1 may have the combined benefit of directly abrogating the immune regulatory effect of the enzyme while rewiring the immune cells towards a more desired phenotype for lasting impact (66, 67). However, care must be taken with this approach. There was significant early enthusiasm targeting IDO for cancer immunotherapy, driven by a broad set of experimental and early clinical data that was supportive of the target and inhibitors. However, the recent, widely publicized failure of the ECHO-301 trial, a combination of the IDO-inhibitor Epacadostat and pembrolizumab (αPD-1) in advanced melanoma patients, illustrates the inherent challenges in targeting these pathways (68). An approach that has the potential to bypass innate problems with drug bioavailability, toxicity, and off target effects is dietary intervention and restriction. Indeed there is a long history in the literature showing that restriction of protein or amino acids has therapeutic effect in a wide range of inflammatory conditions (69–71). However, clinical trials to test the efficacy of low protein diet on outcomes in human disease have been less clear-cut, likely due to the inability of patients to adhere to such restrictive dietary regiments (72, 73). Thus it is clear that while our knowledge of amino acid metabolism and myeloid function has greatly expanded, there is still much to learn before we can utilize this knowledge for therapeutic benefit.
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The activating immune receptor natural killer group member D (NKG2D) and its cognate
ligands represent a fundamental surveillance system of cellular distress, damage or
transformation. Signaling through the NKG2D receptor-ligand axis is critical for early
detection of viral infection or oncogenic transformation and the presence of functional
NKG2D ligands (NKG2D-L) is associated with tumor rejection and viral clearance. Many
viruses and tumors have developed mechanisms to evade NKG2D recognition via
transcriptional, post-transcriptional or post-translational interference with NKG2D-L,
supporting the concept that circumventing immune evasion of the NKG2D receptor-
ligand axis may be an attractive therapeutic avenue for antiviral therapy or cancer
immunotherapy. To date, the complexity of the NKG2D receptor-ligand axis and the
lack of specificity of current NKG2D-targeting therapies has not allowed for the precise
manipulation required to optimally harness NKG2D-mediated immunity. However, with
the discovery of clustered regularly interspaced short palindromic repeats (CRISPRs) and
CRISPR-associated (Cas) proteins, novel opportunities have arisen in the realm of locus-
specific gene editing and regulation. Here, we give a brief overview of the NKG2D
receptor-ligand axis in humans and discuss the levels at which NKG2D-L are regulated
and dysregulated during viral infection and oncogenesis. Moreover, we explore the
potential for CRISPR-based technologies to provide novel therapeutic avenues to
improve and maximize NKG2D-mediated immunity.
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INTRODUCTION


Interactions between hosts and pathogens are constantly
evolving, and in this ongoing arms race each side aims to
outsmart the other. Host and pathogen genetics form a key part
of this competitive evolutionary relationship, with variation in
their respective genomes having a considerable impact on host-
pathogen dynamics. Many pathogens, such as viruses, generate
this variation in the form of mutations as a by-product of their
rapid, error-prone replication. Some of these mutations may
confer a selective advantage to the pathogen, and via the
process of natural selection are retained within the variant
“pool”, termed quasispecies (1). Interestingly, this process of
pathogen evolution bears an uncanny resemblance to what is
seen during oncogenesis. During oncogenic transformation,
genomic instability gives rise to tumor variants, which undergo
a selective process to similarly maintain “fitter” variants within
the tumor quasispecies (2). In both the tumor and pathogen
contexts, host immune pressure constitutes a major selective force
of pathogen/tumor evolution. In humans, the immune response
relies on the strategic orchestration of innate and adaptive
immunity, which comprises a variety of cell types and soluble
molecules. This is regulated by the interaction of multiple
receptors and ligands expressed at the cell membrane or
released as soluble proteins. As such, pressure exerted via
receptor-ligand mediated immune responses inadvertently
selects for viral or oncogenic mutations that dysregulate
receptor/ligand expression (3–5). Consequently, in order to
compete against pathogen diversification and oncogenic
transformation in this way, humans have over the course of
this perennial host-pathogen battle developed in their arsenal a
high level of polymorphism at loci encoding receptors/ligands
responsible for immune recognition (6–8). One such receptor-
ligand axis is the type II lectin-like transmembrane natural killer
group 2 member D (NKG2D) receptor and its cognate ligands
(NKG2D-L). Herein, we briefly overview the NKG2D receptor-
ligand axis in humans, explore the levels at which NKG2D-L
regulation/dysregulation occurs, and discuss how clustered
regularly interspaced short palindromic repeats (CRISPR)-based
technologies are poised to harness NKG2D-mediated immunity
in the analogous contexts of oncogenic transformation and
viral infection.

THE NKG2D RECEPTOR-LIGAND
AXIS PLAYS AN IMPORTANT ROLE
IN IMMUNE RECOGNITION


The NKG2D Receptor
NKG2D is the most versatile and widely distributed activating/
co-stimulatory natural killer (NK)-related receptor. First
identified in human NK cells in 1991 (9), NKG2D has since
been discovered on numerous cell subsets including, activated
(ab and gd) T cells, natural killer T (NKT) cells, and mucosal-
associated invariant T (MAIT) cells (10–13). Increasingly,
NKG2D expression is also being identified on tissue-resident
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innate lymphoid cells (ILC), such as certain ILC1 (14, 15), ILC2
(16) and ILC3 (17) subsets. In humans, NKG2D is encoded by
the KLRK1 gene and is located within the NK gene complex
(NKC) on chromosome 12p. Moreover, NKG2D is highly
conserved across multiple vertebrate species (18, 19). To date,
two major human haplotype alleles of NKG2D have been
identified, termed LNK1 (low activity) and HNK1 (high
activity) alleles (20, 21), with surface expression of NKG2D
lower in carriers of the low activity LNK1/LNK1 genotype (20,
22). When expressed at the cell surface, the 42 kDa homodimeric
NKG2D receptor combines with the DNAX-activating protein
10 (DAP10) homodimer and following its engagement with
cognate ligands initiates a cytotoxic cellular response and/or
the secretion of pro-inflammatory cytokines (Figure 1A)
(23–25).


NKG2D is also capable of facilitating the function of other
activating receptors, depending on the inflammatory milieu and/
or expressing cell type. For example, in activated NK cells primed
by pro-inflammatory cytokines (e.g. interleukin (IL)-2 and
IL-15), NKG2D provides direct stimulatory signals (26–29),
whereas in resting NK cells, it synergizes as a co-activator with
other receptors, such as NKp46 and 2B4 (30, 31). In ab T cells,
NKG2D typically provides a co-stimulatory signal, acting to
promote T cell receptor (TCR)-dependent cytotoxicity,
production of pro-inflammatory cytokines and memory
differentiation (32–37). Interestingly, prolonged exposure to
IL-15 has been shown to increase expression of NKG2D in
CD8+ T cell subsets, potentiating TCR-independent activation
(38, 39). Similarly in gd T cells, NKG2D can function as a co-
stimulatory molecule (40), but may also directly trigger
cytotoxicity in a TCR-independent fashion (41). Alternatively,
some gd T cells have been shown to bypass the NKG2D receptor
and recognize NKG2D-L, such as ULBP4 or MICA/B, directly
via their TCR, implying a TCR agonistic role (42–44). In innate-
like T cells, such as invariant NKT cells, NKG2D is restricted to
the CD4- subsets, and functions to mediate direct lysis of target
cells and co-stimulatory activation (12). Whereas, in MAIT cells,
NKG2D is more prominent on CD8+ subsets, and functions as a
co-stimulatory molecule (45) or, if in the presence of IL-15,
exerts NKG2D-dependent innate-like cytotoxicity (13, 46).
Lastly, in ILC subsets, early studies highlight that expression of
NKG2D may aid in the production of pro- or anti-inflammatory
mediators depending on the surrounding microenvironment
(15, 16). However, further investigation is required to
completely elucidate the impact of NKG2D-mediated signaling
on ILC function. Altogether, although NKG2D expression,
regulation and function differ across the above cell types, it
undoubtedly plays a central regulatory role in the immune
response and is vital for immunological surveillance against
tumorigenic transformation and viral infection.


The NKG2D Cognate Ligands
Ligands for NKG2D comprise several families of major
histocompatibility complex (MHC) class I-related molecules. In
humans, these include the MHC class I polypeptide-related
sequence A (MICA) and B (MICB), and the human
cytomegalovirus (HCMV) glycoprotein UL16-binding protein
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(ULBP) family (ULBP1-ULBP6) (Figure 1B) (47–50). NKG2D-L
are, for the most part, not constitutively expressed, but instead are
selectively induced upon cellular stress, damage or transformation,
as is caused by events such as viral infection or oncogenesis (32, 51).
Moreover, as reviewed by Lanier (52), essentially all cell types are
capable of expressing one or more types of NKG2D-L if given the
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appropriate stimulus. For example, Fujita and colleagues (53)
identified two distinct ligand expression profiles in non-neoplastic
epithelial tissues: ULBP5-ULBP3-MICA/B and ULBP2/6-ULBP1-
ULBP4. Moreover, in cells undergoing tumorigenic transformation,
high heterogeneity in NKG2D-L expression has been reported.
Notably, expression of two or more NKG2D-Ls (often MICA and

A


C


B


FIGURE 1 | Structure of the human NKG2D receptor and cognate ligands. (A) The natural killer group 2 member D (NKG2D) receptor consists of a disulphide-
linked homodimer that associates with the DNAX-activating protein 10 (DAP10) disulphide-linked homodimer for cellular signaling. DAP10 harbors a Tyr-X-X-Met
(YxxM) motif, which binds the p85 subunit of phosphatidylinositol-3 kinase following phosphorylation. (B) NKG2D ligands encompass the MHC class-I polypeptide-
related sequence A (MICA), MICB and six UL16-binding proteins (ULBP1-6). MICA/B (also termed PERB11.1/11.2) share similar structural and functional properties,
with both containing three extracellular domains (a1, a2 and a3) and a transmembrane domain for binding to the cell surface. In comparison with full-length MICA
alleles, MICA*008 differs by encoding a truncated protein due to a nucleotide insertion in the transmembrane domain and is known to acquire a
glycolsylphosphatidylinositol (GPI) lipid anchor for cell surface expression. ULBP1-6 (also termed RAET1I/H/N/E/G/L) lack the a3 extracellular domain and are either
bound to the cell surface by a GPI-anchor (ULBP1-3, 6) or transmembrane domain (ULBP4, 5). (C) Various functional MICA, ULBP4 and ULBP5 splice variants have
been identified. MICA-A, -B1, -B2, -C and –D are known isoforms lacking the extracellular a3 domain and the a2 domain in the majority of isoforms (A, B1, C and
D). Moreover, MICA-A and MICA-C both lack a transmembrane and cytoplasmic domain, which impairs their expression at the cell surface. RAET1E1/ULBP4-I,
RAET1E2/ULBP4-II and RAET1E3/ULBP4-III are membrane-spanning splice variants with an extended a1 domain, reduced a1 domain and reduced a2 domain,
respectively. RAET1G2/ULBP5-II and RAET1G3/ULBP5-III are truncated soluble splice variants resulting from two alternative premature stop codons before the
transmembrane domain. The surface-expressed splice variants have been shown to bind NKG2D to a similar degree as compared to their wildtype isoforms, except
for MICA-B2 and -D that bind NKG2D with a significantly weaker affinity.
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MICB) is more common in solid tumors, compared to
hematological tumors (shown to predominantly express MICB)
(54). Furthermore, co-expression of multiple allelic forms of the
same ligand has also previously been identified at the surface of cells
undergoing stress, which is strongly suggestive of functional
redundancy in these molecules. It is also worth noting that
NKG2D-L differ in their affinity (KD) and avidity for NKG2D,
such that ULBP1 (the only ULBP member tested to date) has the
highest affinity (1.1 mM), followed by MICA (0.9-1 mM) and MICB
(800 nM) (55–59). Therefore, it is speculated that NKG2D may
transduce different signals or activate separate downstream
pathways based on which ligand or allelic variant is bound (60),
which supports the various functions of NKG2D discussed prior.


Surprisingly, the role of NKG2D-L extends beyond providing
a signal for cellular stress. In cells of the myeloid lineage, these
ligands can mediate lymphocyte activation leading to
cytotoxicity, cytokine production and proliferation. For
instance, expression of MICA/B on dendritic cell-derived
exosomes plays an important role in promoting NK cell
differentiation and proliferation (61). Furthermore, ULBP2/3
expression levels are increased during CD34+ hematopoietic
progenitor commitment to the granulomonocyte lineage,
suggesting that NKG2D-L play a role in promoting myeloid
differentiation (62). Alternatively, NKG2D-L expression on
myeloid cells can lead to lymphocyte inactivation and
maintenance of immune homeostasis. For example, persistent
expression of membrane bound ULBP1 and MICB on myeloid
cells induces NKG2D internalization and desensitization of NK
cells (63). Moreover, overexpression of MICA on activated CD8+


T cells makes them susceptible to NK cell lysis, indicating that
NKG2D-L may participate in immune homeostasis during
ongoing immune responses (64). During infection with
Mycobacterium tuberculosis, heightened ULBP1 expression on
expanded T regulatory cells (Tregs) facilitates NK cell-mediated
killing of these cells, thereby enhancing the overall immune
response (65). Ultimately, NKG2D-L expression is associated
with both cytotoxic and regulatory processes, as is reflected by
the diverse roles played by these molecules in host immunity.

REDUNDANCY AND OVERLAPPING
FUNCTIONS OF NKG2D-L ENSURE
NKG2D ACTIVATION


MICA and MICB
The MICA and MICB genes were originally described as stress-
induced MHC class I polypeptide-related sequences and are
located in the MHC region on the short arm of chromosome 6
(47, 66). These genes are highly polymorphic (67), with, to date,
over 100 described alleles (allelefrequencies.net). The MIC alleles
have variations that are, to a certain extent, concentrated in the
extracellular domains as well as truncated forms due to coding
frame-shifts (e.g.MICA 5.1). Specific alleles have been associated
with disease outcomes (68–70), influence the amount of soluble
protein and impact binding affinity to its cognate receptor,
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NKG2D (71). Moreover, numerous MICA splice variants have
been documented thus far (Figure 1C), with the majority
binding NKG2D similarly as their wildtype counterparts,
highlighting that lack of a domain (e.g. a3 domain) does not
necessarily reduce binding affinity (60). Interestingly, there is a
naturally occurring MICA-MICB null combination (deletion of
MICA and premature stop codon for MICB) that exists on the
HLA-B48 haplotype found in East Asian and South American
populations (72–74). Furthermore, the MICA-MICB genes are
merged in chimpanzees resulting in a hybrid form (75), while
they are absent in mice (76). The presence of the null haplotype
without obvious phenotypic consequences suggests redundancy
in the NKG2D receptor-ligand axis but its overall importance is
highlighted by the overlapping mechanisms exhibited by cancers
and viruses to evade it (77).


ULBP1-ULBP6
Although the ULBPs are distantly related to MICA/B in
sequence, they differ in their location, mapping instead to the
opposite (long) arm of chromosome 6 (78, 79). Emerging data
suggests that the extensive diversity seen in the ULBP family may
be due to the functional or locational specialties of each ligand, as
is evidenced with ULBP4 and its predominant expression in skin
(80–82). Splice variants exist (ULBP4 (83), and ULBP5 (83, 84);
Figure 1C) providing significant within locus diversity.
Furthermore, as reviewed by Carapito & Bahram (19), clear
differences in allele frequencies between geographically distinct
populations exist for the ULBP family, which suggest that
polymorphisms in ULBP may be a consequence of divergent
selective pressures. Moreover, the possession of a large ULBP
family in humans and other species is thought to provide a
selective host advantage in the evasion of viruses and tumors.
However, overall, the ULBP family appears to be less
polymorphic than the MIC genes, albeit studies of ULBP gene
polymorphisms and haplotypes remain limited (50, 85–88).

VIRUSES AND TUMORS EMPLOY
CONVERGENT MECHANISMS OF
NKG2D-L DYSREGULATION


The appropriate regulation of NKG2D-L is integral to the
effective detection and elimination of virally infected or
neoplastically-transformed cells. Many reviews to date have
discussed the various levels of regulation involved in the
control of NKG2D-L expression. For a comprehensive
overview of these mechanisms in health and disease, we refer
to previously published reviews (59, 89). In this section, however,
we focus on convergent regulatory mechanisms exploited by
both tumors and viruses to evade NKG2D-mediated immunity.


NKG2D-L expression is regulated at the level of transcription,
post-transcription and post-translation through numerous
pathways and molecules intrinsically linked to cellular stress
(Table 1). As such, it is unsurprising that both viruses and
tumors harbor various mechanisms that work in combination to
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TABLE 1 | Established pathways/molecules involved in the regulation of human NKG2D ligand expression and their targetability to date using CRISPR-based genome
and epigenome editing.


Level of
regulation


Pathway/Molecule Ligand
modulation


Manipulation of pathway/molecule achieved via CRISPR
genome/epigenome editing


Reference


Transcription Heat shock (e.g. HSF1) ↑ MICA/B No (42, 90,
91)↑ ULBP1/2


DNA damage (e.g. ATM/ATR) ↑ MICA/B No (92–95)
↑ ULBP1/2/3


Oxidative stress (e.g. ROS) ↑ MICA/B No (96–101)
↑ ULBP1/2/3/4


p53 ↑ ULBP1/2 Yes. (92, 95)
Achieved: Correction of mutated p53.


STAT3 ↓ MICA Yes. (102, 103)
Achieved: Genetic deletion of STAT3.


NF-kB ↑ MICA No (104, 105)
BCR-ABL ↑ MICA/B Yes. (106–109)


Achieved: Genetic deletion of BCR-ABL.
PI3K ↑ MICA/B Yes. (110, 111)


Achieved: Genetic deletion of PI3K.
HER2/HER3 ↑ MICA/B Yes. (110, 112,


113)Achieved: Genetic deletion and epigenetic activation/repression of
HER2.


MAPK ↑ MICA No (114, 115)
↑ ULBP1


c-MYC ↕ MICA/B Yes. (116–119)
↕ ULBP1/2/3 Achieved: Epigenetic repression and genetic deletion of c-MYC.


TLR-4 ↑ MICA Yes (120, 121)
Achieved: Genetic deletion of TLR-4.


TLR-7/8 ↑ MICA/B No (120)
ATF4 ↑ ULBP1 Yes. (122, 123)


Achieved: Genetic deletion of ATF4.
Post-
transcription


miR-10b ↓ MICB Yes. (124, 125)
Achieved: Genetic deletion of miR-10b.


miR-34a/c ↓ ULBP2 No (126)
miR-520b ↓ MICA No (127)
miR-17-5p/20a/93/106b/372/373/520c ↓ MICA/B Yes. (128–130)


Achieved: Genetic deletion of miR-93 and epigenetic repression of
miR-20a.


HCMV-miR-UL112/EBV-pri-miR-BART2-5p/
KSHV-miR-K12-7


↓ MICB No (131, 132)


miR-J1-3p ↓ ULBP3 No (133)
FUBP3/HuR/XRN2/MATR3/CUGBP1/Vigilin ↓ MICB No (134, 135)
IMP3 ↓ MICB Yes. (136, 137)


↓ ULBP2 Achieved: Genetic deletion of IMP3.
IGF2BP2 ↑ MICB No (134)


Post-
translation


MMP9/MMP14 ↓ MICA Yes. (138–142)
↓ ULBP2 Achieved: Genetic deletion of MMP9.


ADAM10/ADAM17 ↓ MICA/B Yes. (143–147)
↓ ULBP2 Achieved: Genetic deletion of ADAM10 and ADAM17.


ADAM9 ↓ MICA Yes.
Achieved: Genetic deletion of ADAM9.


(148–150)


ERP5 ↓ MICA No (151)
Histamine ↓ MICA No (152)


↓ ULBP1
K5 ubiquitin E3 ligase ↓ MICA/B No (153)
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↑, Increase; ↓ decrease; ↕ increase or decrease depending on context; CRISPR, clustered regularly interspaced short palindromic repeats; HSF1, heat shock factor 1; MICA/B, MHC class-
I polypeptide-related sequence A/B; ULBP1/2/3/4, UL16-binding protein 1/2/3/4; ATM, ataxia-telangiectasia mutated; ATR, ATM and Rad3-related; ROS, reactive oxygen species;
STAT3, signal transducer and activator of transcription 3; NF-kB, nuclear factor kappa B; BCR, breakpoint cluster region; PI3K, phosphoinositide 3-kinase; HER/2, human epidermal
growth factor receptor 2/3; MAPK, mitogen-activated protein kinase; TLR-4/7/8, toll-like receptor 4/7/8; ATF4, activating transcription factor 4; miR, microRNA; HCMV, human
cytomegalovirus; EBV, Epstein-Barr virus; KSHV, Kaposi’s sarcoma-associated herpesvirus; FUBP3, far upstream element binding protein 3; HuR, human antigen R; XRN2, 5’-3’-
exoribonuclease 2; MATR3, matrin-3; CUGBP1, CUG triplet repeat RNA binding protein 1; IMP3, IMP U3 small nucleolar ribonucleoprotein 3; IGF2BP2, insulin-like growth factor 2 mRNA-
binding protein 2; MMP9/14, matrix metalloproteinase 9/14; ADAM9/10/17, a disintegrin and metalloprotease 9/10/17; ERP5, endoplasmic reticulum protein 5.
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hijack and dysregulate NKG2D-L at multiple levels. At the
transcriptional level, viral proteins (e.g. HBV’s HBx and HBc)
have been shown to directly suppress MICA/B (154). A similar
strategy is achieved by tumors (e.g. melanoma), whereby cells
with highly methylated NKG2D-L loci are selected for, given the
resultant suppression of transcription (54). Although
mechanistically different, both viral proteins and tumor-
mediated methylation converge at the DNA level to hinder
transcription of NKG2D-L and facilitate immune evasion.


At the post-transcriptional level, viruses and tumor cells
exhibit convergence in their use of microRNAs (miRNAs) to
inhibit NKG2D-L transcript translation. For instance, viral
microRNAs have been shown to directly bind to the 3’
untranslated region of MICB (HCMV-miR-UL112, EBV-pri-
miR-BART2-5p, KSHV-miR-K12-7) (128, 131) and ULBP3
(JCV-miR-J1-3p) (155), to trigger transcript destabilization and
degradation. In addition, viral miRNAs can act indirectly by
preventing translation of key components of the GPI-anchoring
machinery (HSV1-miR-H8) (156) or blocking translation of
surface shedding inhibitors (HCMV-miR-US25-2-3p) (157).
Interestingly, host oncogenic miRNAs (124, 126–128, 158) also
bind to the 3’ untranslated region of MICA (miR-520b) (127),
MICB (miR-17-5p, miR-20a, miR-93, miR-106b, miR-372, miR-
373, miR-520c) (128) and ULBP2 (miR-32a/c) (126), in a similar
fashion to viral miRNAs, with some binding sites identified by
Bauman &Mandelboim (155) as overlapping with those targeted
by the viral miRNAs referenced above. Altogether, the shared
binding sites and action of oncogenic and viral miRNAs indicate
the convergent evolution of tumorigenic and viral immune
evasion mechanisms at the post-transcriptional level.


Interference with NKG2D-L expression at the protein level is
often a major target of both viruses and tumors. The two major
mechanisms of reducing NKG2D-L surface expression have been
reviewed by others (77, 89, 159, 160), and are understood to be
(1), intracellular retention and degradation, and (2), surface
shedding. In the context of viruses, key viral proteins (e.g.
HCMV’s UL16, UL142) have been found to reside in the
endoplasmic reticulum and cis-Golgi apparatus of cells, and
cause intracellular retention and degradation of MICA/B and
ULBP1-3 (161–164). Alternatively, viral infection with HIV or
HCMV has also been shown to activate the shedding molecules
ADAM10/17, which are otherwise essential for development and
homeostasis, resulting in cleavage of MICA/B and ULBP2 (4,
157, 165). Manipulation at the protein level in a similar fashion is
also extensively seen in cancer. For example, NKG2D-L have
previously been shown to be retained in the endoplasmic
reticulum or cytoplasm in a variety of cancer types, including
melanoma, breast, colorectal, lung and gastric cancers (51, 166),
resulting in reduced cell surface expression. Similarly, NKG2D-L
shedding from tumor cells via enhanced expression of
ADAM10/17, is understood to contribute significantly to the
poor immunogenicity of many cancers (143–145). Again, the
similarities between viruses and tumors in targeting NKG2D-L at
the DNA, RNA and protein level is strongly suggestive of
convergent evolution and highlights fundamental immune
evasion mechanisms.
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THERAPEUTIC POTENTIAL LIES IN
CRISPR-MEDIATED GENETIC AND
EPIGENETIC MANIPULATION


The ability to modify loci at the genetic and epigenetic level in a
specific manner using CRISPR-associated (Cas) proteins, such as
Cas9 (167, 168), has greatly expanded our knowledge of diseases,
their genetic components and the development of targeted
therapies. When combined with a short guide RNA (sgRNA),
consisting of a non-coding trans-activating RNA annealed to a
target-specific 20 nucleotide RNA, Cas9 is able to base pair with
any target DNA located adjacent to a conserved protospacer-
adjacent motif (5’-NGG-3’ in the frequently used Streptococcus
pyogenes Cas9) and induce specific DNA cleavage. This process
allows efficient and precise DNA editing. Beyond the CRISPR-
Cas9 system, the synthesis of engineered variants, such as
nuclease-deactivated Cas9 (dCas9), has provided new avenues
for gene editing and regulation. The CRISPR-dCas9 system
harbors two mutations (D10A and H840A), which deactivate
Cas9’s cleavage capability (169). In doing so, the RNA-guided
DNA-binding specificity of Cas9 can be harnessed to precisely
direct effector domains that mediate transcriptional activation
(170–172) or repression (173–175).


Despite the success of wild-type Cas9, its ability to introduce
irreversible genetic changes, particularly at off-target sites, has
raised safety concerns. Therefore, to date, clinical trials utilizing
the CRISPR-Cas9 system have been performed ex vivo, where
extensive off-target checks can be conducted (176, 177).
Although clinical use of Cas9 remains limited due to these
trepidations, the application of dCas9 in gene therapy is
becoming increasingly likely, given its transient nature and
inability to permanently alter the genetic code (178).
Moreover, unlike other methods of gene therapy, dCas9-based
methods are highly scalable and versatile, with the capability to
target multiple loci simultaneously, termed multiplexed editing
(179). Furthermore, as seen in combinatorial Cas9 screening
systems (180), multiple orthologues of Cas9 can be used
concurrently, allowing for synchronized activation and
repression of separate loci.

CRISPR-BASED TECHNOLOGIES OFFER
THE ABILITY TO MAXIMISE THE NKG2D
PATHWAY IN IMMUNITY


In the context of viral infection and cancer, significant potential
lies in the use of CRISPR-Cas9 [including other Cas proteins,
such as the alternative DNA nuclease Cas12 (181), and RNA
nuclease Cas13 (182)] and dCas9-based methods to target
NKG2D and its ligands for enhanced immune recognition and
elimination. The ease of use, high specificity and multiplexable
nature of CRISPR-Cas9/dCas9-based genetic and epigenetic
editing has clear applications in the development and
improvement of NKG2D-directed therapies, as discussed below.
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CRISPR-Cas9 Genetic Editing
To date, adoptive cell transfer (ACT) therapies, whereby
peripheral blood mononuclear cells are collected, edited,
expanded and reinfused back into patients, have successfully
been developed to express NKG2D (largely on T cells) and
shown considerable anti-tumoral and anti-viral potential in
vitro (183–185). However, in vivo responses to NKG2D-
focused chimeric antigen receptor (CAR) ACT therapy to date
do not appear to be as robust, suggesting that inducing NKG2D
alone may not be sufficient (186). To our knowledge,
transduction of NKG2D in combination with other receptors
within the same cell for improved CAR therapy has only recently
been applied clinically, with one (1/9) active registered trial (as of
27 July 2021 on ClinicalTrials.gov) combining transduction of
NKG2D and ACE2 for treatment of SARS-CoV-2 (NCT04324996).
Most currently active trials (8/9) aim to solely target the NKG2D
receptor, and this is partially to reduce the risk of insertional
mutagenesis and gene dysregulation (187, 188). CRISPR-Cas9,
however, provides a novel avenue for ACT therapy by providing a
means to conduct targeted gene insertion in a multiplexed fashion
to maximize host immunity (176, 177). Strong evidence suggests
that CRISPR-based knockout of receptors responsive to
immunosuppressive mediators, such as transforming growth
factor beta receptor 2 (TGFbR2), or immune checkpoints
(dampeners of cellular activation), such as programmed cell
death 1 (PD-1), which play key roles in physiological immune
homeostasis, are likely to improve NKG2D-mediated cellular
cytotoxicity (189–191). Simultaneous editing of multiple loci,
particularly immune checkpoints, in autologous or allogenic
cells in this way is also likely to complement immune
checkpoint inhibitor (ICI) therapy, such as anti-PD-L1.
Moreover, CRISPR-Cas9 expands the potential of ACT
therapeutics by facilitating targeted insertion of gene sequences
(192), such as KLRK1, in cell subsets that otherwise have no or low
expression of the NKG2D receptor. Similarly, knockout of
inhibitory receptors within the same effector cell using CRISPR-
based therapies is predicted to be an excellent starting point in
improving ACT therapy outcomes via CRISPR-based methods.
Notably, enhancement of NKG2D-dependent immune responses
in this way requires careful consideration and evaluation of the
potential for collateral adverse autoimmune reactions. Indeed,
given the central role of the NKG2D receptor-ligand axis in
autoimmune conditions, such as Crohn’s disease (36), coeliac
disease (193), and rheumatoid arthritis (194), care needs to be
taken to not generate autoreactive lymphocytes.

CRISPR-dCas9 Epigenetic Editing
Apart from direct gene editing to induce or improve NKG2D-
mediated immunity, enhancing NKG2D-L on tumor or virus-
infected cells represents both an alternative and complementary
strategy to augment ACT therapy, ICIs and overall host
immunity . In this approach, CRISPR-dCas9-based
transcriptional activation or repression may be used to directly
activate NKG2D-L loci and ensure their surface expression.
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Recently, Sekiba et al. (195), have shown this to be possible in
vitro by applying CRISPR-dCas9 to transcriptionally activate
MICA in Huh7 and HepG2 human hepatocellular carcinoma cell
lines. Although no other NKG2D-L have been targeted in this
way to date, it is predicted that multiplexed activation of several
types of NKG2D-L is likely to be most effective in promoting
NKG2D-mediated immunity and may resolve the low response
rate of NKG2D-ACT therapy in vivo. However, our group and
others (178, 196, 197) have extensively reviewed that multiplexed
CRISPR-based editing, particularly in vivo within the tumor or
virally infected cell, is best conducted with an optimized set of
targets, rather than a large panel, so as to avoid reduced editing
efficiency (retroactivity) and extensive off-target effects.
Therefore, an accurate understanding of individual ligands and
outcome of their binding to NKG2D is strongly recommended.
For instance, given the locational and functional specialties
within the ULBP family (80, 81), we suggest that activation of
these ligands, either individually or in combination, is needed to
elucidate their contribution to the NKG2D pathway in different
tumoral/viral contexts. Moreover, it is likely that only a subset of
ULBP or MIC members need to be targeted, with some unable to
engage NKG2D effectively, as previously reported (81). Notably,
given the higher affinity of ULBP1 for the NKG2D ligand,
compared to MICA and MICB (59), it may serve as a better
therapeutic target. However, further investigation is needed to
elucidate the affinities of the remaining ULBP family members,
and whether higher affinity to the NKG2D ligand directly
translates to improved cytotoxicity. CRISPR-dCas9 can also
theoretically be applied to other levels of NKG2D-L regulation
(Table 1) for improved expression and immunity. An obvious
example of this is in the transcriptional repression of genes
involved in NKG2D-L shedding, such as ADAM10/17 or
MMP9/14, which are commonly hijacked during viral infection
and tumorigenesis, and are known to be targetable using
CRISPR-based technologies (Table 1) (143, 165). Targeting the
molecules responsible for proteolytic shedding of NKG2D-L in
this way is likely to be beneficial both in the clinic and in
furthering our basic biological understanding of the
mechanisms driving proteolytic shedding. Although CRISPR-
dCas9 epigenetic editing is transient and does not induce
permanent genetic alterations, significant care needs to be
taken to deliver this technology specifically to the target tissue
or cell using precise delivery systems, so as to avoid inducing a
severe systemic inflammatory state, particularly if used in
combination with NKG2D-ACT therapeutics.

CONCLUDING REMARKS


Manipulation of the NKG2D receptor-ligand axis to improve
host immunity is emerging as a novel therapeutic avenue in the
era of CRISPR-based technologies. In addition to the direct
enhancement of NKG2D on cell subsets to generate potent
cytotoxic effector cells using Cas9 genetic editing, potential
exists to use dCas9-based epigenetic editing methods to
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activate and lock NKG2D-L expression on tumor or virus-
infected cells to promote their recognition and elimination.
Although gaps remain in understanding how to optimize
NKG2D-mediated immunity in different contexts, CRISPR-
based multiplexed editing of NKG2D jointly with other genes
on effector cells, or epigenetic activation of NKG2D-L in
combination with one another on tumor or virally infected
cells is likely to provide important insights to novel
therapeutic approaches.
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157. Esteso G, Luzón E, Sarmiento E, Gómez-Caro R, Steinle A, Murphy G, et al.
Altered microRNA Express ion After Infection With Human
Cytomegalovirus Leads to TIMP3 Downregulation and Increased Shedding
of Metalloprotease Substrates, Including MICA. J Immunol (2014) 193
(3):1344–52. doi: 10.4049/jimmunol.1303441


158. Shen J, Pan J, Du C, Si W, Yao M, Xu L, et al. Silencing NKG2D Ligand-
Targeting miRNAs Enhances Natural Killer Cell-Mediated Cytotoxicity in
Breast Cancer. Cell Death Dis (2017) 8(4):e2740. doi: 10.1038/cddis.2017.158


159. Schmiedel D, Mandelboim O. NKG2D Ligands–Critical Targets for Cancer
Immune Escape and Therapy. Front Immunol (2040) 9:2040. doi: 10.3389/
fimmu.2018.02040


160. Coudert JD, Held W. The Role of the NKG2D Receptor for Tumor
Immunity. Semin Cancer Biol (2006) 16(5):333–43. doi: 10.1016/
j.semcancer.2006.07.008

August 2021 | Volume 12 | Article 712722



https://doi.org/10.1158/0008-5472.Can-11-1977

https://doi.org/10.1158/0008-5472.Can-11-1977

https://doi.org/10.4049/jimmunol.182.1.39

https://doi.org/10.4049/jimmunol.182.1.39

https://doi.org/10.1038/ni.1642

https://doi.org/10.1038/ni.1642

https://doi.org/10.1080/15476286.2014.996067

https://doi.org/10.1038/srep03943

https://doi.org/10.1016/j.chom.2009.03.003

https://doi.org/10.1126/science.1140956

https://doi.org/10.1016/j.chom.2011.01.008

https://doi.org/10.1016/j.chom.2011.01.008

https://doi.org/10.1038/ncomms5186

https://doi.org/10.4049/jimmunol.1601589

https://doi.org/10.7554/eLife.13426

https://doi.org/10.1038/s41467-019-09769-8

https://doi.org/10.1038/s41467-019-09769-8

https://doi.org/10.4049/jimmunol.169.8.4098

https://doi.org/10.4049/jimmunol.0903789

https://doi.org/10.1042/CBI20100431

https://doi.org/10.1007/s00535-016-1197-x

https://doi.org/10.1038/s41419-020-2367-6

https://doi.org/10.1002/ijc.28174

https://doi.org/10.1093/neuonc/not232

https://doi.org/10.1158/0008-5472.CAN-07-6768

https://doi.org/10.4049/jimmunol.182.1.49

https://doi.org/10.4049/jimmunol.182.1.49

https://doi.org/10.1038/srep25550

https://doi.org/10.1002/hep.23456

https://doi.org/10.1111/jgh.14029

https://doi.org/10.1128/mBio.02734-18

https://doi.org/10.1038/nature05768

https://doi.org/10.1111/j.1365-2567.2012.03565.x

https://doi.org/10.1073/pnas.0707883105

https://doi.org/10.18632/oncotarget.11271

https://doi.org/10.4161/rna.8.4.15587

https://doi.org/10.4161/rna.8.4.15587

https://doi.org/10.1016/j.celrep.2016.09.077

https://doi.org/10.1016/j.celrep.2016.09.077

https://doi.org/10.4049/jimmunol.1303441

https://doi.org/10.1038/cddis.2017.158

https://doi.org/10.3389/fimmu.2018.02040

https://doi.org/10.3389/fimmu.2018.02040

https://doi.org/10.1016/j.semcancer.2006.07.008

https://doi.org/10.1016/j.semcancer.2006.07.008

https://www.frontiersin.org/journals/immunology

http://www.frontiersin.org/

https://www.frontiersin.org/journals/immunology#articles





Alves et al. CRISPR-Mediated Manipulation of NKG2D/NKG2D-L

161. Dunn C, Chalupny NJ, Sutherland CL, Dosch S, Sivakumar PV, Johnson DC,
et al. Human Cytomegalovirus Glycoprotein UL16 Causes Intracellular
Sequestration of NKG2D Ligands, Protecting Against Natural Killer Cell
Cytotoxicity. J Exp Med (2003) 197(11):1427–39. doi: 10.1084/jem.20022059


162. Welte SA, Sinzger C, Lutz SZ, Singh-Jasuja H, Sampaio KL, Eknigk U, et al.
Selective Intracellular Retention of Virally Induced NKG2D Ligands by the
Human Cytomegalovirus UL16 Glycoprotein. Eur J Immunol (2003) 33
(1):194–203. doi: 10.1002/immu.200390022


163. Ashiru O, Bennett NJ, Boyle LH, Thomas M, Trowsdale J, Wills MR.
NKG2D Ligand MICA Is Retained in the Cis-Golgi Apparatus by Human
Cytomegalovirus Protein UL142. J Virol (2009) 83(23):12345–54.
doi: 10.1128/jvi.01175-09


164. Bennett NJ, Ashiru O, Morgan FJE, Pang Y, Okecha G, Eagle RA, et al.
Intracellular Sequestration of the NKG2D Ligand ULBP3 by Human
Cytomegalovirus. J Immunol (2010) 185(2):1093. doi: 10.4049/
jimmunol.1000789


165. Lee J-H, Wittki S, Bräu T, Dreyer Florian S, Krätzel K, Dindorf J, et al. HIV
Nef, Paxillin, and Pak1/2 Regulate Activation and Secretion of TACE/
ADAM10 Proteases. Mol Cell (2013) 49(4):668–79. doi: 10.1016/
j.molcel.2012.12.004


166. Fuertes MB, Girart MV, Molinero LL, Domaica CI, Rossi LE, Barrio MM,
et al. Intracellular Retention of the NKG2D Ligand MHC Class I Chain-
Related Gene A in Human Melanomas Confers Immune Privilege and
Prevents NK Cell-Mediated Cytotoxicity. J Immunol (2008) 180(7):4606–
14. doi: 10.4049/jimmunol.180.7.4606


167. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A
Programmable Dual-RNA–Guided DNA Endonuclease in Adaptive
Bacterial Immunity. Science (2012) 337(6096):816–21. doi: 10.1126/
science.1225829


168. Chylinski K, Makarova KS, Charpentier E, Koonin EV. Classification and
Evolution of Type II CRISPR-Cas Systems. Nucleic Acids Res (2014) 42
(10):6091–105. doi: 10.1093/nar/gku241


169. Qi Lei S, Larson Matthew H, Gilbert Luke A, Doudna Jennifer A, Weissman
Jonathan S, Arkin Adam P, et al. Repurposing CRISPR as an RNA-Guided
Platform for Sequence-Specific Control of Gene Expression. Cell (2013) 152
(5):1173–83. doi: 10.1016/j.cell.2013.02.022


170. Garcia-Bloj B, Moses C, Sgro A, Plani-Lam J, Arooj M, Duffy C, et al. Waking
Up Dormant Tumor Suppressor Genes With Zinc Fingers, TALEs and the
CRISPR/dCas9 System. Oncotarget (2016) 7(37):60535–54. doi: 10.18632/
oncotarget.11142


171. Moses C, Nugent F, Waryah CB, Garcia-Bloj B, Harvey AR, Blancafort P.
Activating PTEN Tumor Suppressor Expression With the CRISPR/dCas9
System. Mol Ther - Nucleic Acids (2019) 14:287–300. doi: 10.1016/
j.omtn.2018.12.003


172. Kretzmann JA, Evans CW, Moses C, Sorolla A, Kretzmann AL, Wang E,
et al. Tumour Suppression by Targeted Intravenous non-Viral CRISPRa
Using Dendritic Polymers. Chem Sci (2019) 10(33):7718–27. doi: 10.1039/
C9SC01432B


173. Thakore PI, D’Ippolito AM, Song L, Safi A, Shivakumar NK, Kabadi AM,
et al. Highly Specific Epigenome Editing by CRISPR-Cas9 Repressors for
Silencing of Distal Regulatory Elements. Nat Methods (2015) 12(12):1143–9.
doi: 10.1038/nmeth.3630


174. Thakore PI, Kwon JB, Nelson CE, Rouse DC, Gemberling MP, Oliver ML,
et al. RNA-Guided Transcriptional Silencing In Vivo With S. Aureus
CRISPR-Cas9 Repressors. Nat Commun (2018) 9(1):1674. doi: 10.1038/
s41467-018-04048-4


175. Moses C, Hodgetts SI, Nugent F, Ben-Ary G, Park KK, Blancafort P, et al.
Transcriptional Repression of PTEN in Neural Cells Using CRISPR/dCas9
Epigenetic Editing. Sci Rep (2020) 10(1):11393. doi: 10.1038/s41598-020-
68257-y


176. Stadtmauer EA, Fraietta JA, Davis MM, Cohen AD, Weber KL, Lancaster E,
et al. CRISPR-Engineered T Cells in Patients With Refractory Cancer.
Science (2020) 367(6481):eaba7365. doi: 10.1126/science.aba7365


177. Lu Y, Xue J, Deng T, Zhou X, Yu K, Deng L, et al. Safety and Feasibility of
CRISPR-Edited T Cells in Patients With Refractory Non-Small-Cell Lung
Cancer. Nat Med (2020) 26(5):732–40. doi: 10.1038/s41591-020-0840-5


178. Alves E, Taifour S, Dolcetti R, Chee J, Nowak AK, Gaudieri S, et al.
Reprogramming the Anti-Tumor Immune Response via CRISPR Genetic

Frontiers in Immunology | www.frontiersin.org 13

and Epigenetic Editing. Mol Ther - Methods Clin Dev (2021) 21:592 – 606.
doi: 10.1016/j.omtm.2021.04.009


179. Wang G, Chow RD, Bai Z, Zhu L, Errami Y, Dai X, et al. Multiplexed Activation
of Endogenous Genes by CRISPRa Elicits Potent Antitumor Immunity. Nat
Immunol (2019) 20(11):1494–505. doi: 10.1038/s41590-019-0500-4


180. Najm FJ, Strand C, Donovan KF, Hegde M, Sanson KR, Vaimberg EW, et al.
Orthologous CRISPR–Cas9 Enzymes for Combinatorial Genetic Screens.
Nat Biotechnol (2018) 36(2):179–89. doi: 10.1038/nbt.4048


181. Zetsche B, Gootenberg Jonathan S, Abudayyeh Omar O, Slaymaker Ian M,
Makarova Kira S, Essletzbichler P, et al. Cpf1 Is a Single RNA-Guided
Endonuclease of a Class 2 CRISPR-Cas System. Cell (2015) 163(3):759–71.
doi: 10.1016/j.cell.2015.09.038


182. Abudayyeh OO, Gootenberg JS, Konermann S, Joung J, Slaymaker IM, Cox
DBT, et al. C2c2 Is a Single-Component Programmable RNA-Guided RNA-
Targeting CRISPR Effector. Science (2016) 353(6299):aaf5573. doi: 10.1126/
science.aaf5573


183. Zhang T, Lemoi BA, Sentman CL. Chimeric NK-Receptor–Bearing T Cells
Mediate Antitumor Immunotherapy. Blood (2005) 106(5):1544–51.
doi: 10.1182/blood-2004-11-4365


184. Chang Y-H, Connolly J, Shimasaki N, Mimura K, Kono K, Campana D. A
Chimeric Receptor With NKG2D Specificity Enhances Natural Killer Cell
Activation and Killing of Tumor Cells. Cancer Res (2013) 73(6):1777–86.
doi: 10.1158/0008-5472.Can-12-3558


185. Herzig E, Kim KC, Packard TA, Vardi N, Schwarzer R, Gramatica A, et al.
Attacking Latent HIV With convertibleCAR-T Cells, a Highly Adaptable
Killing Platform. Cell (2019) 179(4):880–94.e10. doi: 10.1016/j.cell.2019.10.002


186. Baumeister SH, Murad J, Werner L, Daley H, Trebeden-Negre H, Gicobi JK,
et al. Phase I Trial of Autologous CAR T Cells Targeting NKG2D Ligands in
Patients With AML/MDS and Multiple Myeloma. Cancer Immunol Res
(2019) 7(1):100–12. doi: 10.1158/2326-6066.Cir-18-0307


187. Hacein-Bey-Abina S, Garrigue A, Wang GP, Soulier J, Lim A, Morillon E,
et al. Insertional Oncogenesis in 4 Patients After Retrovirus-Mediated Gene
Therapy of SCID-X1. J Clin Invest (2008) 118(9):3132–42. doi: 10.1172/
JCI35700


188. Braun CJ, Boztug K, Paruzynski A, Witzel M, Schwarzer A, Rothe M, et al.
Gene Therapy for Wiskott-Aldrich Syndrome—Long-Term Efficacy and
Genotoxicity. Sci Trans Med (2014) 6(227):227ra33–ra33. doi: 10.1126/
scitranslmed.3007280


189. Naeimi Kararoudi M, Dolatshad H, Trikha P, Hussain S-RA, Elmas E, Foltz
JA, et al. Generation of Knock-Out Primary and Expanded Human NK Cells
Using Cas9 Ribonucleoproteins. J Vis Exp (2018) 136):e58237. doi: 10.3791/
58237


190. Lee J-C, Lee K-M, Kim D-W, Heo DS. Elevated TGF-b1 Secretion and
Down-Modulation of NKG2D Underlies Impaired NK Cytotoxicity in
Cancer Patients. J Immunol (2004) 172(12):7335–40. doi: 10.4049/
jimmunol.172.12.7335


191. Pomeroy EJ, Hunzeker JT, Kluesner MG, Lahr WS, Smeester BA, Crosby
MR, et al. A Genetically Engineered Primary Human Natural Killer Cell
Platform for Cancer Immunotherapy. Mol Ther (2020) 28(1):52–63.
doi: 10.1016/j.ymthe.2019.10.009


192. Bak RO, Porteus MH. CRISPR-Mediated Integration of Large Gene Cassettes
Using AAV Donor Vectors. Cell Rep (2017) 20(3):750–6. doi: 10.1016/
j.celrep.2017.06.064


193. Hue S, Mention JJ, Monteiro RC, Zhang S, Cellier C, Schmitz J, et al. A
Direct Role for NKG2D/MICA Interaction in Villous Atrophy During
Celiac Disease. Immunity (2004) 21(3):367–77. doi: 10.1016/
j.immuni.2004.06.018


194. Groh V, Brühl A, El-Gabalawy H, Nelson JL, Spies T. Stimulation of T Cell
Autoreactivity by Anomalous Expression of NKG2D and Its MIC Ligands in
Rheumatoid Arthritis. Proc Natl Acad Sci (2003) 100(16):9452. doi: 10.1073/
pnas.1632807100


195. Sekiba K, Yamagami M, Otsuka M, Suzuki T, Kishikawa T, Ishibashi R, et al.
Transcriptional Activation of the MICA Gene With an Engineered CRISPR-
Cas9 System. Biochem Biophys Res Commun (2017) 486(2):521–5.
doi: 10.1016/j.bbrc.2017.03.076


196. McCarty NS, Graham AE, Studená L, Ledesma-Amaro R. Multiplexed
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