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Objectives: Deciphering the genetic relationships between major depressive disorder
(MDD) and atopic diseases (asthma, hay fever, and eczema) may facilitate understanding
of their biological mechanisms as well as the development of novel treatment regimens.
Here we tested the genetic correlation between MDD and atopic diseases by linkage
disequilibrium score regression.

Methods: A polygenic overlap analysis was performed to estimate shared genetic
variations between the two diseases. Causal relationships between MDD and atopic
diseases were investigated using two-sample bidirectional Mendelian randomization
analysis. Genomic loci shared between MDD and atopic diseases were identified using
cross-trait meta-analysis. Putative functional genes were evaluated by fine-mapping of
transcriptome-wide associations.

Results: The polygenic analysis revealed approximately 15.8 thousand variants causally
influencing MDD and 0.9 thousand variants influencing atopic diseases. Among these
variants, approximately 0.8 thousand were shared between the two diseases. Mendelian
randomization analysis indicates that genetic liability to MDD has a causal effect on atopic
diseases (b = 0.22, p = 1.76 × 10-6), while genetic liability to atopic diseases confers a
weak causal effect on MDD (b = 0.05, p = 7.57 × 10-3). Cross-trait meta-analyses of MDD
and atopic diseases identified 18 shared genomic loci. Both fine-mapping of
transcriptome-wide associations and analysis of existing literature suggest the estrogen
receptor b-encoding gene ESR2 as one of the potential risk factors for both MDD and
atopic diseases.

Conclusion: Our findings reveal shared genetic liability and causal links between MDD
and atopic diseases, which shed light on the phenotypic relationship between MDD and
atopic diseases.
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INTRODUCTION

Mental disorders confer a heavy burden on society (1). Major
depressive disorder (MDD), the most prevalent mental disorder
accompanied by considerable morbidity, mortality, and risk of
suicide, is characterized by persistent low mood (2). MDD and
depressive symptoms have close associations with certain
physical conditions. Generally speaking, long-term depression
adds to the risk for somatic illness, and, vice versa, chronic
somatic diseases are frequently accompanied by depression (3).
When comorbid with other ailments, for example, atopic
diseases (ADs), MDD produces worse clinical outcomes and
incurs higher healthcare costs.

ADs are driven by the dysfunction of the immune system.
Three kinds of common ADs, namely, asthma, hay fever (allergic
rhinitis), and eczema (atopic dermatitis), may coexist in the same
individuals (4). Asthma, a chronic airway disease that is common
worldwide, is characterized by coughing, wheezing, shortness of
breath, and/or chest tightness due to increased airway reactivity,
inflammation, and/or mucus production. In 2015, asthma affected
358 million people globally and caused about 400,000 deaths (5).
Allergic rhinitis is an inflammatory disease characterized by nasal
congestion, rhinorrhea, sneezing, and/or nasal itching. Allergic
rhinitis is one of the most common diseases in adults (20%~30%),
and the most common chronic disease in children (up to 40%)
in the United States (6). Eczema is an inflammatory skin disease
that is caused by a dysfunction of a skin barrier followed by
aberrant inflammation/immune responses; this disease is affecting
5% of the population worldwide (7). Together, symptoms of
ADs significantly impair quality of life and impose a heavy cost
on society. Common comorbidities of MDD with ADs have been
documented previously (8–12). Specifically, allergic rhinitis has
been shown to have a positive association with MDD (odds ratio:
1.24) (8). In patients with asthma, the hazard ratio of MDD
increases by 35%, and MDD patients show about 25% increased
hazard ratio for being affected by asthma (9). Atopic eczema is
also associated with an increased incidence of new depression
(hazard ratio: 1.14) (10).

Although previous studies have detected associations
between MDD and ADs, several key questions remain pending:
1) to what extent may the two conditions share genetic
components? 2) Are the phenotypic associations mediated by
genetic variations? 3) What molecular and cellular mechanisms
underline these associations?

Genetic relationships between two traits are commonly
quantified by genetic correlation coefficients. The sign of the
correlation coefficient indicates directions of the shared genetic
effects. When dealing with mixtures of effect directions across
shared genetic variants, genetic correlation analyses may be
underpowered (13). A polygenic overlap was recently proposed
to measure the fraction of genetic variants causally associated
with both traits over the total number of causal variants across a
pair of traits involved (13).

Mendelian randomization (MR) is an analytic framework that
utilizes genetic variants as instrumental variables to test for
causative association between an exposure and an outcome (14).
Recently, a general type of SMR (GSMR) had been developed by
Frontiers in Immunology | www.frontiersin.org 2
leveraging power from multiple genetic variants to account for
linkage disequilibrium (LD) between the variants (15).

Recently, Zhu et al. reported a causal effect of MDD on
asthma and identified 10 loci shared by asthma and MDD by
cross-trait meta-analysis (16). The GWAS dataset for MDD,
however, did not include the 23andMe samples. We set on taking
this line of investigation further, by both utilizing a larger MDD
dataset and including two other ADs related to asthma, namely,
allergic rhinitis and atopic dermatitis. Asthma, allergic rhinitis,
and atopic dermatitis genetically correlate with each other and
are often comorbid (17). The genetic liability to MDD may
confer a causal effect on all of these ADs. Dissection of this
shared genetic liability may deliver novel insights into the
pathophysiology of both MDD and ADs.
METHODS

GWAS Summary Datasets and
Quality Control
This study relied on both de-identified publicly available
summary-level GWAS data and the pre-approval 23andMe
dataset. The resultant MDD dataset included 135,458 cases and
344,901 healthy controls (18), and the AD dataset included
96,794 cases and 145,775 healthy controls (19). For the
inclusion of each dataset, both bi-allelic SNPs and imputation
INFO above 0.80 were required. Each SNP was compared
between the two datasets, and SNPs with conflicting alleles
were excluded. If an SNP was mapped to opposite strands in
the two datasets, alleles of this SNP in the second dataset were
flipped, and the effect direction was reversed.

Genetic Correlation and Polygenic
Overlap Analysis
GWAS summary results were utilized to analyze the genetic
correlation of MDD with ADs by LD score regression software
(LDSC, v1.0.1) (20, 21). A polygenic overlap was analyzed by
MiXeR v1.2 using default parameters (13). Using GWAS
summary statistics, MiXeR quantifies the polygenic overlap
irrespective of the genetic correlation between traits. Based on
the univariate causal mixture model (22), MiXeR builds four
bivariate normal distributions, with two causal components for
variants specific to each trait, one causal component for variants
affecting both traits, and a null component for variants with no
effect on either trait. The likelihood function of the observed
signed test statistics (GWAS Z-scores) is produced from the prior
distribution of genetic effects, incorporating effects of the LD
structure, sample size, minor allele frequency (MAF), cryptic
relationships, and sample overlap. The summary statistics are
used to estimate the parameters of the mixture model by
optimization of the likelihood function. The number of causal
variants reported by the software is 22.6% of the total estimated
variants, which account for 90% of SNP heritability for each trait.

MR Analysis
Bidirectional causal associations between MDD and ADs were
inferred using GSMR v1.0.9 (15). Instrumental variants were
September 2021 | Volume 12 | Article 665160
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selected based on default p ≤ 5×10-8. It is well accepted that
pleiotropy is a potential source of bias and an inflated estimation
in an MR analysis (23). In GSMR, the HEIDI-outlier statistical
approach allows the detection and elimination of genetic
instruments with apparent pleiotropic effects on both risk
factors and disease (15, 24). It was suggested that genetic
correlation may confound Mendelian randomization estimates
(25). To examine this possibility, we performed a latent causal
variable model (LCV) analysis between MDD and ADs (26). The
LCV framework utilizes the genetic causality proportion (GCP)
to quantify the partial causality of trait 1 on trait 2. The GCP
ranges from 0 (no partial genetic causality) to 1 (full genetic
causality). A high value of GCP indicates a causal effect of
interventions targeting trait 1 on trait 2.

Cross-Trait Meta-Analysis
A cross-trait meta-analysis of the MDD and the ADs was
executed by the subset-based fixed-effect method ASSET v2.4.0,
which permits the characterization of each SNP with respect to
its pattern of effects on multiple phenotypes (27). For each
assessed variant, this type of analysis returns a p-value for the
best subset containing the studies contributing to the overall
association signal. The meta-analysis pools the effect of a given
SNP across K studies, weighting the effects by the size of the
respective study. After subset-based meta-analysis, SNP-related
findings were considered statistically significant, if two-tailed p
values were lower than 5 × 10-8. In the meta-analysis results,
functional annotation and gene-mapping of variants and
identifying LD-independent genomic regions were performed
on a FUMA platform (28). Firstly, independent significant SNPs
(IndSigSNPs) were identified based on their p-value being
genome-wide significant (p ≤ 5.0 × 10−8) and independent of
each other (r2 < 0.6). Secondly, lead SNPs were identified as a
subset of the independent significant SNPs that were in LD with
each other at r2 < 0.1 within a 250-kb window. The gene-based
association for the meta-analysis of MDD and ADs was
conducted using MAGMA (29).

To ensure that sample overlap did inflate estimates of genetic
overlap between MDD and ADs, lmeta statistics, which use
effect size concordance to detect sample overlap or heterogeneity,
were calculated (30). Under the null hypothesis, lmeta equals 1
when the pair of cohorts are completely independent. When
there are overlapping samples, lmeta is less than 1.

Fine-Mapping of TWAS Associations
To prioritize putatively causal genes, fine-mapping of causal gene
sets (FOCUS v0.6.10) (31) to the meta-analysis result of MDD and
ADs was performed in four relevant tissues, including the brain,
whole blood, lung, and skin. Using FOCUS, predicted expression
correlations were modeled and posterior inclusion probabilities
(PIP) are assigned to genes within each transcriptome-wide
association study (TWAS) region in the relevant tissue types. A
multi-tissue eQTL reference weight database from the software
was used as eQTL weights, while LD information from LDSC was
used as a reference. Multiple-testing correction was used to
account for all gene–tissue pairs based on Benjamini–Hochberg
adjusted TWAS p-values (FDR < 0.05).
Frontiers in Immunology | www.frontiersin.org 3
Knowledge-Based Analysis
GWAS results, including meta-analysis, were obtained for
depression (major depressive disorder and depressive
symptoms) and for ADs from the GWAS Catalog database
(access date: April 17, 2020) (32). We explore whether the
genes shared by MDD and ADs have been identified in
previous genome-wide association studies. Protein–protein
interaction analysis was conducted using STRING v11 (33).
Enrichment of the 27 genes in the GWAS catalog reported
genes was analyzed using FUMA (28).

All the statistical analyses were conducted in R 3.6.1 or
Python 3.7 environment. A detailed description of the methods
is provided in the Supplementary File.
RESULTS

Genetic Correlation and Polygenic
Overlap Analysis
MDD displayed a significant genetic correlation with ADs (r =
0.18, s.e. = 0.03, p = 1.04 × 10-9). The LD score intercept did not
deviate from zero (0.017). The polygenic analysis highlighted
approximately 15.8 thousand variants causally influencing MDD
and 0.9 thousand variants influencing ADs. Among these
variants, approximately 0.8 thousand variants were shared
between the two diseases (Figure 1A). MDD has much larger
numbers of causal variants than ADs, indicating a higher
polygenic property of MDD.

MR Analysis
Mendelian randomization analysis indicated that genetic liability
to MDD has a causal effect on ADs (b = 0.22, s.e. = 0.05, OR =
1.25, 95%CI: 1.13–1.37, p = 1.76 × 10-6), with 45 independent
instrumental variants being involved. The genetic liability of ADs
conferred a causal effect on MDD (b = 0.05, s.e. = 0.02, OR =
1.05, 95%CI: 1.01–1.09, p = 7.57 × 10-3), with 115 independent
instrumental variants being involved (Figure 1B). The LCV
analysis showed that GCP was 0.49 (0.32), supporting a causal
effect of genetic liability to MDD on ADs.

Cross-Trait Meta-Analysis
The cross-trait meta-analysis of MDD and ADs revealed the
involvement of 103 loci, 470 significant independent SNPs
(IndSigSNPs), and 141 lead SNPs, including 44 pleiotropic
IndSigSNPs located in 18 loci (associated with both traits)
(Figure 2A, Table 1 and Supplementary Tables 1, 2). The
14q23 locus is shown in Figure 2B. A total of 82 pleiotropic
protein-coding genes were identified, including 27 protein-
coding genes implicated by the pleiotropic IndSigSNPs and
another 55 protein-coding genes implicated by SNPs tagged by
IndSigSNPs (Supplementary Table 3). The gene-based
association for the meta-analysis of MDD and ADs identified a
total of 273 significant genes at the threshold of 2.70 × 10-6

(Bonferroni correction, 0.05/18,545) (Supplementary Table 4).
Compared with SNP-based analysis, an additional 63 genes
were identified by the gene-based analysis, including DRD2.
September 2021 | Volume 12 | Article 665160
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A B

FIGURE 1 | Shared causal variants and causal associations between MDD and ADs. (A) Venn diagrams of unique and shared polygenic components at the causal
level, showing a polygenic overlap between MDD and ADs. The numbers indicate the estimated quantity of causal variants (in thousands) per component, explaining
90% of SNP heritability in each phenotype. The size of the circles reflects the degree of polygenicity. (B) Causal associations between MDD and ADs. The lines
denote effect sizes (B). The left panel denotes the causal effect of MDD on ADs. The left panel denotes the causal effect of ADs on MDD.
A

B

C

FIGURE 2 | Cross-trait meta-analysis of MDD and ADs. (A) Manhattan plot of meta-analysis of MDD with ADs. The x-axis is the chromosomal position of SNPs,
and the y-axis is the significance of the SNPs (-log10P). Protein-coding genes containing or adjacent to independent significant SNPs shared by two traits were
annotated. PCDHA1_6: PCDHA1, PCDHA2, PCDHA3, PCDHA4, PCDHA5, and PCDHA6. (B) The 14q23 locus containing the ESR2 gene. Each SNP is colored
based on the highest r2 to one of the independent significant SNPs. (C) Enrichment of the 27 protein-coding genes in GWAS catalog gene sets.
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The lmeta value was at 1.18 for datasets betweenMDD and ADs,
indicating no significant overlap between MDD and AD GWAS
samples. Quantile–quantile (QQ) plots to display the observed
meta-analysis statistics versus the expected statistics under the
null model of no associations in the -log10(p) scale are shown in
Supplementary Figure 1.

Fine-Mapping of TWAS Associations
To prioritize putatively causal genes, we used the fine-mapping
of TWAS associations. A total of 126 gene–tissue pairs were
identified between the 82 genes and the four tissues, with 36
genes being associated with two or more tissues (Supplementary
Table 5). A total of 31 gene–tissue pairs were in the credible sets.
Fifteen genes associated with three or more tissues are listed in
Table 2. However, most genes in Table 2 had low PIP. Of note,
the ESR2 gene was associated with three tissues (skin, lung, and
blood) with relatively high posterior probability (Figure 3).
Frontiers in Immunology | www.frontiersin.org 5
Knowledge-Based Analysis
A total of 23 out of the 27 pleiotropic protein-coding genes
have been identified in previous GWASs on depression or ADs
(Supplementary Table 6). Among these 23 genes were 16
genome-wide risk genes for depression, including BEND4,
DENND1A, ESR2, L3MBTL2, NEGR1, PCDHA1, PCDHA2,
PCDHA3, PCDHA4, PCDHA5, PCDHA6, RBX1, SLC30A9,
SORCS3, SYNE2, and TMEM161B, and 8 genome-wide risk
genes for ADs, including BOLL, DIAPH1, GLB1, MOB4, NEK6,
OVOL1, RANGAP1, and RBX1. Enrichment of the 27 genes in
the GWAS catalog-reported genes revealed that these genes were
enriched in several mental disorders and basophil neutrophil
counts, as well as neutrophil counts, supporting the involvement
of these genes in neurodevelopmental conditions and atopic
diseases (Figure 2C and Supplementary Table 7).

PPI analysis showed that a majority of the 82 genes are
interconnected, forming one large network and several small
TABLE 1 | Genomic loci shared between MDD and ADs.

SNP Chr : BP P Start : End Genes

rs10789340 1:72940273 4.85×10-17 72512988:72958905 NEGR1; RPL31P12
rs700646 2:198608511 3.80×10-11 198148191:198954774 MOB4; BOLL; AC011997.1
rs11927929 3:33087057 5.46×10-9 33068268:33126972 GLB1
rs34215985 4:42047778 2.07×10-12 41882601:42187640 RP11-457P14.5; RP11-457P14.6; SLC30A9; BEND4
rs71600495 4:121628028 1.57×10-8 121625080:121655414 PRDM5
rs247910 5:87630769 1.41×10-12 87437079:88065637 TMEM161B; TMEM161B-AS1; LINC00461; CTC-467M3.1
rs1363105 5:103917790 1.80×10-10 103671867:104082179 RP11-6N13.1
rs10060640 5:140211226 7.62×10-9 140024042:140222641 PCDHA1; PCDHA2; PCDHA3; PCDHA4; PCDHA6; PCDHA5
rs3844598 5:140992235 3.14×10-10 140893490:141032603 DIAPH1
rs11135349 5:164523472 2.71×10-9 164465319:164678946 CTC-340A15.2
rs2064219 6:27376001 3.07×10-10 25684606:29607101 MCFD2P1
rs144829310 9:6208030 7.58×10-26 5609742:6621027 AK4P4; KIAA2026
rs549779 9:126613028 2.62×10-8 126452936:126714710 DENND1A
rs10818936 9:127006346 3.82×10-8 126999153:127144622 NEK6
rs61867293 10:106563924 2.60×10-9 106529451:106830537 SORCS3
rs479844 11:65551957 3.64×10-12 65401336:65641033 OVOL1
rs915057 14:64686207 1.42×10-9 64649894:64877135 SYNE2; ESR2
rs136402 22:41598933 1.51×10-14 41085969:42216326 SLC25A17; RBX1; Y_RNA; RP11-12M9.4; RP1-85F18.5; L3MBTL2; RANGAP1; ZC3H7B
Chr, chromosome; BP, base position. Protein-coding genes are shown in bold.
TABLE 2 | TWAS analysis in the four tissues.

Gene GWAS P Chr : Start-End Tissue Brain Z (PIP) Blood Z (PIP) Lung Z (PIP) Skin Z (PIP)

SLC30A9 2.07×10-12 4:41992489-42092474 Brain, blood, lung -6.08 (0.313) -1.83 (<0.01) 3.72 (<0.01)
NDUFA2 2.25×10-6 5:140018325-140027370 Brain, blood, skin 6.27 (0.941) 4.28 (0.011) -2.87 (<0.01)
FCHSD1 5.99×10-8 5:141018869-141030986 Brain, lung, blood 5.64 (0.807) 1.86 (<0.01) 2.42 (<0.01)
PCDHA7 7.62×10-9 5:140213969-140391929 Lung, brain, skin -5.02 (0.150) -5.18 (0.317) -3.65 (0.013)
WDR55 2.24×10-6 5:140044261-140053709 Skin, blood, lung, brain -1.56 (<0.01) -4.65 (0.026) -1.86 (<0.01) -4.69 (0.059)
IK 2.25×10-6 5:140026643-140042064 Blood, skin, lung, brain -3.67 (<0.01) 4.52 (0.034) -3.7 (<0.01) -3.37 (<0.01)
TMCO6 2.25×10-6 5:140019012-140024993 Blood, skin, lung, brain -1.61 (<0.01) -4.27 (<0.01) -3.41 (<0.01) -2.98 (<0.01)
ZMAT2 2.51×10-6 5:140078265-140086248 Lung, blood, skin, brain -3.5 (<0.01) 2.73 (<0.01) -2.2 (<0.01) -2.98 (<0.01)
ZNF391 3.07×10-10 6:27342394-27371683 Brain, skin, blood, lung 2.54 (0.268) 3.83 (<0.01) -3.86 (<0.01) 3.13 (<0.01)
ESR2 1.42×10-9 14:64550950-64804830 Lung, skin, blood -5.09 (0.256) -3.96 (0.243) -5.58 (0.998)
MTHFD1 5.20×10-9 14:64854749-64926722 Lung, blood, skin -3.05 (<0.01) -3.18 (0.018) -3.32 (<0.01)
MEI1 9.03×10-10 22:42095503-42195460 Brain, skin, lung, blood 6.52 (0.424) 5.88 (<0.01) 5.95 (<0.01) 6.37 (0.042)
XPNPEP3 2.65×10-8 22:41253081-41363838 Blood, skin, lung, brain 3.97 (<0.01) 4.87 (0.045) 5.11 (0.017) 5.42 (0.035)
CCDC134 2.14×10-9 22:42196683-42222303 Brain, lung, blood, skin 3.91 (<0.01) 1.63 (<0.01) 2.49 (<0.01) -1.82 (<0.01)
DESI1 1.10×10-9 22:41994032-42017100 Lung, skin, brain, blood 2.35 (<0.01) 1.51 (<0.01) 2.34 (<0.01) 2.91 (<0.01)
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networks (Supplementary Figure 2). Schematics of ESR2 gene
interactions with depression and ADs are shown in Figure 4.
DISCUSSION

In this study, we detected a significant genetic correlation
between MDD and ADs (r = 0.18), at a level comparable to
that for a previously reported correlation of MDD and autism
Frontiers in Immunology | www.frontiersin.org 6
spectrum disorder (r = 0.16) (34). Our results indicate a much
higher polygenicity of MDD when compared to ADs, with
substantial polygenic overlap between these conditions
identified. Nearly 90% of causal variants influencing the risk of
ADs may also affect MDD. Cumulative evidence supports a close
relationship between these two conditions in the context of
underlining genetics.

More importantly, causal relationships between MDD and
ADs were discovered. In particular, a major causal effect of
A B

DC

FIGURE 3 | Transcriptome-wide association study of the meta-analysis of MDD and ADs. (A) skin; (B) blood; (C) lung; (D) brain. Within each panel, the top part is
the transcriptome-wide association signal indicating strength of the predicted expression association with trait, and the bottom part is the induced correlation of the
predicted expression.
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genetic liability to depression on ADs was detected. Although
liability to ADs also exerts a statistically significant causal effect
on MDD, the size of this effect is relatively small (b = 0.05).
Previous studies already showed the possible influence exerted by
MDD on ADs. For instance, patients with MDD show elevated
levels of non-esterified fatty acids in plasma (35); other studies
showed that fatty acids may contribute to the development of
atopic diseases such as hay fever and asthma (36). Elevated
serum interferon levels may contribute to eczema and also are
commonly detected in MDD (37). Moreover, MDD has been
shown to stimulate the production of cytokines (38), including
IL-13 and IL-6, both of which are also strongly involved in
asthma pathogenesis (39). Our findings are consistent with these
previous studies and partially explain the previously reported
comorbidity of MDD and ADs (8–12), while adding novel
insights into underlying pathogenetic mechanisms. Notably,
one previous study reported that depression may lead to
asthma rather than the opposite (40). The causal effect of ADs
on MDD should be further evaluated in additional datasets.

Shared genetic liability between MDD and ADs offers the
possibility of employing polygenic risk scores (PRS) for
evaluating allergic risks in MDD patients and the risk of
developing depression in AD patients. This strategy may lead
to an improvement in the clinical management of these
conditions. Shared biological markers of MDD and ADs are
far from being well studied. The cross-trait analysis revealed that
MDD and ADs share 18 loci and a panel of protein-coding genes.
The majority of these pleiotropic protein-coding genes have been
previously implicated either in depression or in ADs, with a
genome-wide significance level. For example, the RBX1 gene was
reported as a significant contributor to both depression (41) and
ADs (42). To shed new light on the genetic susceptibility of ADs
and MDD, we have concentrated on the estrogen receptor b
encoding gene ESR2 for further discussion.

Estrogen is capable of modulating neurotransmitter turnover to
enhance the levels of serotonin and noradrenaline and participates
in the regulation of serotonin receptor amounts and function (43).
Accumulating evidence indicates the involvement of estrogen
signaling in depression (44). In females, estrogen fluctuations are
associated with depressed mood (45), and the beneficial effects of
estrogen-containing hormone treatments were reported (46, 47).
The gene for estrogen receptor b, ESR2, has been previously
identified as a genome-wide significant gene contributing to
Frontiers in Immunology | www.frontiersin.org 7
MDD (18, 48). As the levels of estrogen are easily modulated by
pharmacological means, the association between ESR2 and MDD
may inform the development of personalized treatment modalities
for this condition. Notably, model studies in neonatal rats treated
with antidepressant clomipramine uncovered both the changes in
the levels of estrogen receptors on the surface of brain cells and the
neurochemical changes that resemble human depression (49). The
role of estrogens in the development of ADs is noticeable as well.
Women have a higher prevalence of asthma and display its greater
severity than men (50). Estrogen receptors are found on numerous
immune-regulatory cells, with estrogen-dependent responses
favoring the shift toward allergy. In particular, estrogens
promote allergic response by stimulating Th2 polarization,
boosting class switching of B cells to IgE production, and
prompting mast cell and basophil degranulation (51). ESR2 and
its product, estrogen receptor b, have been suggested as potential
targets for asthma treatment (52). There is also accumulating
evidence supporting estrogens’ role in hay fever and eczema (53,
54). In particular, there is a correlation between the mean number
of ER-b-positive cells in the nasal mucosa and seasonal allergy
symptoms (55).

This study identified ESR2 as a novel genome-wide significant
contributor to ADs, providing strong support for the involvement
of the estrogen pathway in ADs. Fine-mapping of TWAS had
assigned the posterior probability for causality for ESR2 in the
skin, blood PBMCs, and lung tissue at 0.998, 0.256, and 0.243,
respectively. Although the fine-mapping of TWAS hits did not
support the involvement of ESR2 in the brain, analysis of existing
literature points at its role in neurodevelopment and mental
disorders. Together, our findings highlight ESR2 as a critical
gene for both MDD and ADs and point to its relevance at the
therapy target.

The presented study has several strengths. First, we utilized
the largest combination of available datasets as a study backbone.
Furthermore, to avoid potential population heterogeneity across
the studies, we limited our analysis to individuals of European
ancestry. Lastly, the genetic relationship between MDD and
ADs was explored systemically by employing multiple
analytic frameworks.

However, several limitations should also be noted. The
datasets employed in this study only contained data of three
subtypes of ADs. Further studies using more datasets covering
other subtypes of ADs are warranted to evaluate the associations
FIGURE 4 | Schematic relationships of ESR2 with depression and ADs.
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betweenMDD and ADs. In TWAS, the gene expression levels are
imputed from weighted linear combinations of SNPs and,
therefore, may report noise. As our analysis was limited to a
genetic component of each trait, hence, the presented results
should be interpreted cautiously, with the understanding that
human traits arise from a complex web of interactions of various
psycho-social-environmental factors.

In summary, our findings reveal shared genetic liability and
causal links between MDD and atopic diseases, which may
underline the phenotypic relationship between MDD and ADs.
Presented results may have implications both for the therapy and
for the management of MDD and ADs.
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