AUTHOR=Li Dandan , Pan Linyue , Zhang Xiaoju , Jiang Zhilong TITLE=Lower Oligomeric Form of Surfactant Protein D in Murine Acute Lung Injury Induces M1 Subtype Macrophages Through Calreticulin/p38 MAPK Signaling Pathway JOURNAL=Frontiers in Immunology VOLUME=12 YEAR=2021 URL=https://www.frontiersin.org/journals/immunology/articles/10.3389/fimmu.2021.687506 DOI=10.3389/fimmu.2021.687506 ISSN=1664-3224 ABSTRACT=
Surfactant protein D (SP-D) plays an important role in innate and adaptive immune responses. In this study, we found that the expression of total and de-oligomerized SP-D was significantly elevated in mice with lipopolysaccharide (LPS)-induced acute lung injury (ALI). To investigate the role of the lower oligomeric form of SP-D in the pathogenesis of ALI, we treated bone marrow-derived macrophages (BMDMs) with ALI-derived bronchoalveolar lavage (BAL) and found that SP-D in ALI BAL predominantly bound to calreticulin (CALR) on macrophages, subsequently increasing the phosphorylation of p38 mitogen-activated protein kinase (MAPK) and expression of interleukin (IL)-6, tumor necrosis factor (TNF)-alpha, IL-10, and CD80. However, anti-SP-D (aSP-D) and anti-calreticulin (aCALR) pretreatment reversed the SP-D binding and activation of macrophages induced by ALI BAL or de-oligomerized recombinant murine SP-D (rSP-D). Lack of signal transducer and activator of transcription (STAT)6 in STAT6-/- macrophages resulted in resistance to suppression by aCALR. Further studies in an ALI mouse model showed that blockade of pulmonary SP-D by intratracheal (i.t.), but not intraperitoneal (i.p.), administration of aSP-D attenuated the severity of ALI, accompanied by lower neutrophil infiltrates and expression of IL-1beta and IL-6. Furthermore, i.t. administration of de-oligomerized rSP-D exacerbated the severity of ALI in association with more pro-inflammatory CD45+Siglec-F(-) M1 subtype macrophages and production of IL-6, TNF-alpha, IL-1beta, and IL-18. The results indicated that SP-D in the lungs of murine ALI was de-oligomerized and participated in the pathogenesis of ALI by predominantly binding to CALR on macrophages and subsequently activating the pro-inflammatory downstream signaling pathway. Targeting de-oligomerized SP-D is a promising therapeutic strategy for the treatment of ALI and acute respiratory distress syndrome (ARDS).