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Tumor-infiltrating immune cells are important components in the tumor microenvironment
(TME) and different types of these cells exert different effects on tumor development and
progression; these effects depend upon the type of cancer involved. Several methods
have been developed for estimating the proportion of immune cells using bulk
transcriptome data. However, there is a distinct lack of methods that are capable of
predicting the immune contexture in specific types of cancer. Furthermore,
the existing methods are based on absolute gene expression and are susceptible to
experimental batch effects, thus resulting in incomparability across different datasets. In
this study, we considered two common neoplasms as examples (colorectal cancer [CRC]
and melanoma) and introduced the Tumor-infiltrating Immune Cell Proportion Estimator
(TICPE), a cancer-specific qualitative method for estimating the proportion of tumor-
infiltrating immune cells. The TICPE was based on the relative expression orderings
(REOs) of gene pairs within a sample and is notably insensitive to batch effects.
Performance evaluation using public expression data with mRNA mixtures, single-cell
RNA-Seq (scRNA-Seq) data, immunohistochemistry data, and simulated bulk RNA-seq
samples, indicated that the TICPE can estimate the proportion of immune cells with levels
of accuracy that are clearly superior to other methods. Furthermore, we showed that the
TICPE could effectively detect prognostic signals in patients with tumors and changes in
the fractions of immune cells during immunotherapy in melanoma. In conclusion, our work
presented a unique novel method, TICPE, to estimate the proportion of immune cells in
specific cancer types and explore the effect of the infiltration of immune cells on the
efficacy of immunotherapy and the prognosis of cancer. The source code for TICPE is
available at https://github.com/huitingxiao/TICPE.
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INTRODUCTION

Immune cells are critical components in the complex tumor
environment (TME). Tumor-infiltrating immune cells (TIICs)
can have either tumor-promoting or tumor-suppressive effects
on tumor development and progression, depending on the
specific type of cancer involved (1). The types and densities of
TIICs not only have predictive value in patient survival, they also
affect tumor responses to therapy, particularly immunotherapy
(2, 3). For instance, an increase in CD8+ T cells is generally
associated with improved clinical outcomes, whereas regulatory
T cells (Tregs) and tumor-associated macrophages (TAMs) are
often associated with a poor prognosis (4, 5). In addition,
immune checkpoint blockade (ICB) antibodies reinvigorate
anti-tumor immunotherapy responses by disrupting co-
inhibitory T-cell signaling, a pathway that has demonstrated
clinical activity in several malignancies (6). Evidence has shown
that CD4+ and CD8+ memory T cell subsets, as well as NK cell
subsets, correlated with a clinical response to immunotherapy in
patients with melanoma (7, 8). As such, an assessment of TIICs is
of critical importance in biomedical research as well as clinical
pathology (9).

Previous studies concerning alterations in the composition of
immune cells in human cancers have predominantly relied on
immunohistochemistry (IHC) or flow cytometry. However, these
techniques are compromised by the limited set of available
molecular markers and are cumbersome to apply to large
panels of tumors; furthermore, in the case flow cytometry,
fresh or frozen tissue is required (10, 11). An abundance of
transcriptomics data provide an ideal resource for large-scale
immune landscape analysis and have been used to develop many
computational methods that have been mainly classified into two
categories: deconvolution-based approaches and methods that
are based on marker genes (12). The deconvolution methods,
which include CIBERSORT (13), TIMER (14), EPIC (15), and
quanTIseq (16), estimate the cell fractions leveraging on a
reference matrix composed of representative expression
signatures for specific immune cells. Techniques that are based
on marker genes, including MCP-counter (17), xCell (18), and
ImmuCellAI (19), utilize a list of genes characterized for each
immune cell type to compute an enrichment score and allow for
inter-sample comparisons of the same immune cell type.
However, these methods have been developed for the
enumeration of immune cells from bulk transcriptome data
from multiple cancer types that masked inter-tumor
heterogeneity between different tumor types; this would affect
accuracy, at least to some extent (20). In addition, all of these
methods were based on absolute gene expression, thus resulting
in incomparability across different datasets. Some of these
techniques require data normalization, a process that is
susceptible to experimental batch effects and can even distort
real biological signals (21). In contrast, our research team has
proven that qualitative information derived from relative gene
expression is highly robust with regards to batch effects and does
not necessarily require normalization (22, 23). It is therefore
imperative to develop a cancer-specific qualitative method to
estimate the proportion of tumor-infiltrating immune cells.
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In this study, we considered colorectal cancer and melanoma
as examples and constructed Tumor-infiltrating Immune Cell
Proportion Estimator (TICPE), a qualitative method based on
the relative expression orderings (REOs) of gene pairs within a
sample, to estimate the proportion of immune cells in a TME.
These cell proportions could then be used to directly compare
the proportion of the corresponding immune cells across
samples within a cohort or different cohorts. TICPE was
extensively validated in human solid tumors via publicly
available IHC data, mRNA mixtures, single-cell RNA-Seq
(scRNA-Seq) data from colorectal and melanoma tumors,
and simulated bulk samples. Moreover, the immune cell
proportions estimated by TICPE could be used for prognostic
analysis and associated with treatment status and the efficacy of
immunotherapy response to melanoma.
MATERIALS AND METHODS

Dataset Preparation
We downloaded gene expression datasets from the Gene
Expression Omnibus (GEO, http://cancergenome.nih.gov/) and
RNA sequencing data from The Cancer Genome Atlas (TCGA)
by the University of California Santa Cruz (UCSC) Xena website
(https://xena.ucsc.edu/). The processed gene expression profiles
of 97 datasets were divided into three sections (see
Supplementary Table 1). Eighty-one of these datasets
contained eight types of human immune cells and cancer cell
lines; normal samples were used to generate signature genes and
develop the TICPE. Five datasets were used for to assess the
performance of the TICPE. Dataset 1 was derived from an in
vitro RNAmixture experiment, GEO accession GSE64385. These
mixtures contained different immune populations that were
purified from the peripheral blood from healthy donors with
variable concentrations and were further diluted in a fixed
amount of a solution containing mRNA extracted from HCT-
116, a CRC cell line (Supplementary Table 2A). Dataset 2
contained a large series of 566 CRC tumors and 19 non-
tumoral colorectal mucosas, GEO accession GSE39582. Of the
566 tumors, 33 patients also had immunohistochemistry data
relating to CD3, CD8, and CD68 (Aurélien de Reyniès, Personal
Communication). The other three datasets (Accession numbers
GSE146771, GSE115978, and GSE72056) were scRNA-Seq data,
and corresponded to 10 colon cancer samples, and 31 and 19
patients with melanoma, respectively (see Supplementary
Tables 2B–D). The remaining datasets that were associated
with clinical information were used to investigate prognosis
and response to immunotherapy. The response categories of
the melanoma patients were defined by the RECIST classification
scheme (Response Evaluation Criteria in Solid Tumors) as a
complete response (CR) and partial response (PR) for
responders, or stable disease (SD) and progressive disease (PD)
for non-responders (24).

For the data downloaded from GEO, we mapped the probe ID
to the Entrez gene ID using the corresponding platform
annotation file. Data were discarded if a probe had no or
May 2021 | Volume 12 | Article 672031
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multiple corresponding Entrez gene IDs. If multiple probes
shared the same Entrez gene ID, then the arithmetic mean of
the expression values of these probes was used as the final
expression value of the gene. For the RNA-Seq data, profiles of
fragments per kilobase million (FPKM) were directly
downloaded from the TCGA. For scRNA-Seq data, the
reconstructed bulk samples from each donor were identified by
aggregating expression profiles from all cell barcodes of the given
donor. The cell ratio per cell type in a donor was then calculated
by the cell number of a specific cell type divided by the total
number of cells (19).

Marker Gene Preparation
For each immune cell type, we integrated a list of marker genes
obtained from the literature and other analytical methods, such
as xCell and MCP-counter. Most of these were overexpressed
Frontiers in Immunology | www.frontiersin.org 3
relative to other immune cells, and a total of 2,034 marker genes
were acquired (see Supplementary Table 3).

Highly Stable Pairs in Cancer Cell Lines
For each cancer cell, pairwise comparisons were performed for
the expression level of all genes. For each gene pair (Gi, Gj), with
only two possible REO outcomes (the gene expression of Gi > Gj

or Gi < Gj), we retained the gene pair with a certain REO (Gi > Gj

or Gi < Gj) in at least 99% cancer cells, defined as a highly stable
gene pair (SPairs).

The TICPE Development Pipeline
This cancer-specific method can be used for a variety of cancer
types. Here, we took colorectal cancer as an example to describe
the process in detail, the flowchart for TICPE is described in
Figure 1.
A

B

FIGURE 1 | The pipeline of the TICPE algorithm. (A) Summary of the data sources used in the study to develop the TICPE. (B) The pipeline of the TICPE
algorithm. RankComp algorithm was used to identify robust signature genes compared with cancer cells for each type of immune cell from the known marker
genes. The upregulated score was the reversal significance of all signature genes corresponding to the cell type. Using the simulated model for each cell type,
we derived a transformation pipeline for the scores. For each queried sample, calculated upregulated scores and transformed them to estimated cell proportions
using learned parameters.
May 2021 | Volume 12 | Article 672031
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Identifying Signature Genes Compared With CRC
Cells
Since cell-type-specific signatures can vary depending on cancer
type, there is a need to identify cancer-type specific marker genes
for each immune cell type. We take immune cell type A with n
cells as an example to illustrate the process that can be used to
identify the corresponding signature genes among reported
marker genes. Firstly, we used the RankComp algorithm (25) to
identify individual-level differentially upregulated marker genes
(up-DEGs) for each immune cell compared with the SPairs in the
CRC cell lines. The p-values of RankComp were adjusted using
the Benjamini and Hochberg method (26). Secondly, the
cumulative binomial distribution model was used to identify up-
DEGs shared by a non-random high proportion of samples and
the P value determined whether a marker gene was differentially
upregulated at the population level. Then, the P values were also
adjusted for multiple testing to control the false discovery rate
(FDR). The significance was calculated as shown in Equation (1).

Equation (1):

P = 1 −o
k−1

i=0

n

i

 !
P0ð Þi 1 − P0ð Þn−i

In Equation (1), P0 represents the probability of observing a
marker gene being differentially upregulated in a sample by
chance (P0 = 0.5), n and k represent the total number of
samples of the immune cell type A and the number of samples
with the marker gene being differentially upregulated,
respectively. Next, when a marker gene’s adjusted P-value
was <0.05, it would be reserved. We finally removed the up-
DEGs included in more than one type of immune cell to reduce
the dependencies between closely related cell types, and the
remained up-DEGs were defined as signature genes (Step 1).

Calculating Upregulated Scores Based on
Signature Genes
Based on the signature genes for each immune cell type, we were
able to compute the cell infiltration scores for each sample.
However, the scores had different distributions between different
signature genes and could not thus be compared across immune
cell types in a sample. Thus, for each cell type, we conducted a
simulated model using the immune cell (cell A) with an
additional “control” cell type (a sample of normal colon) and a
variety of CRC cell lines. Different types of CRC cell lines were
used to reflect the heterogeneity of patients with the same cancer.
For the simulated models, batch effects among the three types of
dataset were removed using Combat (27). Then, we generated
such simulations by using the median expression profile of the
merged profile composed of three cell types: 60% of the CRC cell,
X% of cell A, and 40–X% control (28). X% represents an
arithmetic sequence with a range of 0.8 to 25.6% and an
interval of 0.8%. We used this range because these interesting
cell types had low fractions in the TME (18).

Taking the SPairs of CRC cell lines as the background, we
calculated the cell infiltration scores of the simulations using m
signature genes {Gsig.1, Gsig.2,… Gsig.m}, as described below. We
were able to calculate the numbers of gene pairs (the gene pair
Frontiers in Immunology | www.frontiersin.org 4
was constructed by Gsig and Gother) belonging to SPairs with
ordering patterns (Gsig.i > Gother) and (Gsig.i < Gother) in cancer
cells, which were denoted a and b. Similarly, c and d denoted the
corresponding numbers of gene pairs with ordering patterns
(Gsig.i > Gother) and (Gsig.i < Gother) in a simulation sample. When
simulations involved an increasing proportion of immune cells,
there were more stable pairs with the ordering patterns (Gsig.i >
Gother). Using Fisher’s exact test, we were able to determine the
degree of cell infiltration by calculating the reversal significance,
also known as the upregulated score (UpScore) for each
simulation sample (Step 2).

Transforming UpScores to Estimate Cell Proportions
We designed a transformation pipeline for the UpScores of each
cell type to enable the estimated proportions to be compared
across cell types, and not just across samples. A simulation
containing 0.8% of immune cells was considered to barely
result in reversal significance. Therefore, for the simulated
model of cell A, we first shifted the UpScores to 0 using the
minimal UpScore (which corresponded to the simulation
containing 0.8% of cell A) and fitted a power function to the
UpScores that corresponded to proportions of 0.8 to 25.6%. The
transformed parameters (V1 and V2) were acquired by Equation
(2). For each immune cell type, we could get a pair of
transformed parameters.

Equation (2):

Fi = V1i Si −min Sið Þð ÞV2i

In Equation (2), F represents the proportions of 0.8 to 25.6%
and S represents the corresponding UpScores of cell A.

It was recommended that an expression dataset should
contain as many signature genes as possible. The UpScores of
different immune cell types were calculated based on their
different signature genes. Subsequently, using the parameters
corresponding to immune cells, the UpScores were transformed
into estimated cell proportions for each sample (Step 3).

The Generation of Simulated Data
We simulated bulk RNA-seq data with different tumor purity
values and immune infiltrates by mixing malignant cells with
different immune cells from a scRNA-seq dataset. There were
100 simulated samples and each of these was composed of 1,000
cells that were randomly selected, as follows: (i) Cancer cells form
the majority of a simulated samples, a fraction f of them was
constrained to the interval [0.5, 0.99], and the remaining fraction
1 − f was randomly assigned to the other immune cell types; (ii)
the fraction was multiplied by 1,000 to obtain cell counts for
different cell types; (iii) the corresponding number of cells was
randomly selected from the single cell dataset. If one cell type was
available from the scRNA-seq dataset with only a few cells
available, then, the same single cell sample would be selected
multiple times for the artificial bulk sample.

Performance Assessment of the TICPE
The performance of the TICPE was evaluated using both
microarray and RNA-Seq datasets and compared with that
of previously published methods (CIBERSORT, EPIC, xCell,
May 2021 | Volume 12 | Article 672031
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MCP-counter, and ImmuCellAI). For a given immune cell type,
the accuracy and sensitivity of each method were measured using
Pearson’s correlation between the results of in silicomethods and
the true proportions, as measured by immunohistochemistry or
scRNA-Seq. Furthermore, we introduced a correlation deviation
(19) for all cell types to measure the global performance of each
method; this strategy took the sample size and overall accuracy
into consideration. A smaller correlation deviation might suggest
that the predicted cell fractions agree better with the true
composition, as shown in Equation (3).

Equation (3):

correlation deviation =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n

i=1
1 − rið Þ2

s

In Equation (3), n represents the number of immune cell
types detected in samples and ri represents the Pearson
correlation coefficient of immune cell type i.

Statistical Analysis
The correlation between estimated proportion and true
composition was evaluated by Pearson’s correlation. The ROC
analysis was performed to assess the validity of the TICPE and
was completed by pROC R Package. The statistical significance
of comparisons between two groups or more than two groups
was estimated by the Wilcoxon rank-sum test or the Kruskal–
Wallis test, respectively. The overall survival curves were
estimated by the Kaplan–Meier method, and the differences
between survival distributions were evaluated by the two-sided
log-rank test (29). The Venn diagram was used to analyze the
signature genes were different between CRC and melanoma by
ggvenn R Package. All statistical analyses were performed using
R program (version 4.0.2). P-values were two-sided, and P <0.05
was considered to be statistically significant (4).
RESULTS

Development of the TICPE Algorithm
We designed a method, called TICPE, to estimate the
proportions of eight important tumor-infiltrating immune cells
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(B cells, CD4+ T cells, CD8+ T cells, dendritic cells (DC),
monocytes, macrophages, natural killer (NK) cells, and
neutrophils) in a specify type of cancer. We integrated marker
genes for these different cell types from publications and
obtained expression profiles for immune cells, cancer cell lines,
and normal tissues, from the GEO database (Figure 1A;
Table 1). Taking colorectal cancer as an example, a three-step
strategy of the core algorithm of TICPE is shown in Figure 1B;
the detailed algorithm is described in theMaterials and Methods
section. Since the marker genes were screened relative to other
immune cells, but not to tumor cells, the genes for a specific type
of cancer needed to be filtered. We applied the RankComp
algorithm to detect overexpressed marker genes in a given
immune cell compared with CRC cells (FDR <5%). We then
created a specific gene set from overexpressed marker genes as
signature genes; this included 218 genes from the eight immune
cell types (Binomial test, FDR <5%) (Table 2) (Step 1). We were
then able to compute the cell infiltration scores for each sample
based on the signature genes (Fisher’s exact test) (Step 2).
However, the scores exhibited different distributions between
different signature genes and could not therefore be compared
across cell types in a given sample. For each immune cell type, we
thus conducted a simulated model using the immune cells, CRC
cells, and normal colon samples, and calculated the UpScores
based on signature genes. Next, we designed a transformation
pipeline for the UpScores and acquired a pair of transformed
parameters for each cell type. For CRC samples, we were able to
calculate the UpScores for each immune cell type and transform
these into the estimated cell proportions with the acquired
parameters corresponding to immune cells (Step 3).

The Performance of the TICPE in CRC and
Melanoma Samples
Firstly, we calculated the proportion of immune cells in CRC
samples with three independent publicly available datasets, and
simulated RNA-seq data, to evaluate the TICPE. In the in vitro
RNA mixture experiment (GSE64385), we observed that the
estimated cell proportions were highly correlated with the cell
proportions for the populations introduced in the mixtures
(r = 0.99 and P = 4.2 × 10−13 for B cells, r = 0.82 and P = 9.9 ×
10−4 for monocytes, r = 0.96 and P = 3.3 × 10−7 for NK cells,
TABLE 1 | Datasets used in developing TICPE for colorectal cancer.

Cell Type Accession Samples# Marker
Gene#

CRC cells GSE11618, GSE13059, GSE110425, GSE14103, GSE16648, GSE122985, GSE18560, GSE24795, GSE115716, GSE35566,
GSE55624, GSE59196, GSE63252, GSE112282, GSE50841, GSE116528, GSE90085, GSE59883, GSE59857, GSE116529,
GSE75205, GSE106073, GSE72544, GSE50791, GSE119197, GSE120993

687 –

B cells GSE24736, GSE19599, GSE12366, GSE49910, GSE120367, GSE75007 218 422
CD4+ T cells GSE11292, GSE36769, GSE32959, GSE50175, GSE103527, GSE71956 230 885
CD8+ T cells GSE84251, GSE93683, GSE98640, GSE84331, GSE71956 126 807
NK cells GSE27838, GSE8059, GSE21774, GSE35330, GSE75091 93 256
Macrophages GSE102117, GSE100129, GSE7568, GSE16385, GSE13670, GSE24897 136 364
Monocytes GSE38351, GSE39840, GSE35683, GSE6054, GSE60199, GSE98480 125 331
DCs GSE7509, GSE10316, GSE23618, GSE23371, GSE87494, GSE85305 92 245
Neutrophils GSE22103, GSE39889, GSE8668, GSE18810, GSE70044 182 225
May 2021 | Volum
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r = 0.96 and P = 4.1 × 10−7 for neutrophils; Figure 2A). Then, we
used scRNA-Seq data from 10 colon cancer samples
(GSE146771) and compared TICPE predictions with measured
immune cell proportions. As shown in Figure 2B, the
proportions of immune cells estimated by the TICPE showed a
significantly positive correlation with the actual cell proportions
(P <0.05). We also observed a significant correlation between our
predictions and the immunohistochemistry data from 33
colorectal cancer tumors (P <0.05; Figure 2C). The number of
samples available from published data was limited, so we further
used the scRNA-Seq data of annotated immune cells to generate
100 simulated bulk RNA-seq samples (further details are given in
the Materials and Methods section). The TICPE showed a high
correlation between the known proportions and the estimated
Frontiers in Immunology | www.frontiersin.org 6
fractions in the simulated dataset (P <0.01; Figure 2D).
Furthermore, we used two scRNA-Seq datasets from
melanoma patients (GSE115978; GSE72056) as benchmark
resources for assessing the performance of the TICPE. The
estimated proportion of each immune cell type was found to
correlate with the true immune cell proportions that were
calculated from single cell barcode information (P <0.05;
Supplementary Figures 1A, B). Similarly, we used one of the
scRNA-seq datasets (GSE115978) from melanoma ecosystems to
simulate bulk samples of known cell type proportions and
observed a good agreement with our predictions (P <0.05;
Supplementary Figure 1C). Furthermore, we employed the
receiver operating characteristic (ROC) curve and the area
under the curve (AUC) to evaluate the performance of TICPE.
TABLE 2A | A specific gene set compared with CRC cells for per cell type was selected and used in TICPE.

Cell Type Gene Number Signature Genes

B cells 24 BLK, CD19, CD79A, CD79B, IGLL1, TCL1A, TLR7, FCRL2, BANK1, CPNE5, KLHL14, LINC00926, FCRL5, EBF1, ARHGAP25,
CLECL1, TNFRSF17, FCRLA, HLA-DOB, NCF1, P2RY10, PNOC, TLR9, FCRL4

CD4+ T cells 65 ANK1, CD40LG, CD69, CD72, CHI3L2, CCR4, CCR8, DGKA, FYN, GATA3, GPR18, GPR19, IL2RA, IL6R, IL9R, IL12RB2, TNFRSF9,
ITGA4, ITGB2, JAK3, LCK, LTB, MAL, CD200, NPAT, P2RX5, PDCD1, PLCL1, PTPRC, RGS1, SELPLG, STAT4, STAT5A, STAT5B,
TXK, WIPF1, SOCS3, AIM2, HS3ST3B1, TLR6, CD226, PASK, PLCL2, ANKRD12, STAP1, ZBTB32, LAT, PNMA3, FOXP3, ASB2,
LRRN3, LAX1, RNF125, PARP11, PLXDC1, MAN1C1, HIVEP3, BCL11B, PVRIG, ANKRD55, TRIM46, LIMD2, SIGLEC10, RCSD1,
PIK3IP1

CD8+ T cells 42 ABCD2, RUNX3, CD8A, CD8B, LYST, TSC22D3, GPR183, FLT3LG, HLA-DPB1, IFI16, INPP4A, POU6F1, PTGER4, RAB27A, ATXN7,
ZBTB16, EOMES, IL18R1, SLC16A7, ITM2A, AKAP5, TOX, SPOCK2, ZEB2, PLXNC1, CA5B, IKZF2, PTPN22, PBXIP1, IGFLR1,
APOL3, KIAA1109, SLA2, SLFN11, JAML, TC2N, TTC39C, TMIGD2, TMEM71, HAPLN3, PYHIN1, JAKMIP1

DCs 15 SLAMF8, CCL17, CD1B, CD1E, CLIC2, CD1C, CD209, DNASE1L3, IL3RA, SAMSN1, FABP4, C1QC, SLAMF9, THBD, FAM49A
Macrophages 18 CHIT1, CD14, APOC1, HAMP, VSIG4, SDS, SIGLEC7, ADAMDEC1, CCL18, CCL8, CCR1, CMKLR1, CSF1, HS3ST2, MMP19, CPM,

ENG, MS4A7
Monocytes 26 TLR8, ASGR2, IRAK3, CD33, CFP, CLEC4A, CLEC4E, CXorf21, DOK2, DOK3, FCN1, HCK, LILRA1, LILRA5, LILRB2, MNDA, MYO1F,

NCF4, PILRA, PLEK, POU2F2, PSTPIP1, QKI, RETN, CD300LF, SRGN
NK cells 16 KIR2DL3, NCR1, FGFBP2, KIR3DS1, PTGDR, LIM2, KIR3DL1, KIR2DS1, KIR3DL3, KIR2DS2, KIR2DS5, KIR2DL1, SH2D1B, KIR2DL4,

PIK3CG, KIR2DS4
Neutrophils 13 FCGR3B, ALPL, VNN3, FFAR2, MMP25, TREM1, FPR1, LINC00528, CMTM2, PROK2, CLEC7A, CAMP, VNN2

CRC, colorectal cancer; NK cells, natural killer cells; DCs, dendritic cells.
TABLE 2B | A specific gene set compared with melanoma cells for per cell type was selected.

Cell type Gene Number Signature Genes

B cells 15 MS4A1, BLK, CD19, GNG3, SGCA, CD79A, CD79B, CD53, CD72, HTR3A, IGLL1, TCL1A, TLR7, VPREB3, AICDA
CD4+ T cells 85 LIMD2, TRAF1, NPAT, PIK3IP1, ANKRD12, AAK1,

ACBD4, CD226, CUBN, GPSM3, GRAP2, IL16, INSL3, JAK3, KLHL3, KRT2, LAIR2, MLH3, MLXIP, NOL9, SELPLG, SORCS3,
STAP1, TNK1, TSPAN32, ZNF780B, HS3ST3B1, FOXP3, LAX1, STAT5B, TTN, CCR3, NFATC3, IL2, GGT1, SYNGR3, IL12RB1,
STAT4, ZBTB32, CSF2, DPP4, IL12RB2, IL22, EGFL6, IL4, GATA3, IL5, IL13, IL26, ANK1, MB, MICAL2, PHEX, PTGIS, IL1R1, RORC,
IL21, IL1R2, IL17A, MAP4K1, SIK1, FOSB, PVRIG, CD69, BCL11B, CHI3L2, DGKA, LAT, LCK, MAP9, PASK, RGS1, SLC7A10, TCF7,
TSHR, ZBTB10, TFAP4, COL5A3, ADCYAP1R1, DAB1, ERN1, FXYD7, PNMA3, ARHGEF5, DEFB126

CD8+ T cells 43 BLNK, HTR1B, SMCP, RRH, CCDC87, MOGAT2, GJB4, CALY, KIAA1109, CD248, RFX2, AMBN, MYL1, GPR52, CILP, TNFRSF10C,
ITGAM, PTGDR2, PRDM1, MPO, RUNX3, APOL3, DUSP2, ZBTB16, CCND2, EOMES, ITM2A, SNX9, CXCL13, HAVCR2, LINC00299,
MYO7A, TIGIT, TNFRSF1B, AKAP5, TOX, RGS2, GALM, SYNGR2, PTGER4, CCR6, ATR, GIPR

DCs 28 PTGIR, SLAMF8, SLC15A3, SYT17, CCL13, CCL17, CD1B, CD1E, CLIC2, MMP12, TREM2, PLA2G7, ALDH1A2, ALOX15, ALOX15B,
BCL2L11, CCL23, CD1A, CD1C, CD209, CD80, DNASE1L3, FLT3, FUT7, GUCA1A, IL12B, IL3RA, KCNK13

Macrophages 19 CAMP, CHIT1, CD14, FCGR1A, HAMP, MSR1, VSIG4, SDS, SIGLEC7, TYROBP, ADAMDEC1, CCL7, CCR1, CD84, CMKLR1,
CPNE6, CXCL9, CYBA, CYP19A1

Monocytes 31 CA1, TLR8, FOLR2, ASGR2, IRAK3, CD33, VCAN, AIF1, CD101, CD93, CEACAM4, CFP, CLEC4A, CXorf21, DOK2, DOK3, FCER1A,
FCN1, FGL2, FOLR3, GPR183, HCK, KCNMB1, KDM6B, KSR1, LILRA1, LILRA5, LILRB1, LST1, LY86, LYL1

NK cells 11 KIR2DL3, NCR1, NCR3, PRR5L, KIR3DS1, PTGDR, HIPK1, LIM2, NMUR1, PRDM2, TNFSF11
Neutrophils 19 CXCR1, FCGR3B, S100A12, TREML2, TRPM6, SIGLEC5, CREB5, ALPL, CEACAM3, VNN3, CA4, CEACAM8, CYP4F3, FFAR2, HBB,

MMP25, P2RY13, PGLYRP1, TGM3

NK cells, natural killer cells; DCs, dendritic cells.
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We used the median true cell proportions as the cutoff for each
cell type, and found the TICPE estimates had an AUC value
ranging from 0.667 to 1 on publicly available datasets
(Supplementary Figure 2).

We hypothesized that the high correlation values resulted, at
least in part, from the robust signature genes for a specific type of
cancer. Therefore, we respectively collated sets of marker genes,
as reported by Angelova et al. (30), Aran et al. (18), and
Manoharan et al. (31), and used the same pipeline to estimate
the cell proportions to compare the representativeness of the
signature genes selected by the TICPE and those in specific types
of cancer. Using these public validation datasets with different
cell types, we evaluated the performance of the signature gene
sets on independent datasets. We observed that, in most cases,
the selected signature genes in our study showed better
performance in terms of the estimated cell proportions than
the marker genes from previously published methods
(Figure 3A). In general, and not only for colorectal cancer and
melanoma, the TICPE can also be developed to estimate the
proportions of infiltrating immune cells in other types of cancer
when collect relevant cancer cells and normal cells are tested
within the same development pipeline. Moreover, the more
Frontiers in Immunology | www.frontiersin.org 7
robust cell type-specific genes we attained, the better
performance we saw in the TICPE.

A Comparison of the TICPE With
Previously Published Methods
We utilized the public validation datasets and simulated RNA-
seq data to benchmark a range of other methods (CIBERSORT,
EPIC, MCP-counter, xCell, and ImmuCellAI) in order to predict
immune cell proportions. Compared to the other methods used
currently in CRC validation datasets, the TICPE did not obtain
the highest correlations across all cell types; however, it did
provide the most consistent performance of all the assessments
(Figure 3B). The majority of cell types measured by TICPE
showed higher correlations with the observed cell fractions than
the other methods for both scRNA-Seq datasets from melanoma
patients and simulated samples (Figure 3C). Performance of
TICPE and previous computational methods was assessed with
all validation datasets by cell type. We chose the cell type that was
analyzed in more than three datasets. The TICPE robustly
obtained positive correlations across all cell types and data sets
and scored the high performers in the assessments
(Supplementary Figure 3A). In addition, the TICPE showed
A

B

D

C

FIGURE 2 | Performance assessment of the TICPE in solid tumors. (A) Correlation of the TICPE predictions with the cell proportions for the populations introduced
in the mixtures. (B) Comparison with single-cell RNA-Seq data from colon samples. (C) Correlation of the TICPE predictions with corresponding cell densities
measured by immunohistochemistry from colon cancer primary tumors. (D) Correlation of the TICPE predictions versus known cell type fractions on 100 simulated
bulk samples generated from scRNA-seq from colon samples. Correlations were based on Pearson correlation. Proportions of cells observed experimentally were
given in Supplementary Table 2.
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the least correlation deviation for the publicly available datasets
for CRC and melanoma (Figure 3D).

It is also worth noting that the available methods for
estimating immune cell contents are based on quantitative
expression measurements of reference profiles or signature
genes, thus resulting in incomparability across different
datasets. In contrast, our method was based on the relative
ordering of gene expression and was developed to estimate cell
proportions in every individual tumor sample; this strategy was
more flexible than the other methods. We analyzed the cell
infiltration of two scRNA-Seq datasets for melanoma and
compared the results of in silico methods with the true
proportions. With the exception of macrophages (Wilcoxon
Frontiers in Immunology | www.frontiersin.org 8
test; P = 0.017), we found that there was no significant
difference in the actual cell fractions when compared between
the two datasets for melanoma. The TICPE estimates, had a
similar trend to the actual proportions and showed no statistical
significance between the two datasets except for macrophages
(Wilcoxon test; P = 0.02; Supplementary Figure 3B). However,
the majority of cell contents estimated by xCell and ImmuCellAI
between the two datasets were significantly different and
differed from the actual proportions. These results showed that
the TICPE is a robust approach that supports the comparisons of
the same cell type across different datasets at the same time
and shows high levels of accuracy and robustness to estimate the
proportion of immune cells of tumor samples.
A

B

DC

FIGURE 3 | Performance comparison with other methods. (A) Scatter plot organized by cell type showing the performance of different marker gene sets identified
from four sources. Methods performance was quantified using Pearson’s correlation (R). Different colors represented marker genes collated from different methods
and different datasets had corresponding shapes. (B, C) Performance of TICPE and other methods on CRC and melanoma validation cohorts, respectively. Here
rows corresponded to methods and columns showed the Pearson correlation coefficient for the corresponding cell type in each dataset. (D) Correlation deviation of
each method in both CRC and melanoma validation datasets.
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TICPE Revealed That Immune Cell
Infiltration Has Prognostic Value
TIICs are indispensable components of the tumor
microenvironment and have been demonstrated to be highly
valuable in determining the prognosis of multiple cancers. We
accessed data from the GEO and TCGA to investigate whether
TIICs had prognosis value for melanoma patients. We employed
the TICPE to systematically estimate the eight infiltrated
immune cells and stratified patients into a high infiltration
subtype and a low infiltration subtype by using the median cell
proportions as the cutoff. The results of Kaplan–Meier analysis of
79 metastatic melanoma specimens (GSE54467) and a unique set
of 51 treatment-naive primary melanoma samples (GSE98394)
both indicated that higher fractions of CD4+ T, CD8+ T cells,
and NK cells might be associated with better survival over those
with low proportions (P <0.05; Figure 4). In addition, RNA-seq
data from 472 SKCM patients and OS data for 468 patients were
downloaded from the TCGA database. In addition, 323 patients
with a blank therapy type were posited without chemo/
radiotherapy. We only selected these patients to reduce the
Frontiers in Immunology | www.frontiersin.org 9
treatment affecting patient prognosis and also found that
melanoma patients with a high density of NK cells had a better
prognosis (P = 0.0021; Figure 4). Furthermore, the TICPE was
able to estimate cell proportions in every individual tumor
sample. Therefore, we combined 57 melanoma patients with
lymphnode (GSE22153) and subcutaneous metastases, along
with 20 melanoma patients with liver and lymphnode
metastases (GSE22154), who were treated in the same clinical
center. Melanoma patients with a higher abundance of B cells,
CD4+ T, and CD8+ T cells had a longer overall survival with or
without combining the 20 patients with liver and lymphnode
metastases (Supplementary Figure 4).

We also applied the TICPE to four cohorts of CRC patients to
investigate the relationship between cell infiltrations and patient
prognosis. In a cohort of 160 stage II and III CRC tissue samples
that were treated surgically (GSE24551), patients with high levels
of CD8+ T cell infiltration were significantly associated with a
better DFS (disease-free survival) compared with those with a low
infiltration subtype (P = 0.041). In a large series of CRC patients
who had not received adjuvant chemotherapy (GSE39582), and a
FIGURE 4 | The application of TICPE on prognostic analysis for melanoma. Survival high CD4+ T/CD8+ T/NK cells and low CD4+ T/CD8+ T/NK cells groups in
melanoma patients, respectively. P values comparing two groups were calculated with the log-rank test.
May 2021 | Volume 12 | Article 672031

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Xiao et al. A Cancer-Specific Qualitative Method
cohort comprising 232 colorectal cancer patients (GSE17538), we
found that a higher proportion of NK cells indicated a prolonged
period of patient survival (P = 0.0079; P = 0.018) while an
increased number of CD8+ T cells was associated with a better
prognosis, although this was not statistically significant in either
of the datasets. Furthermore, in a cohort of 232 colorectal cancer
patients (GSE17538), despite the fact that macrophage infiltration
was not statistically significant, a higher proportion of
macrophages was associated with a dismal prognosis (P = 0.17).
We also observed the same tendency in 171 surgically resected
CRC specimens without chemo/radiotherapy (GSE14333);
relatively poor DFS was correlated with an increased fraction of
macrophages (P = 0.06; Supplementary Figure 5). Taken
together, CD8+ T cells and NK cells were shown to play
favorable roles in the survival of CRC and melanoma patients
and the data obtained using the TICPE for several cohorts
suggested that immune cell proportions can serve as an effective
prognostic indicator for tumors.
Frontiers in Immunology | www.frontiersin.org 10
TICPE Detected Changes in the
Proportions of Immune Cells During
Immunotherapy for Melanoma
An increasing number of research studies has revealed that an
elevation in the levels of CD8+ T cells and NK cells is associated
with an immunotherapy response in anti-PD-1 treatment (32,
33). We applied the TICPE to a melanoma dataset (GSE91061) to
investigate the impact of immune cell proportions on cancer
immunotherapy. The estimated fractions of CD8+ T cells and NK
cells in pre-treatment and on-treatment samples showed a
substantial increment in the complete and partial response
group (CR & PR) (Kruskal-Wallis test; P < 0.05) than the other
groups (Figure 5A). With regards to pre-treatment data, the
immune cell fractions across different groups showed no statistical
differences. Notably, there was no statistically significant
difference between paired pre-treatment versus on-treatment
immune cell proportions in responders. However, there was an
increasing trend for changes in immune cell proportions during
A

B

FIGURE 5 | The application of TICPE on immunotherapy for melanoma. (A) The significant proportion differences of CD8+ T cells (left)/NK cells (right) in different
response groups at pre- and on-treatment (anti-PD1) time point. (B) Change of the estimated immune cell proportions between pre-treatment and on-treatment time
point in paired responders.
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anti-PD-1 treatment; this indicated that these immune cells were
associated with a favorable response to PD-1 inhibition
(Figure 5B; Wilcoxon test). These results suggested that TICPE
could provide important insights on the dynamic immune cell
infiltration during immunotherapy and offer valuable indicators
for immunotherapy response during treatment.
DISCUSSION

In this study, we developed the TICPE, a cancer-specific
qualitative method based on REOs, to estimate the proportion
of eight different immune cells. The results of our extensive
validation using immunohistochemistry data, mRNA mixtures
in vitro, scRNA-Seq data, and simulated bulk RNA-seq samples,
demonstrated that the TICPE could effectively infer immune cell
fractions from transcriptome profiles. Of note, the TICPE does
not only apply for colorectal cancer and melanoma, the TICPE
could also be developed to estimate the infiltrating immune cells
in any type of cancer as long as relevant data is available, such as
cancer cells and normal samples. We had a straightforward
comparison tumor microenvironment between colorectal
cancer and melanoma utilizing data compiled by TCGA. The
results showed that melanoma was highly infiltrated by CD4+ T
cells, NK cells, dendritic cells, and neutrophils but poorly by cells
of B cells, CD8+ T cells, monocytes, and macrophages in
comparison with colorectal cancer (Supplementary Figure 6A).
Moreover, the TICPE could be broadly employed to other
components of the tumor microenvironment with the increased
availability of public data by using the proposed pipeline. In the
further work, with the gradual accumulation of relevant data of
other cancer types and cell types, we will develop the TICPE for
each neoplasm. Then we will estimate the abundance of immune
cell populations in samples across multiple cancer types from The
Cancer Genome Atlas (TCGA), and propose a global analysis of
immune landscape across human cancers.

The key step in constructing the TICPE involved accurately
identifying a list of genes characterized by a cell type. Compared
to other methods based on marker genes, our method was more
reliable due to the fact that it incorporated a group of signature
genes for each cell type that was acquired from a comprehensive
literature search and featured differentially expressed genes when
compared with cancer cells. As shown the Venn diagram of
Supplementary Figure 6B, there were some shared cell type-
specific genes in both CRC and melanoma, but the majority of
signature genes for each cell type were cancer type-specific in our
study (Supplementary Table 4), which also indicated the gene
expression of immune cell varied across different tissues. On the
other hand, we chose to apply a gene signature approach over
deconvolution methods because of the several advantages that
the former provides. First, we did not require a reference
expression matrix and could treat immune cells independently;
this supported inter-sample comparisons and avoided issues
relating to multicollinearity. Second, the TICPE was based on
the rank of gene expression rather than the actual gene
expression value and was therefore suitable for cross-platform
Frontiers in Immunology | www.frontiersin.org 11
transcriptomic measurements and comparisons. Finally, gene
signatures are simple and can easily be adjusted. Furthermore,
the procedure for developing TICPE was based on REOs so that
it was agnostic to monotonic data normalization or concerns
related to experimental batch effects; these effects rendered our
technique more robust to both technical and biological noise.

The TICPE was reliable and could stratify a cohort of similar
tumors based on the composition of their immune
microenvironments, and could follow proportional changes of
the microenvironment during the course of immunotherapy. In
this investigation, CD8+ T cells and NK cells were shown to play
favorable roles in the survival of CRC and melanoma patients.
CD8+ T cells are the most potent cytolytic cell subset and NK
cells also exert cytolytic functions (34, 35). CD8+ T cells are able
to exert a directly killing effect on tumors cells and have been
linked to a better prognosis in several types of cancer (36). In
parallel with CD8+ T cells, NK cells can recognize and kill
neoplastic cells and play pivotal roles in innate and adaptive
immune responses and tumor immunosurveillance (37). In
addition, our study also showed that the abundance of
macrophages may serve as an unfavorable prognostic marker
for CRC. Macrophages are conventionally classified into M1 and
M2 subtypes. M2 macrophages secrete Interleukin 10 (IL-10),
transforming growth factor-b(TGF-b), and other mediators that
stimulate tumor-related angiogenesis and inhibit antitumor
immune response (4, 38). On the other hand, although limited
in sample size, our analysis detected an association between anti-
PD-1 immunotherapy response and elevated CD8+ T cell and
NK cell levels and revealed the potential of TICPE for providing
important insights into dynamic immune cell infiltration during
immunotherapy. The TIICs found in our study make a
significant contribution to patient survival and treatment and
our findings are corroborated by previous studies (17, 39).
Overall, the proportions of immune cells measured by the
TICPE could serve as a prognostic factor or a potential
predictive model for the response to immune checkpoint
blockade therapy in solid tumors.

Despite the utility of our method for estimating the tumor
immune contexture for a particular type of cancer, several issues
require further investigation. First, the TICPE was a cancer specific
model and only focused on a very narrow range of cell types from
the tumor microenvironment as our research involved publicly
available datasets and gene sets that were characterized by each type
of immune cell. Further efforts are required to collect more relevant
information to extend the technique to other cell types (e.g., cancer-
associated fibroblasts) and should be expanded to include more
cancer types. Moreover, the inferences were strictly upregulated
scores which could be compared with cancer cell and could not be
interpreted as proportions. Thus, while we attempted to calibrate
our method to resemble proportions, this strategy was hindered by
conducting simulations to real-world datasets; the reliability of the
technique needs to be improved. Furthermore, the final estimates
were not normalized to sum up to one; therefore, the estimates
could not be interpreted directly as cell fractions. Consequently,
further improvement of our method is certainly warranted,
including the reselection of signature genes from genome-wide
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genes to extend to other cell types and the selection of a large cohort
of real-world datasets with cell proportions to conduct
simulated models.

In summary, the TICPE is a cancer-specific qualitative method
for estimating the tumor immune contexture using public RNA-Seq
and microarray datasets. The TICPE can estimate the proportion of
infiltrating immune cells in CRC and melanoma but could also be
extended to other types of cancer. Furthermore, the TICPE was
based on REOs and can estimate the proportions of tumor-
infiltrating immune cells in individual tumor samples. Therefore,
the TICPE showed good comparability across different datasets and
was only weakly affected by batch effects. We anticipate that this
method will assist in the discovery of novel prognostic and
predictive response biomarkers for both conventional and
immunotherapy by taking immune cell composition into account.
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